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I Supplementary Figures

 

Supplementary figure S1: CCL22 and CCL1 expression in several healthy tissues and 

CCR8-transduced T cell homing pattern in several murine tissues.  

(A) Boxplots comparing CCL22 and CCL1 gene expression levels in several healthy tissues. 

Samples analyzed for skin n = 557, spleen n = 101, small intestine n = 93, lung n = 289, 

salivary gland n = 56, vagina n = 86, breast n = 180, prostate n = 101, esophagus n = 557, 

adipose tissue n = 516, cervix uteri n = 11, stomach n = 175, colon n = 309, phallopian tube n 

= 6, bladder n = 10, whole blood n = 338, adrenal gland n = 129, thyroid n = 280, testis n = 

166, blood vessel n = 557, liver n = 111, nerve n = 279, kidney n = 29, pancreas n = 168, 

heart n = 378, pituitary n = 108, ovary n = 89, uterus n = 79, brain n = 557 and muscle n = 

397. Scales are depicted in a log2 scale (minimum 0.5 and maximum 16, major tick interval 

Supplementary !gure S1: CCL22 and CCL1 expression in several healthy human tissues
and CCR8-transduced T cell homing pattern in several murine tissues.
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of 1 power of 2) and mRNA normalization was estimated by the TCGA using the RSEM 

(RNA-seq by expectation maximization) method. (B to D) Flow cytometry ACT tracking 

experiments with a similar layout to the one described in Figure 2I. n = 5 mice. (B and C) 

Panc02-tumor bearing mice treated with a mixed ratio of CCR8-GFP or mCherry-transduced 

T cells. n = 5 mice. (D) Panc02-EpCAM-tumor bearing mice treated with a mixed ratio of 

CCR8-CAR- or CAR -ransduced T cells. n = 5 mice. 

  



 

 

Supplementary figure S2: FOXP3, CCR8 and TGFB1 genes are upregulated in 

pancreatic adenocarcinomas and other cancer types.  

(A and B) Boxplots comparing FOXP3, CCR8 (and its ligands) and TGFB1 gene expression 

levels in various cancers to corresponding healthy tissue in various cancers. (C and D) 

Correlation of CCR8 and FOXP3 and correlation of TGFB1 and FOXP3, respectively, in 

different tissues. r2 was used to evaluate the fit estimated by the Pearson’s squared method. 

PDAC pancreatic adenocarcinoma, BRCA breast invasive carcinoma, STAC stomach 

adenocarcinoma, COAD colon adenocarcinoma, READ rectum adenocarcinoma, NSE not-

sun exposed, SE sun exposed, SKCM skin cutaneous melanoma, LUAD lung 

adenocarcinoma, LUSC lung squamous cell carcinoma, MESO mesothelioma. Samples 

analyzed for pancreas tissue n = 167, PDAC n = 183, breast mammary tissue n = 179, BRCA 

n = 1212, stomach n = 175, STAC n = 450, colon sigmoid n = 141, colon transverse n = 167, 

COAD n = 331, READ n = 103, skin NSE n = 233, skin SE n = 324, SKCM n = 470, lung n 

= 288, LUAD n = 574, LUSC n = 548 and MESO n = 87. All scales are depicted in a log2 

scale (minimum 0.5 and maximum 16, major tick interval of 1 power of 2) and mRNA 

normalization was estimated by the TCGA using the RSEM (RNA-seq by expectation 

maximization) method. 

Supplementary !gure S2: FOXP3, CCR8 and TGFB1 genes are upregulated in pancreatic adenocarcinomas and other cancer types.
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Supplementary figure S3: T cell exclusion and dysfunction signatures in PDAC patients 

according to CCR8 expression. 

(A) PDAC staging correlation with CCR8-expression. (B) TIDE analysis of CCR8 expression 

in T cell exclusion and dysfunction signatures in PDAC patients. (C) Lymphocyte 

infiltration, Treg, TGFB and Proliferation scores according to CCR8-expression in PDAC 

patients. PDAC patients from the TCGA database were included according to their CCR8 

expression in a CCR8 High group (top 20th percentile) (n = 26) or in a CCR8 Low group 

(bottom 20th percentile) (n = 26). Statistical analysis for (A) was performed using a Chi-

squared test, and two-tailored Mann-Whitney test for (B and C).  
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Supplementary !gure S3: T cell exclusion and dysfunction signatures in PDAC patients according to CCR8 expression.
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Supplementary figure S4: Extended in vitro and ex vivo characterization of human T 

cells.  

(A) Transduction efficiency and surface expression of CAR in CAR- and CCR8-DNR-CAR-

transduced T cells, as determined by flow cytometry and QIFIKIT (Agilent Technologies), 

respectively. (B) Phospho-specific flow cytometry of SMAD2/3. (C to G) Long-term 

coculture assay was carried out as described: 105 CAR-, CCR8-CAR-, DNR-CAR- or CCR8-
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Supplementary !gure S4: Extended in vitro and ex vivo characterization of human T cells.
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DNR-CAR-transduced T cells were cocultured with 2 x 104 SUIT-MSLN tumor cells. T cells 

were serially transferred to new tumor cells every 2 days. (C) An equal volume of T cells was 

collected at each T cell transfer to monitor T cell proliferation. Day 2 CCR8-DNR-CAR vs 

CCR8-CAR p = 0.028, CCR8-DNR-CAR vs CAR p = 0.045. Day 4 CCR8-DNR-CAR vs 

CCR8-CAR p = 0.047, DNR-CAR vs CCR8-CAR p = 0.045. Day 6 CCR8-DNR-CAR vs 

CCR8-CAR p = 0.011, CCR8-DNR-CAR vs CAR p = 0.007. Day 8 CCR8-DNR-CAR vs 

CCR8-CAR p = 0.004, DNR-CAR vs CCR8-CAR p = 0.024, CCR8-DNR-CAR vs CAR p = 

0.012, DNR-CAR vs CAR p = 0.045. Day 10 CCR8-DNR-CAR vs CCR8-CAR p < 0.001, 

DNR-CAR vs CCR8-CAR p = 0.010, CCR8-DNR-CAR vs CAR p = 0.002, DNR-CAR vs 

CAR p = 0.042. Day 12 CCR8-DNR-CAR vs CCR8-CAR p = 0.036. n = 6 healthy donors. 

(D) Changes in the frequency of CD4+ and CD8+ T cells assessed by flow cytometry after 2, 

7, 14 and 21 days of coculture. (E) Phenotypic characterization of T cell products using 

CD45RO and CCR7 expression, allowing for the differentiation of effector memory (EM), 

central memory (CM), effector or naïve T cells in after 2 days of coculture. (F) Frequency of 

expression of PD-1, TIM-3 and LAG-3 in CD4+ and CD8+ T cell populations after 2, 7, 14 

and 21 days of coculture. (G) Secreted IL-4, IL-5, 1L-10, 1L-13, IL-2, TNF-ɑ, granzyme B, 

IFN-ɣ, CCL1, CCL3, CCL4, CXCL10 and TGF-β cytokine concentrations determined by 

ELISA across different coculture conditions after 2, 7, 14 and 21 days of coculture. CCL1 on 

day 7 for CCR8-DNR-CAR vs CCR8-CAR p =  0.013, CCR8-DNR-CAR vs CAR p = 0.043, 

DNR-CAR vs CCR8-CAR p <  0.001, DNR-CAR vs CAR p = 0.007. CCL3 on day 7 for 

CCR8-DNR-CAR vs CCR8-CAR p <  0.001, CCR8-DNR-CAR vs CAR p < 0.001, DNR-

CAR vs CAR p = 0.035. CCL4 on day 14 for CCR8-DNR-CAR vs CCR8-CAR p = 0.009, 

CCR8-DNR-CAR vs CAR p = 0.029. Granzyme B on day 7 CCR8-DNR-CAR vs CCR8-

CAR p = 0.005, CCR8-DNR-CAR vs CAR p < 0.001, DNR-CAR vs CAR p = 0.006. IL-2 on 

day 2 CCR8-DNR-CAR vs DNR-CAR p = 0.028, CCR8-DNR-CAR vs CCR8-CAR p < 



  

0.001, CCR8-DNR-CAR vs CAR p < 0.001, DNR-CAR vs CCR8-CAR p < 0.001, DNR-

CAR vs CAR p < 0.001. IL-4 on day 14 CCR8-DNR-CAR vs CCR8-CAR p < 0.001, CCR8-

DNR-CAR vs CAR p < 0.001, DNR-CAR vs CCR8-CAR p = 0.026, DNR-CAR vs CAR p = 

0.009. IL-10 on day 2 CCR8-DNR-CAR vs DNR-CAR p < 0.001, CCR8-DNR-CAR vs 

CCR8-CAR p < 0.001, CCR8-DNR-CAR vs CAR p < 0.001. TGF-β concentrations was 

significantly increased over time for all conditions, p = 0.001. (H and I) Data for tumor and 

spleen infiltrating T cells after 19 days in vivo, from the experiment in Figure 5M. n = 5 mice 

per group. (H) Frequency of expression of CD45+CD3+ SUIT-2-Mesothelin-CCL1 

infiltrating CD4+ and CD8+ T cells. (I) Phenotypic characterization using CD45RO and 

CCR7 expression, allowing for the differentiation of effector memory (EM), central memory 

(CM), effector or naïve T cells. (J) Technical validation of CCL1 knock-out from primary 

human T cells through CCL1 ELISA on supernatant of T cells activated for 24 hours with 

anti-CD3 and anti-CD28 antibodies. n = 3 healthy donors. 

Supplementary movie 1: Multiphoton intra-vital microscopy tracking of tumor 

infiltrating CCR8-GFP T cells versus mCherry T cells. 

ACT tracking experiment in a mouse implanted with a tumor within a dorsal skin-fold 

chamber to enable multi-photon intra-vital imaging. 

II Methods for supplementary Figures 

Data mining 

We utilized the bioinformatics tool UCSC Xena to retrieve data from TGCA (The Cancer 

Genome Atlas). TCGA RNA sequencing datasets were analysed in comparison to GTex 

(Genotype-tissue Expression) healthy tissue reference datasets concerning the expression of 

multiple genes. Correlations were assessed through r2, goodness of fit estimated by the 

Pearson’s squared. mRNA normalization was estimated by the TCGA using the RSEM 



  

(RNA-seq by expectation maximization) method. For Tumor Immune Dysfunction and 

Exclusion (TIDE) analysis on PDAC patients we used the TIDE tool with CCR8 as the query 

gene (http://tide.dfci.harvard.edu/query/) (54). PDAC datasets were stratified by bulk tumor 

expression levels of CCR8 in groups that included the 20% higher and 20% lower expression 

levels of CCR8. These high and low groups were then evaluated for evidence of T cell 

dysfunction and exclusion. Immune tumor microenvironment was analyzed using the iAtlas 

deconvolution tool (https://www.cri-iatlas.org/) (55) and datasets stratified as for TIDE 

analysis. 

Long-term coculture assay 

T cell and tumor cell cocultures were set-up at indicated effector to target ratios. T cells 

expressing either CAR, CCR8-CAR, DNR-CAR or CCR8-DNR-CAR were coincubated with 

SUIT-MSLN tumor cells, and serially transferred to newly plated SUIT-MSLN cells every 

two to three days. To assess the impact of regular antigen restimulation on transduced T cells, 

collected supernatant to assess the cytokine profile of the cells after 2, 7, 14 and 21 days of 

coculture. DuoSet ELISA kits were purchased from R&D to assess the cytokine 

concentrations of human TNF-ɑ (DY210), CCL3 (DY270), CCL4 (DY271), CXCL10 

(DY266), IL-2 (DY202), IL-4 (DY204), IL-5 (DY205), IL-10 (DY217B), IL-13(DY213), 

granzyme B (DY2906-05),  and TGF-β (DY240). At the same time points, we used flow 

cytometry to assess T cell proliferation and phenotype. An equal volume of cells was stained 

using antibodies from Biolegend against human CD3 (HIT3a), CD4 (A161A1), CD8 (SK1), 

PD-1 (EH12.2H7), LAG-3 (11C3C65), TIM-3(F38-2E2), as well as the Miltenyi antibody 

against c-myc (SH1-26E7.1.3) to assess CAR expression. CountBright counting beads were 

used to assess and normalize T cell proliferation across conditions and over time. 

Phospho-Flow of SMAD2/3 



  

The antibody from BD against pSMAD2/3 (O72-670) was used to assess downstream 

signaling of TGF-β according to the manufacturers protocol.  

Cell surface molecule quantification through quantitative analysis kit 

Surface antigen density of constructs was evaluated through flow cytometry with QIFIKIT 

(Agilent) using a Biolegend antibody against c-Myc (9E10). 
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