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ABSTRACT
Introduction: Precision medicine is the concept of treating diseases based on environmental factors, 
lifestyles, and molecular profiles of patients. This approach has been found to increase success rates of 
clinical trials and accelerate drug approvals. However, current precision medicine applications in early 
drug discovery use only a handful of molecular biomarkers to make decisions, whilst clinics gear up to 
capture the full molecular landscape of patients in the near future. This deep multi-omics characteriza
tion demands new analysis strategies to identify appropriate treatment regimens, which we envision 
will be pioneered by artificial intelligence.
Areas covered: In this review, the authors discuss the current state of drug discovery in precision 
medicine and present our vision of how artificial intelligence will impact biomarker discovery and drug 
design.
Expert opinion: Precision medicine is expected to revolutionize modern medicine; however, its tradi
tional form is focusing on a few biomarkers, thus not equipped to leverage the full power of molecular 
landscapes. For learning how the development of drugs can be tailored to the heterogeneity of patients 
across their molecular profiles, artificial intelligence algorithms are the next frontier in precision 
medicine and will enable a fully personalized approach in drug design, and thus ultimately impacting 
clinical practice.
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1. Introduction

It is estimated that the cost of discovering and developing 
a new drug is around USD 3 billion [1], with an approval rate 
close to 13% when considering all the compounds that reach 
clinical trials [2]. In particular, novel compounds register an 
underwhelming success rate of ~66% in Phase I regarding 
tolerability and side effects, ~48% in Phase II concerning 
dosage and efficacy, and ~59% in Phase III regarding efficacy 
and toxicology [2].

Precision medicine has raised high hopes to improve the 
success rate of Phase II and III clinical trials by tailoring treat
ment options to the characteristics of patient subgroups 
based on differences in molecular profiles, lifestyle, and envir
onmental factors. Since the introduction of this paradigm, the 
number of application areas in medicine and healthcare has 
rapidly increased, with oncology being the vanguard for its 
deployment [3]. Beyond that, recent works on cardiovascular 
diseases [4,5], type 2 diabetes [6] and neurodegenerative dis
orders, such as Alzheimer’s disease [7] and Amyotrophic 
Lateral Sclerosis [8,9] have highlighted the growing relevance 
of precision medicine on the whole healthcare sector.

Large leaps forward in precision medicine were achieved 
by the rapid development of DNA-sequencing technologies 
and their regular use in clinical practice [10]. Since then the 
deep molecular characterization of patients was expanded to 
transcriptomics [11], epigenomics [12], and proteomics [13], 
collectively referred to as ‘omics’ technologies. These technical 
developments, together with advances in information technol
ogy, computer science, and computational biology, have cre
ated a fertile ground for the successful integration of artificial 
intelligence (AI) with precision medicine.

Conventional drug development pipelines consist of target 
identification and validation, assay development and screen
ing, hit identification, lead optimization, and the selection of 
the final molecule for clinical development [14], each step 
marking a milestone in a rigid streamlined process. Main 
objectives are to identify potent drugs with suitable bioavail
ability, toxicity profiles, chemical synthesis, selectivity against 
putative target and ADME (absorption, distribution, metabo
lism, excretion), whilst mostly neglecting the heterogeneity of 
patients. In order to address this, precision medicine was 
introduced to customize treatments based on patient profiles 
[15]. This concept strongly impacted the linearity of drug 
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discovery pipelines and suggested a more integrated and 
looped process [16]. Strong benefits of response biomarker 
discovery include acceleration of drug approval due to 
increased success rates of clinical trials [2] and thus reduced 
costs. AI offers the potential to leverage the entire molecular 
landscape of patients, thus becoming an invaluable tool for 
precision medicine.

The identification of actionable disease subtypes is increas
ingly powered by AI using integrative methods combining 
diverse data modalities [17–26]. Complementarily, pharmaco
genomics benefits from machine learning methods predicting 
in vitro monotherapy response by using molecular data in cell 
cultures, which may yield novel predictive biomarkers through 
the interpretation of the learned models [27–34]. Likewise, AI 
showed encouraging progress in the discovery of potent drug 
combinations [35–39].

A concept which is often utilized in conjunction with pre
cision medicine is drug repurposing, which leverages drugs 
approved for one disease indication and applies them in 
another context. For example, the discovery of EML4-ALK 
fusions in non-small cell lung carcinoma (NSCLC) patients 
triggered the repurposing of crizotinib [40], which is 
a potent ALK, MET and ROS1 inhibitor and was not developed 
for this indication in the first place. Remarkably, crizotinib was 
approved within a record time of only four years within this 
new indication, making this an exemplar of both drug repur
posing and precision medicine. Nowadays, AI is increasingly 
used for drug repurposing by systematically aggregating var
ious omics layers and drug features for training models that 
prioritize compounds based on their properties [41,42].

Personalized medicine is the extreme case of precision 
medicine, in which the treatment is not only administered 
according to a biomarker but truly tailored to the needs of 
an individual. AI has been successfully used to develop indivi
dualized drug compounds themselves, with personalized can
cer vaccines being one of the prime examples [43–47]. Cancer 
vaccines require the identification of antigen peptides that are 
highly specific to the patient’s tumor and MHC genotype and 
use those to boost the patient’s immune system [48]. Machine 
learning [49–51] and optimization methods have been devel
oped to aid peptide identification and assembly of the vaccine 

[52–54] and have been integrated in almost all personalized 
vaccine design pipelines. The ability to choose a target anti
gen and set of MHC alleles makes such vaccine design frame
works not only applicable to personalized cancer 
immunotherapy [43–47], but generally useful for population- 
level prophylactic vaccine development against infectious dis
eases. Similarly, large and small molecule design has also seen 
recent successes [55–57] in AI-driven drug development and 
even some examples of personalized applications [58].

In spite of these early successes, however, such AI-powered 
approaches still need to be translated into standard clinical 
practice, and a fully in silico drug design approach that inte
grates personalized patient information has yet to be realized. 
Nonetheless, AI has already impacted multiple sectors of the 
pharmaceutical industry [59] and the recent advances suggest 
that its applications may enable precision medicine in the 
clinics in the near future.

Thus, this review focuses on the impact of AI on drug 
discovery and development by building a bridge between 
biomarker discovery and drug design illustrated through its 
pioneering applications in precision oncology. We will parti
cularly focus on the role of such techniques in biomarker 
discovery via disease subtyping (Figure 1(a)), high- 
throughput screens (Figure 1(b)) and drug combinations 
(Figure 1(c)), as well as in drug design (Figure 1(d-f)).

1.1. Artificial intelligence

Applications of AI led to radical changes both in academia and 
in industry, often disrupting the typical approaches to science 
and business while introducing new methodological, episte
mological [60], ethical [61], and privacy-related [62] concepts. 
In particular, AI is becoming increasingly important in biome
dicine and healthcare [63], where it led to breakthroughs in 
biomedical image analysis [64], prognosis [65], patient care 
[66], and clinical decision support [67]. This review focuses 
on AI in early drug discovery enabling precision medicine 
(Table 1).

Over the years, a wide variety of algorithms has been 
applied to a multitude of predictive tasks in precision medi
cine. Generally, predictive power and interpretability of the 
algorithm’s decisions are inversely related.

One contemporary research area in AI is focusing on 
enabling machines to learn general rules from provided exam
ple data, also known as machine learning, to make predictions 
for previously unseen samples [68]. Machine learning can be 
further categorized into supervised learning, in which pheno
typic observations are known and relations between input 
features and these observations are sought. In contrast, unsu
pervised learning aims to uncover hidden patterns in the data 
by clustering or latent factor modeling to explain observed 
variability. Alongside these two fundamental paradigms of 
machine learning, reinforcement learning gains more traction 
in biotechnological sciences, especially in drug development. 
Here, the model is allowed to take actions, such as introducing 
an amino acid alteration, in a pre-specified environment (a 
protein) to optimize a specific property (efficacy).

A wide spectrum of learning algorithms has been pro
posed. They differ in the complexity of concepts they are 

Article highlights

● Precision medicine is expected to revolutionize clinical practice by 
tailoring treatment regimens to groups of patients based on disease- 
specific biomarkers.

● Artificial intelligence is becoming an integral part of early drug 
discovery and is set to drive biomarker discovery and drug design 
aiding precision medicine.

● Artificial intelligence initiated a paradigm shift in precision medicine 
from univariate biomarkers to complex disease signatures identified 
across multiple molecular and clinical layers.

● Artificial intelligence-based methods have delivered new algorithms 
for drug repurposing, predicting drug response and potent drug 
combinations.

● Artificial intelligence pioneered the in silico design of vaccines, pro
teins, and small molecules, enabling truly personalized treatments.

This box summarizes key points contained in the article.
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Figure 1. AI enhances biomarker discovery and drug design. (a) Data-driven disease subtyping gives insights into the diverse disease etiologies, which can be 
leveraged for patient stratification. (b) Functional genomics and drug screens systematically explore large panels of disease models, facilitating the discovery of 
novel biomarkers with machine learning. (c) AI algorithms guide the prioritization of potent drug combinations to overcome monotherapy resistance. (d) AI 
accelerates and guides vaccine aiding in each step of the design process. Through deep generative models the design space of (e) proteins and (f) small molecules 
can be systematically searched to generate novel drugs that are difficult to attain through experimental designs.

Table 1. Overview of AI algorithms used in precision medicine.

AI Algorithm Advantages Disadvantages
Applications discussed 

(section)

Shallow 
Learning

Linear/Logistic Regression + Interpretable - Limited to linear trends * drug response (2.2) 
* drug combinations (2.3) 
* MHC affinity (3.1) 
* T-cell specificity (3.1)

Support Vector Machines (SVM) + Nonlinear function approximation 
+ Flexible through kernel

- Less interpretable 
- Hard to design kernels for 

nonstandard data

* MHC affinity (3.1)

Random Forests + Nonlinear function approximation 
+ Automatic handling of different 

data types 
+ Interpretable

- Not well equipped for regression 
tasks 

- Less interpretable

* disease subtyping (2.1) 
* patient stratification (2.1) 
* drug response (2.2) 
* drug combinations (2.3) 
* T-cell specificity (3.1)

Gaussian Processes + Nonlinear function approximation 
+ Flexible through kernel 
+ Fully Bayesian

- Does not scale well to large 
datasets 

- Hard to design kernels for 
nonstandard data

* MHC affinity (3.1) 
* T-cell specificity (3.1)

Dimensionality reduction and feature 
synthesis

+ No labels needed - Limited expressive power * disease subtyping (2.1) 
* patient stratification (2.1) 
* drug response (2.2)

Deep 
Learning

Generative + Nonlinear 
+ Scales well 
+ Handles unstructured data 
+ Can generate novel examples 
+ Few labels are needed (if at all)

- Hard to interpret 
- Needs lots of data and compute 

resources 
- Novel examples can be hard to 

evaluate

* protein sequence (3.2) 
modeling 

* small molecule modeling 
(3.3)

Discriminative + Nonlinear 
+ Scales well 
+ Handles unstructured data

- Hard to interpret 
- Needs lots of data and compute 

resources

* disease subtyping (2.1) 
* drug response (2.2) 
* drug combinations (2.3) 
* MHC affinity (3.1) 
* T-cell specificity (3.1)
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able to learn, the type of examples they are able to handle, 
and to which degree they can provide comprehensible expla
nations for their decisions. Linear models are easily interpre
table but limited to very simple relationships between features 
and concepts. Random forests are an ensemble of models that 
apply a sequence of learned rules to reach a conclusion via 
majority voting [69]. While these rules remain easily interpre
table, the decision boundary of random forests can be quite 
complex and nonlinear. Support vector machines use flexible 
user-defined feature extractors to identify training examples 
that are similar to the provided query in a new transformed 
latent space [70].

In contrast to most other machine learning methods, deep 
neural networks are able to automatically extract highly com
plex patterns from all sorts of data types [71,72]. Data-hungry 
and often inscrutable in how a deep learning network comes 
to its conclusion, its predictions can be in many cases vastly 
more accurate than other methods, in particular in unstruc
tured domains, such as images or molecular entities, when 
applied to very large datasets and tuned appropriately [73], 
but at the same time, they are highly nonlinear and thus more 
challenging to interpret [74]. To overcome this, a subfield has 
emerged, called explainable AI, that studies and develops 
methods to gain a better understanding of how AI algorithms 
come to their conclusions. Such approaches found large 
appeal in many high-risk application areas such as precision 
medicine [75]. This intriguing field, however, is still in its 
infancy especially for complex models, such as deep neural 
networks.

2. Artificial intelligence in biomarker discovery

The identification of robust disease-specific biomarkers is fun
damental for advancing precision medicine. Therefore, it is of 
paramount importance to develop methods able to identify 
actionable molecular targets suitable for therapy [76]. State-of- 
the-art precision oncology mostly focuses on well- 
characterized cancer somatic mutations, and in some 
instances on germline variants, for patient stratification [77]. 
AI offers opportunities for identifying complex biomarker sig
natures, i.e. disease-specific altered networks of genes and 
proteins shared between tumor types and across multi-omics 
layers that overcome the obsolete ‘one gene, one drug, one 
disease’ paradigm [78].

2.1. Disease subtyping

Disease subtyping is a powerful concept to reduce the dimen
sionality of complex disease characteristics into simplified sig
natures, which can be used for patient stratification. 
Particularly, AI methods have pioneered the development of 
robust and clinically relevant disease subtypes [79]. The con
cept of disease subtyping has been leveraged in treating 
many diseases [5,7], however, oncology is the prime example 
for this.

It is important to understand that cancer is not a unique 
disease but rather a heterogeneous category of diseases. 
Tumors are usually characterized by their tissue of origin, 
and further classified into molecular tumor subtypes [80]. In 

addition, tumor subtypes may be defined based on clinical 
information [81] and imaging [82]. For example, tumors show
ing a higher rate of lesion enhancement on MR images are 
more likely classified as luminal B subtype in breast cancer and 
are independently associated with better prognosis of 
patients [83].

Colorectal cancer research, which often lacks univariate 
genetic biomarkers of drug sensitivity [84], pioneered gene 
expression subtyping efforts utilizing machine learning, and 
concluded that there are four consensus molecular subtypes 
[17]. This effort, based on random forest classification, was led 
by six leading colorectal cancer research teams who defined 
the optimal number of biologically relevant clusters that ulti
mately proved to have prognostic value in clinical trials [85].

Following the example of colorectal cancer subtyping, 
other cancer entities without clear genetic biomarker indica
tions successfully used gene expression subtyping, e.g. in 
bladder cancer [18] and pancreatic cancer [86]. The main 
characteristics of cancer subtypes are tumor differentiation 
stages: well-differentiated (classical) subtypes seem to be less 
aggressive and more sensitive to therapies compared to undif
ferentiated (basal) tumors [87]. These efforts used unsuper
vised machine learning techniques, i.e. non-negative matrix 
factorization (NMF) and independent component analysis 
(ICA), and consecutively, determined the optimal number of 
signatures according to biological interpretability and clinical 
translatability.

The rise of large-scale molecular datasets, such as the 
Cancer Genome Atlas (TCGA) [88], the International Cancer 
Genome Consortium (ICGC) [89], and the Pan-Cancer Analysis 
of Whole Genomes (PCAWG) [90], empowered deep learning 
approaches to systematically derive robust disease subtypes. 
For example, variational autoencoders have proven to be 
successful in identifying targetable subtypes of non-small cell 
lung cancer when trained on methylation data [19]. Similar 
approaches using different omics layers and various architec
tures, such as mixtures of unsupervised and supervised com
ponents, led to the stratification of patients in neuroblastoma 
[20], lung adenocarcinoma [21], and breast cancer [22].

Most tumor subtyping efforts solely explore one data mod
ality. Therefore, they often neglect complementary informa
tion and dependencies contained in different molecular layers 
[91]. To address this, attempts have been directed to the 
development of machine learning techniques in multi-omics 
integration [23]. These methods jointly model data from var
ious molecular sources [92] and extract directions of common 
variance using, e.g. canonical correlation analysis (CCA) [24] or 
factor analysis [25]. Emerging AI-based methods such as varia
tional autoencoders offer a chance to further improve data 
integration by allowing the projection of multiple omics layers 
[26], or even of different data modalities [93], to the same 
latent space (Figure 2(a)).

In summary, disease subtyping is driven by unsupervised 
learning techniques exploring deep molecular landscapes, and 
in conjunction with expert domain knowledge, may deliver 
interpretable and actionable biomarkers. This is complemen
tary to the state-of-the-art precision medicine approach, which 
mostly focuses on ‘one-gene’ associations. We envision that 
the identification of disease subtypes with AI and their 

4 F. BONIOLO ET AL.



interaction with established single-gene biomarkers may drive 
patient stratification, and thus the design of subtype-specific 
treatment options in the near future.

2.2. High-throughput screens

Preclinical in vitro and in vivo disease models are ranging from 
simple immortalized human cancer cell lines [40,94,95], self- 
organizing 3D cell cultures, i.e. organoids [96], to complex animal 
models [97]. Biological models with increased complexity more 
accurately capture human tumor biology, whilst simpler models 
enhance a systematic and parallel comparison of many thera
peutic agents across many samples.

In particular, high-throughput drug screens (HTS) applied 
to in vitro 2D or 3D cell cultures provide a rich resource to 
study pharmacogenomic interactions when complemented 
with deep molecular characteristics. Cell cultures remain sim
plified models which are accompanied by culturing artifacts, 
mostly disregarding the tumor microenvironment and 
immune responses. Nevertheless, these simplistic models reca
pitulate clinically relevant aspects [98,99]. Such pharmacoge
nomics datasets are well suited for the application of machine 
learning methods for predicting drug sensitivity and identify
ing drug response biomarkers [100].

Drug response in cancer HTSs is typically quantified either by 
the drug concentration required to reduce cell viability by half 

Figure 2. AI in early drug and biomarker discovery. (a) Deep learning empowers precision medicine and disease subtyping by revealing meaningful patient 
subgroups based on molecular and clinical data. (b) High-throughput drug screens in cell cultures, in conjunction with deep molecular characterization of these cell 
cultures, are leveraged to predict drug response and identify biomarkers. (c) Drug repurposing identifies new therapeutic applications of existing drugs. (d) 
Predicting drug synergies guides the prioritization of synergistic drug combinations for increased treatment efficacies.
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(IC50 value), or by the area under the dose-response curve (AUC). 
In contrast, functional genomics approaches quantify gene 
essentiality based on pooled genome-wide CRISPR-Cas9 activa
tion or depletion screens, e.g. in the Cancer Dependency Map 
(DepMap) project [101]. Such HTSs enable the analysis of genetic 
dependencies in cancer, leading to the identification of cancer 
vulnerabilities and thereby revealing potential drug targets [102].

Experimental HTS technologies spawned a multitude of novel 
computational methods to predict drug response leveraging the 
multi-omics characterization of cell lines [27,103] (Figure 2(b)). 
Transfer learning approaches have been used to enable predic
tion in a single cancer type with a small number of samples by 
leveraging information about related cancer types with many 
samples [104]. In addition, multi-task learning methods make 
multiple drug sensitivity predictions simultaneously by integrat
ing cell line and drug features, i.e. quantitative structure–activity 
relationship (QSAR) models [28]. Likewise, similarity patterns in 
drug response across cell lines and drugs have been quantified 
with constrained matrix factorization [29], or by projecting high- 
dimensional feature spaces into low-dimensional embedding 
spaces that correlate better with drug-relevant pathways [30]. 
In addition, deep learning methods are leveraged for analyzing 
high-throughput screens, e.g. convolutional architectures show 
promising results [31] and autoencoders are progressively used 
for these tasks [32]. These models are able to prioritize novel 
compounds for HTS, and some approaches can identify biomar
kers when exploring their feature weights [33]. For example, 
a visible neural network trained on tumor genotypes and chemi
cal structures has been shown to reach good predictive perfor
mances while identifying pathways involved in the response to 
mTOR inhibitors (e.g. everolimus) or CDK4/6 inhibitors (e.g. ribo
ciclib) in ER positive metastatic breast cancer [34].

In contrast to conventional drug HTSs, which explore base
line molecular characteristics to predict drug response, the 
connectivity map (C-Map) focused on deriving drug signatures 
by measuring gene expression or proteomics before and after 
treatment [105,106]. This HTS concept enables drug repurpos
ing [107], a strategy to prioritize compounds that are already 
approved in one disease indication, and being reused within 
another indication. As a consequence of drug repurposing, it is 
possible to exploit the already existing toxicity, pharmacoki
netics, and pharmacodynamic profiles, thus accelerating clin
ical development. Typical AI approaches for drug repurposing 
involve the use of databases such as ChEMBL [108] and 
PubChem [109] containing bioactivity profiles of compounds 
and ADMET (absorption, distribution, metabolism, excretion, 
toxicity) containing compound properties. By leveraging these 
databases, together with interaction networks and molecular 
data, machine learning methods have been developed for 
drug target prediction [110–113] and drug repurposing [114– 
117], including deep learning methods [118,119].

The availability of extensive molecular data repositories and 
the advances in computational analysis approaches offer the 
opportunity to drive a more systematic methodology, thus 
combining drug repurposing, AI and precision medicine 
(Figure 2(c)) [120]. The current COVID-19 pandemic has 
demanded new treatment options for the disease and has 

spawned novel AI strategies for prioritizing candidate drugs 
via drug repurposing for their accelerated usage [121], i.e. 
exploiting relationships of protein–protein interactions 
between drug targets and SARS-CoV-2 viral targets, thus short
listing 81 candidate drugs for COVID-19 treatment [121].

In conclusion, the computational analysis of high- 
throughput functional genomics and drug screens offers 
a route to identify drug targets and response biomarkers by 
leveraging different layers of molecular and chemical informa
tion. These methodologies yet have to find their way into the 
routine practise, but the increasing size of available datasets, 
both the deep molecular characterization of biological models 
and treatment patterns, in conjunction with advances in 
machine learning, enables the development of effective stra
tegies for drug repurposing and precision medicine.

2.3. Drug combinations

Monotherapies can suffer from low potency, in particular, 
acquired drug resistance is a major obstacle in oncology 
[122,123]. In order to address this, drug combinations may 
exploit drug synergies (Figure 2(d)) to anticipate tumor evolu
tion and overcome resistance [37]. Most drug combinations 
follow either a strategy to ‘double-hit’ the same signaling 
pathway, or alternatively, they target independent pathways 
or disease mechanisms [37,122].

The space of possible drug combinations grows exponen
tially when exploring drug cocktails, since a set of n drugs can 
form 2 n – 1 unique subsets, thus highlighting the need for 
computational methods to prioritize the most promising com
binations, whilst not increasing toxicity. In recent years, drug 
combinations HTSs were established [37,124], thereby creating 
a fertile ground for novel machine learning models that pre
dict drug synergy.

Traditionally, methods for discovering potent drug combi
nations predominantly used systems biology approaches and 
were only using drug combination data as validation experi
ments. For example, drug signatures were leveraged to derive 
drug functional networks, in which potent drug combinations 
were extracted by searching drugs whose targets were 
enriched in a complementary disease specific signaling net
work [35]. In a broader context, methods imposed similarity 
metrics between drug and disease signatures, following the 
paradigm that an ideal drug combination would fully reverse 
a given disease signature [36].

In the context of the AstraZeneca-DREAM crowd-sourcing 
challenge [37], drug synergy prediction methods were able to 
leverage the molecular landscape of cancer cell lines (Figure 2 
(d)). The best performer used random forests and incorporated 
prior knowledge of protein–protein interactions (PPI) and can
cer signaling networks to augment their feature set. 
Competing methods based on deep learning frameworks 
were among the top three performers, and recently, other AI- 
based models gained more traction in this field [38,39].

Despite the large number of computational approaches for 
predicting drug combinations, we are still lacking synergy 
biomarkers in clinics. The bottlenecks are the sizes of currently 
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available drug combination HTSs, distinguishing between 
in vitro drug synergy and toxicity, and experimental in vivo 
validations. Furthermore, such methods usually focus solely on 
synergy and neglect acquired resistances and adverse effects 
[125]. However, future efforts will expand the dimensions of 
drug combination HTS in conjunction with in vivo validation, 
thereby driving the next generation of prioritization algo
rithms of drug combinations.

3. Artificial intelligence in drug design

AI methods have a long-standing tradition in drug development, 
and the combination of high-throughput experimental techni
ques with deep learning has led to some impressive results that 
we are now starting to see in both precision and non-precision 
drug development [100,126]. In the conventional linear drug 
discovery pipeline, drug design follows target identification and 
is validated through clinical trials, most of which fail due to lack 
of efficacy or unwanted side-effects [2]. Not only can biomarkers 
improve the success rate of clinical trials by identifying likely 
responders for inclusion in the trial [127], they can also provide 
novel mechanistic insights on basic biology and disease patho
genesis, guiding the development of novel drug treatments with 
improved immunogenicity and reduced toxicity, targeted for 
example to disease-causing genetic variants, mutant proteins, 
or their associated pathways [15]. The AI-based drug design 
methods discussed in this section could in the future be adapted 
to disease-specific characteristics by tuning the objective func
tion that is being optimized and evaluating them against more 
appropriate benchmarks.

3.1. Vaccine design

Cancer immunotherapies exploit the patient’s immune system 
to fight tumors [128]. During tumor evolution, unique geno
mic alterations might arise that give rise to neoepitopes – 
a class of major histocompatibility complex (MHC)-bound, 
altered self-peptides that differentiate healthy and tumoral 
cells. Such cancer-specific peptides have been successfully 
exploited by AI-based methods for personalized vaccine 
design [43–47], and since then AI has become an indispensa
ble component of many cancer vaccine design pipelines 
(Figure 3(a)) – from predicting neoepitopes from a patient’s 
uniquely altered peptide pool to selecting and assembling the 
neoepitopes into vaccines.

To characterize the tumor surface and identify its neoepi
topes, several predictive models have been proposed includ
ing kernel methods [49,129], position-specific scoring matrices 
[50,130], and neural networks [51,131,132]. Advances in deep 
learning and mass spectrometry [133] have made it possible to 
train increasingly complex models on larger datasets [134,135] 
and accounting for additional information (e.g. tumor antigen 
expression), which has led to superior performance [136]. 
These prediction tools have now been bundled in software 
pipelines that can generate predicted neoepitopes from 
a provided list of somatic mutations [137–139].

To predict immune reactive neoepitopes, a recent consor
tium effort has benchmarked a large variety of different fea
tures, including the MHC-binding affinity ratio between 

neoepitope and wildtype peptide, similarity to viral peptide 
sequences, and physicochemical properties, presumed to be 
associated with neoepitope immunogenicity. The study found 
that most T-cell reactive neoepitopes were highly foreign or 
agretopic [140]. Others have started to directly model the 
T-cell-epitope interaction using linear models [141,142], 
Gaussian processes [143], random forests [144], and deep 
neural networks [145,146] but all with limited generalization 
capability to unseen epitope-T-cell pairs due to data 
limitations.

In cancer vaccine design, tens to thousands of possible 
neoepitopes are initially identified depending on the cancer 
type [147] using predictive models. Subsequently, selecting 
a small set of neoepitopes that is maximally immunogenic 
with respect to the MHC alleles of the patient or target popu
lation, while at the same time guaranteeing sufficient diversity 
to cover tumor or pathogen heterogeneity is of prime impor
tance in producing an effective vaccine. This discrete optimi
zation problem was first approached by ad-hoc scoring rules 
that consider the neoepitopes’ antigen coverage and other 
relevant qualities [54,148]. Successive approaches used integer 
linear programming to optimally solve the selection problem 
[53]. These methods were complemented by other computa
tional techniques addressing the assembly of the selected 
neoepitopes into vaccines and optimizing their intracellular 
processing [52,149], which were recently experimentally 
shown to improve vaccine efficacy over manual designs 
[150]. Eventually, these successive approaches were unified 
into a single vaccine design framework that allows modeling 
the trade-off between immunogenicity and vaccine proces
sing [151,152].

The first clinical applications of AI-driven personalized 
immunotherapies were quite encouraging, yet the objective 
functions used to select neoepitopes in vaccine design are still 
arbitrary and based on presumptions. A deeper understanding 
of what neoepitopes to target and which metrics lead to good 
vaccine formulas is necessary. To this end, large concerted 
experimental screening efforts are required. Similarly, their 
routine clinical application necessitates easy-to-use interfaces 
and computational analysis pipelines seamlessly integrated 
into the standard sample processing and diagnostic analyses.

In summary, AI advanced the identification and ranking of 
neoepitopes arising from patients’ tumors, as well as the 
composition and formulation of epitope vaccines for efficient 
processing and maximal effectiveness. Such approaches are 
however general enough and can be used with little modifica
tions to design prophylactic vaccines optimized for a target 
population and pathogen pool based on MHC and strain 
prevalence [53], examples of which are HIV [153], Influenza 
[154], Malaria [155], Hepatitis C virus [156], and SARS-CoV 
-2 [157].

3.2. Protein design

Protein engineering has seen a recent surge of innovations 
driven by breakthroughs in unsupervised representation learn
ing of protein sequences, efficiently exploiting hundreds of 
millions of sequenced proteins to learn which positions co- 
evolve in a large set of evolutionary diverse dataset of the 
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same protein family (Figure 3(b)). Through such co- 
evolutionary information, AI can learn which residues are cri
tical for the function of the protein and which residues can be 
altered to tailor its properties, making it possible to adapt 
existing therapeutics for specific patients while reducing 
potential immune-related side effects [58].

Co-evolutionary protein sequence modeling has been 
shown to be predictive for the 3D structure of proteins 
[158,159] and complexes [160–162], but also for mutation 
effects [163,164]. Early approaches were based on maximum 
entropy models inspired by statistical physics but have since 
been superseded by deep learning-based models, such as 
variational autoencoders [164,165], generative adversarial net
works [166], autoregressive models borrowed from natural 
language processing [167–171] and novel architectures 
adapted for the task [172].

The use of co-evolutionary sequence information has also 
led to new breakthroughs in protein structure prediction, as 
demonstrated in the two latest CASP competitions by 
AlphaFold [173]. This model uses predicted structural contacts 

from co-evolutionary models and refines them with a deep 
residual network that predicts the distribution of contact dis
tances. These are interpreted as the statistical energy of the 
protein fold and directly minimized to yield highly accurate 3D 
protein structures. Since then, extensions have been made to 
remove the dependency on co-evolutionary analysis further 
[174], making it possible to predict 3D structures of artificial 
proteins and protein families starting from only a few 
sequences. Others have started to develop neural protein 
folding simulators that are fully trainable in an end-to-end- 
fashion and can directly map sequence to structure [175,176].

Such generative models are now being slowly adopted for 
protein engineering. One of the earliest approaches used 
maximum entropy models in combination with integer linear 
programming to re-engineer existing biotherapeutics with 
reduced adverse immune reactions, focusing on editing 
immunogenic regions of the biotherapeutic based on pre- 
specified MHC molecules and opening up the possibility for 
personalized re-engineered biotherapeutics [58]. Others used 
deep autoregressive models to optimize screening libraries of 

Figure 3. AI approaches in drug development. (a) AI is used to aid in each step of modern cancer vaccine pipelines. Supervised prediction models are used to 
identify cancer-specific antigenic peptides and constraint optimization models are employed to select and assemble the final vaccine. (b) Generative models that use 
co-evolutionary information of protein sequences have revolutionized structural biology in recent years and are now applied for 3D structure prediction, accelerate 
molecular dynamics simulations, and to design novel proteins. (c) Deep neural networks are currently revolutionizing the design process of novel small molecules. 
With generative models, novel molecular structures with optimized biochemical properties can easily be created exploring large proportions of the chemical search 
space.
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nanobodies for higher functional yield [171], generative adver
sarial models and conditional variational autoencoder to gen
erate novel antimicrobial peptides [55,177], and residual 
networks that predict the tertiary structure of a sequence 
combined with Monte Carlo sampling to design de novo pro
tein structures [178]. These rather ad-hoc modeling 
approaches are now slowly formalized and generalized into 
mathematical design frameworks [179–181].

Research groups have also started to tackle the long- 
standing problem of generating sequences that fold into 
a given 3D structure with deep learning. Early approaches 
used stacked autoencoder architectures with feed-forward 
neural networks and a range of local and global structural 
features [182], while others used convolutional [183] or 
graph neural networks [184] with self-attention [185] and 
combined them with a novel neural architecture that can 
encode geometric features of the problem [186].

A next crucial step is a thorough experimental evaluation of 
design approaches for a well-defined target to identify 
strengths and weaknesses in common modeling practices 
and assumptions. Secondly, many of the current models 
ignore existing biophysical knowledge. Purely data-driven 
models seem to have hit an upper ceiling in terms of what 
can be extracted from protein sequences alone, evident by the 
minimal improvement in recent large-scale modeling attempts 
that trained on 2.1 billion sequences [169] over similar models 
trained on smaller datasets. New approaches that integrate 
biophysical knowledge through, e.g. physics-informed neural 
networks [187] or normalizing flows that encode intrinsic 
invariances of protein structures [188] might further improve 
such deep generative models by restricting their learned 
latent space to biophysically plausible regions.

In summary, AI has considerably advanced our ability to 
predict and learn from the structure and fold of proteins, 
creating a strong foundation for engineering novel therapeu
tics and generating new proteins with pre-specified function
ality entirely from scratch. We foresee that such approaches 
will further accelerate personalized medicine enabling the 
generation of therapeutics tailored to individual genomes.

3.3. Small molecule design

Similar to proteins, small molecule design has been driven by 
the success of deep generative models (Figure 3(c)). In con
trast to proteins, small molecules cannot tap into long evolu
tionary trajectories to extract fundamental features. Instead, 
deep generative models need to directly extract the biophy
sical rules that make up small molecule structures from large 
diverse datasets. Representation learning allows AI to uncover 
latent factors that determine the properties of small molecules 
and how to tweak these factors to generate novel molecules 
with desired properties [189–192].

Early attempts represented small molecule structures as 
simplified molecular-input line-entry system (SMILE) strings 
and applied common models from natural language proces
sing [193]. However, these naive models often generated 
invalid SMILE strings, which led to the incorporation of con
text-free grammars into such models to constrain them to 

produce valid strings [194]. Others have directly encoded 
small molecules as graphs and used junction trees to itera
tively generate small molecules [195], or used graph convolu
tional and attention-based neural architectures [196–199]. 
Graph-based approaches were recently used to identify highly 
potent novel antimicrobial drugs to treat multi-resistant bac
terial strains [56]. Some groups also transformed small mole
cules into 2D [200] or 3D images [201] and used 
deconvolutional architectures as generators.

The learned latent representations can be used in conjunction 
with optimization techniques such as Bayesian optimization 
[193,202] and reinforcement learning [203,204] to generate 
novel small molecules with optimized properties. Initial results 
have relied partially or completely on user-specified scoring 
functions to guide the optimization, but recent works integrate 
predictors of molecular properties into the reward signal [205] 
and extend the design to multi-criterion optimization [206]. By 
departing from continuous latent embeddings and using chemi
cal domain knowledge, novel reinforcement learning methods 
were able to create new drugs by modifying existing molecules, 
without the need for expensive pre-training and massive data
sets [189]. Such reinforcement learning-based models were 
recently successfully used to generate highly potent DDR1 
kinases inhibitors [57], demonstrating the power of such AI- 
driven approaches.

A parallel research direction emerged from conditional 
generative models, in which additional information about 
the compound is made available to the model while learning 
its latent representation. By learning to jointly predict mole
cule properties and structure from embeddings, the search for 
drugs with pre-specified properties can be performed more 
efficiently [190–192].

Despite the increase of new AI-based small molecule design 
approaches, a common set of validation criteria has not yet 
emerged. Two recent benchmarking platforms addressed these 
issues [207,208]. Polykovskiy et al. [208] evaluated generative 
models based on their capability to produce structures similar 
to the training set, while Brown et al. [207] probed the models’ 
ability to replicate the physicochemical property distributions of 
a reference set, and to generate novel molecules that optimize 
single or multiple criteria jointly.

In summary, small molecule design has greatly benefited 
from AI’s capabilities of learning latent representations that 
drive the functional properties of such molecules and exploiting 
the euclidean structure of the resulting embedding manifold to 
improve said properties. This enabled efficient library design for 
high-throughput drug screenings which can ultimately translate 
into a significant increase in the success rate of downstream 
clinical trials, as poor drug candidates could be reliably identified 
and discarded in silico. Most generative models are trained end- 
to-end and only learn about physical plausibility implicitly, thus 
the produced molecules necessitate post-hoc structural fine- 
tuning using molecular dynamics. Similar to generative models 
for proteins, more physics-informed networks that constrain the 
latent space to regions yielding physicochemical viable solutions 
might improve deep learning-based de novo design. Even 
though the application of such models in a personalized setting 
has yet to be shown, we envision that with improved pharma
cogenomics screening datasets, models will be soon developed 
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that can generate novel molecules conditioned on mutational 
changes of their target protein.

4. Expert opinion

Artificial intelligence has enabled precision medicine 
through advancements in biomarker discovery, drug repur
posing, combination- and drug design. The successful 
deployment of the discussed AI-based methods in drug 
discovery and drug development will enable more nuanced 
and iterative processes compared to the conventional linear 
drug development pipelines that may, ultimately, reduce 
R&D costs and increase the success rate of clinical trials, 
thus making the pharmaceutical sector as a whole more 
efficient. However, this development comes along with 
many challenges and caveats.

AI-driven approaches in early drug discovery are challen
ging to validate. Despite the fast increase in the number of 
computational models for vaccine, protein, and small- 
molecule design, only a minority have experimental valida
tions, or are validated on a common set of benchmarking 
samples. This may be overcome with regular crowd- 
sourcing competitions, such as the Dialog for Reverse 
Engineering Assessments and Methods (DREAM) challenges 
[209], enabling an unbiased evaluation of computational 
methods, and fostering collaborations in a quickly emerging 
scientific field.

AI-aided drug design is currently mostly used as a pre- 
processing step to reduce the number of compounds or 
alterations to experimentally test. Yet, to fully exploit the 
potential of machine learning models in drug discovery, we 
envision a AI-driven experimental design and a closed- 
feedback loop to continuously learn from newly generated 
results. Microfluidic drug development systems [210,211] and 
lab robotics will play a key component to reach the high 
degree of automation and throughput to realize such an AI- 
driven approach. In order to make an impact on drug discov
ery, these applications will need to demonstrate their ability to 
arrive at a potential drug candidate faster and more efficiently 
than in current pipelines.

One of the reasons behind the success of AI is its ability to 
automatically uncover complex non-linear relationships from 
heterogeneous sources of data, thus reaching superior perfor
mances in prediction tasks. While this is a pivotal aspect of any AI 
application, it is not enough to motivate broad use of these 
techniques in pre-clinical settings for precision medicine. Given 
the limitations imposed by simplified models such as cancer cell 
lines to model in vivo systems, AI models trained on in vitro data 
will only be predictive in patients, if they are customized to 
capture features which are directly transferable to human 
samples.

Moreover, state-of-the-art patient stratification in precision 
medicine still mostly relies on univariate biomarkers. In order 
to address this, AI seeks to extend our toolbox of established 
biomarkers. Both supervised and unsupervised methods offer 
new avenues to identify complex drug- and disease signatures 
by recognizing patterns across different layers of molecular, 
chemical, and clinical information.

Unfortunately, the broad adoption in daily clinical use is 
still lacking behind. The deployment of data-driven biomarkers 
as companion diagnostics in precision medicine will certainly 
require new designs of clinical trials, such as master protocols 
[212] or adaptive studies that are designed for optimizing the 
biomarker-drug co-development process [213]. Computational 
systems that can match patients automatically to specialized 
trials depending on their genetic makeup [214] can help to 
quickly find appropriate precision trials and ease the burden 
to reach appropriate cohort sizes.

Besides that, the slow adoption of AI methods for precision 
medicine in the clinical development of drugs has many tech
nological and regulatory reasons. For one, technical batch 
effects and the lack of standardized protocols between many 
datasets may induce biases in medical data, which, if used to 
design novel algorithms, might be detrimental for general
izable and highly accurate models. Moreover, the imbalanced 
composition of individuals within patient data may also con
tain biases based on demographics. The field of fairness in AI 
focuses on mathematically identifying and addressing such 
ingrained biases in data, and has started to attract tremendous 
attention in recent years [215]. We anticipate that this field will 
become an integral part in high-stakes application areas of AI 
in healthcare.

Secondly, the data used for drug development in preci
sion medicine comprises highly personalized information 
such as genetic and clinical variables of an individual, 
making data privacy an important issue. Often such data 
cannot easily be shared, or cannot physically leave 
a specific location, which makes the development of AI 
applications difficult as many valuable data sets are inac
cessible and protected in data silos. Federated learning 
tackles this problem [216] by enabling decentralized train
ing and prediction of machine learning models without 
data ever leaving its physical location. Federated learning 
will enable a connected healthcare network helping physi
cians to find similar patient cases and inform their treat
ment decisions without ever needing to exchange sensitive 
information. It will also enable new business models in 
which specialized companies can offer AI-based analytics 
for healthcare and biomedical analysis without needing 
direct access to the data. However, its broader adoption 
is hampered by technical and legal challenges and is 
highly dependent on homogenized healthcare records 
across clinical networks. We believe that in time, as this 
technology matures, these challenges will also be 
overcome.

AI’s stigmatization as a ‘black-box’ approach is also hamper
ing advances in precision medicine as legal liabilities of such 
‘black-box’ predictions in clinics are not satisfactorily answered 
yet. AI ought to be interpretable, trustworthy, robust, and trans
parent [217], as encouraged by the Ethics guidelines for trust
worthy AI [218]. To ensure that these criteria are met, a growing 
body of research has been focusing on the areas of interpretable 
AI [219] and uncertainty quantification [220], which are crucial 
issues to solve in order to deploy and integrate computational 
models in the decision-making process in high-risk scenarios. 
Efforts in this direction have tried to combine state-of-the-art 
neural network models with different AI-based solutions, such as 
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symbolic reasoning algorithms, to increase model interpretability 
while additionally overcoming other traditional weaknesses of 
black-box models such as the need for big datasets for training 
and poor generalization capabilities. For example, concepts 
stemming from symbolic AI gave rise to hybrid AI models that 
are able to leverage ontologies for guided training and thus may 
enable human experts to understand and explain predictions 
[217]. Such modifications of traditional deep learning methods, 
together with the definition of robust signatures in conjunction 
with biomedical expert domain knowledge, will potentially 
enable biological interpretation of these deep molecular profiles, 
thus turning the aforementioned ‘black-boxes’ into ‘white- 
boxes’. Therefore, we envision that integration of expert knowl
edge into AI-approaches and the application of interpretable AI 
methods will drive the next generation of precision medicine.

Eventually, personalized medicine, in which treatments 
are truly tailored to the individual, will be possible in 
a routine clinical setting through a high degree of auto
mation including sequencing, analysis of the biological 
data, and patient-specific drug development. Here, AI will 
play a key role in the development of autonomous pro
cesses, which could ultimately and affordably bring perso
nalized treatments into clinical practice. Such integrated 
analysis and design pipelines are currently being estab
lished in larger clinical centers. But this also highlights 
the issues of personalized approaches: they are more 
laborious to produce and raise ethical questions regarding 
availability and coverage of costs as large core facilities are 
required.

As AI and data collection technologies mature, it will 
eventually be possible to model a significant portion of 
biological systems in patients, representing the patient’s 
own ‘digital twin’, a computer model that can be used to 
estimate the patient’s response to a given therapy. Such AI- 
supported digital twins will allow doctors to quickly tailor 
a treatment plan to the individual circumstances of their 
patients. The availability of such information will impact the 
pharmaceutical sector and will drive the translation from 
biomarker discovery to drug design in a fully integrated 
and automated way, lowering potential costs along the 
drug development pipeline, and improving the efficiency 
of clinical trials. This transformation, already under way in 
precision oncology, will soon hit other medical fields and 
will lead to a radical transformation of the pharmaceutical 
sector.

In conclusion, precision medicine, especially personalized 
medicine, is impossible to realize in clinical practice without 
the aid of advanced AI methods emerging in drug discovery 
and development. Despite the advancements in treatment 
strategies and the increase in genomics and molecular infor
mation available, the drug development pipeline is still a slow 
and inefficient process. Acceleration and adoption of common 
drug development practices for precision and personalized 
medicine are one of the great challenges facing medical 
research and development to date. The shift toward a data- 
driven healthcare system will have far-reaching implications 
for patients, clinicians, and the pharmaceutical industry. Many 
technical and regulatory hurdles have to be overcome to 

make an AI-driven precision medicine approach a reality. 
However, we strongly believe that the positive societal impact 
will be profound.
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