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ABSTRACT

Molecular patterns and pathways in idiopathic pulmonary fibrosis (IPF) have been 

extensively investigated but few studies have assimilated multi-omic platforms to provide an 

integrative understanding of molecular patterns that are relevant in IPF. Herein, we combine 

coding and non-coding transcriptome, DNA methylome, and proteome from IPF and healthy lung 

tissue to identify molecules and pathways associated with this disease. RNA sequencing, Illumina 

MethylationEPIC array, and liquid chromatography-mass spectrometry (LC-MS) proteomic data 

were collected on lung tissue from 24 IPF cases and 14 control subjects. Significant differential 

features were identified using linear models adjusting for age and sex, inflation and bias where 

appropriate. Data Integration Analysis for Biomarker discovery using a Latent component method 

for Omics studies (DIABLO) was used for integrative multi-omic analysis. We identified 4,643 

differentially expressed transcripts aligning to 3,439 genes, 998 differentially abundant proteins, 

2,500 differentially methylated regions (DMRs), and 1,269 differentially expressed lncRNAs that 

were significant after correcting for multiple tests (false discovery rate [FDR]<0.05). Unsupervised 

hierarchical clustering using 20 coding mRNA, protein, methylation, and lncRNA features with 

highest loadings on the top latent variable from the four datasets demonstrates perfect separation 

of IPF and control lungs.  Our analysis confirmed previously validated molecules and pathways 

known to be dysregulated in disease, and implicated novel molecular features as potential drivers 

and modifiers of disease.  For example, four proteins, 18 DMRs, and 10 lncRNAs were found to 

have strong correlations (|r|>0.8) with MMP7. Therefore, using a systems biology approach, we 

have identified novel molecular relationships in IPF.

KEYWORDS: systems biology, transcriptome, methylome, proteome, multi-omics
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INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease of the aging lung (1, 

2).  Its prevalence is increasing (3) and it is likely underdiagnosed (4, 5). While cigarette smoke 

remains the most significant environmental risk factor for this complex disease (6), the gain-of-

function MUC5B promoter variant is the strongest risk factor, genetic or otherwise, for the 

development of IPF.  However, 13 other common variants and several rare variants including 

telomerase pathway genes also contribute to the risk of developing IPF (7-9).  Although 

pirfenidone (10) and nintedanib (11) slow IPF progression, no treatment short of lung 

transplantation impacts survival. IPF is characterized by dysplastic bronchiolar metaplasia, 

alveolar epithelial injury and repair, proliferation of resident fibroblasts, formation of 

myofibroblastic foci, accumulation of extracellular matrix (ECM), and lung remodeling (12). 

Genomic approaches have been used to characterize the molecular landscape of IPF. 

Gene expression studies have identified several thousand genes that are differentially regulated 

in the IPF lung (13-20), consistently reporting common genes and pathways (ECM organization 

& regulation, TGF-β signaling, endoplasmic reticulum stress, epithelial-mesenchymal transition 

(EMT), mitochondrial homeostasis, bronchial epithelial genes, fibroblast genes, smooth muscle 

markers, cytokines & chemokines, growth factors & receptors) that are differentially expressed in 

fibrotic lungs. A recent deep proteome profiling study has confirmed that many of these genomic 

differences result in differential protein abundance in the IPF lung with key genes such as MMP7 

and MUC5B showing increased abundance (21). At the regulatory level, DNA methylation 

changes have been associated with many of the key transcriptional changes in IPF lung tissue 

(22-24) and hypermethylation of genes such as CXCL10 (25), PTGER2 (26), and THY1 (27) have 

been shown to contribute to IPF pathogenesis. Genomic miRNA profiles have revealed several 

miRNAs that are known to affect fibroproliferation, epithelial-mesenchymal transition (EMT), and 

the TGF-β1 signaling pathway (28-32). Although studies of long noncoding RNAs in pulmonary 
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fibrosis are limited, there appears to be an anti-fibrotic role for FENDRR (33) and a pro-fibrotic 

role for DNM3OS (34). In addition, studies in peripheral blood have identified biomarkers of 

disease (35) and disease outcome (36, 37). 

Despite the successful application of multiple single platform ‘omic’ technologies to 

characterize the molecular landscape of IPF, integrative approaches using system biology have 

not yet been applied to the IPF lung. Stimulated by a recent application of multi-omics to a small 

sample, big data study in newborns (38), we obtained DNA methylome, coding and non-coding 

transcriptome, and proteome results from 24 IPF and 14 control lungs. Leveraging supervised 

(39) and unsupervised (40) machine learning methods allowed us to identify integrated molecules 

and pathways across the multiple ‘omic’ platforms to more comprehensively characterize the 

complex molecular features of IPF.  

METHODS

Ethics Statement 

Human tissue was collected after appropriate ethical review for the protection of human 

subjects through the NHLBI-sponsored Lung Tissue Research Consortium (LTRC) and lung 

donor program at the University of Pittsburgh. De-identified data and samples were approved for 

use in this study at the University of Colorado (COMIRB # 15-1147).

Study Population

We selected 24 IPF subjects from the LTRC and 14 controls from the University of 

Pittsburgh Lung Core, all non-Hispanic whites. Details of the study population are provided in the 

Supplemental Methods.
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Sample Processing

DNA and RNA were isolated from the same sample of lung tissue using the AllPrep kit 

(Qiagen). Samples with RNA integrity number (RIN) and DNA integrity number (DIN) >5 were 

used. Genotyping for the MUC5B rs35705950 was performed utilizing a TaqMan assay 

(ThermoFisher). Sample preparation for proteomic analysis is described in Supplemental 

Methods.  

Omic Data Collection

mRNA libraries were prepared from 500 ng total RNA with TruSeq stranded mRNA library 

preparation kits (illumina) and sequenced at the average depth of 80M reads on the Illumina 

NovaSeq 6000 (illumina). 4,011 unique proteins were detected using published MS spectrometry 

methods (41) and described in the Supplemental Methods. 1 ug of DNA was bisulfite treated using 

the Zymo EZ DNA Methylation kit, labeled and hybridized to Illumina Infinium Human 

MethylationEPIC BeadChip using standard protocols. rRNA-depleted libraries were prepared 

from 1 ug RNA with the Epidemiology Ribo-Zero Gold rRNA Removal Kit (Illumina) and 

sequenced at the average depth of 80M reads on the Illumina NovaSeq 6000 (Illumina). RNA-

seq count level data and EPIC methylation data have been deposited to Gene Expression 

Omnibus (GEO) under accession GSE173357.

General Statistical Methods

All analyses were performed in R (3.6.2). Principal component analysis was used for 

quality control and no samples had to be excluded on this criterion. Principal component 

regression analysis (PCRA) was used to identify variables associated with top principal 

components, and strong batch effects were regressed out using ComBat (42). Differentially 

abundant features in each dataset were identified using linear models, adjusting for age and sex. 

In the mRNA-seq, lncRNA-seq, and DNA methylation datasets, p values were adjusted for 
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inflation and bias using Bacon (43). To control for multiple comparisons, p values were adjusted 

to a 5% false discovery rate (FDR) using the Benjamini-Hochberg procedure (44) in all datasets. 

Detailed methods for data processing and statistical analysis of individual datasets are provided 

in Supplemental Methods.

DIABLO

Data Integration Analysis for Biomarker discovery using Latent variable approaches for 

Omics studies (DIABLO) (39) was used to determine correlated ‘omic’ features associated with 

diagnosis. DIABLO is a supervised learning approach that builds on Regularized and Sparse 

Generalized Canonical Correlation Analysis (RGCCA), maximizing correlations between multiple 

datasets containing the same individuals and a classifier (diagnosis). DIABLO seeks for common 

information across different data types through the selection of a subset of molecular features, 

while discriminating between IPF and control lung tissue. Using simulations in DIABLO, we 

determined a single latent variable sufficiently captures most of the variation associated with 

diagnosis. For input into DIABLO, we used the four lists of differential features at FDR<0.05, with 

the mRNA set limited to 1,109 transcripts with |fold change|>4 to have a similar number of features 

as the remaining three datasets.

RESULTS

We selected IPF cases and controls to have similar demographic (age and sex) 

characteristics, all non-Hispanic white, and similar smoking histories (all ever or former smokers) 

(Table 1). All controls have GG MUC5B genotype and of cases 50% have the GG and 50% have 

the GT MUC5B genotype.

Coding RNA

116,503 transcripts were detected through polyA-enriched RNA-sequencing, 75,382 of 

which are annotated as protein coding or retained intron (alternatively spliced transcripts). 4,643 
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transcripts (protein coding and retained intron) aligning to 3,439 genes are differentially expressed 

in IPF compared to normal control lung tissue at FDR < 0.05 with stringent adjustment for inflation 

and bias (Supplemental Figure S1A). As an alternative to adjustment for inflation and bias, we 

performed cell deconvolution analysis with xCell (45) and adjusted for cell proportions in the 

statistical model but this method performed less well (Supplemental Figure S2). Of the 4,634 

differentially expressed transcripts, 1,425 transcripts are upregulated in IPF lung tissue, while 

3,218 RNAs are more abundant in control lung tissue (Supplemental Table S1A). The majority 

of differentially expressed transcripts are protein-coding (74%; Figure 1A) and the remaining 26% 

(Figure 1B) are alternatively spliced transcripts. Upregulated mRNAs are strongly enriched for 

protein products localizing to the mitochondria as well as species involved in oxidation. 

Downregulated mRNAs are enriched for focal adhesion and immune signaling pathways.  

Differentially expressed genes previously reported to be associated with IPF include matrix 

metalloproteinase 7 (MMP7), a gene that is the most established biomarker for IPF (17, 46, 47), 

and epidermal growth factor (EGF). Our recent analysis of transcriptional profiles of airway 

epithelial cells grown at air-liquid interface (ALI) at different time points identified an interaction of 

the epidermal growth factor receptor (EGFR) and the inducible transcriptional co-activator (YAP) 

as critical to the migratory phenotype of IPF cells (48). Additionally, we observe genes involved 

in other fibrotic lung disease, such as CUX1, a transcription factor which regulates COL1 

expression and is upregulated in systemic sclerosis (49). CUX1 isoforms are localized within α-

smooth muscle actin-positive cells in systemic sclerosis skin and IPF lung tissue sections, 

suggesting an important role for CUX1 in regulation of COL1 expression in fibrosis in multiple 

organs (50). 

Protein

The LC-MS platform we used detected 22,198 peptides associated with 4,011 unique 

proteins/genes.  1,040 proteins were differentially abundant in IPF compared to control tissue at 
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FDR <0.05 (Figure 1C, Supplemental Table S1B). 522 proteins (including 27 core matrisome 

and 19 matrisome-associated proteins) are increased in IPF and 518 (including 24 core 

matrisome and 22 matrisome-associated proteins) are decreased. Differentially abundant 

proteins are significantly enriched for core matrisome and matrisome-associated proteins 

(Fisher’s p = .001). We also detect multiple upregulated thioredoxin-related genes (P4HB, 

QSOX1, TXN2, TXNDC5, TXNL1) in IPF tissue. Thioredoxins are upregulated by ROS and 

reduce oxidative stress. TMEM231 shows the greatest increase in IPF. TMEM231 is a 

transmembrane protein present in the transition zone of cilia that prevents protein mis-localization 

by blocking protein diffusion across the ciliary membrane and is necessary for proper ciliogenesis. 

Our group has previously implicated ciliary dysfunction in IPF pathogenesis through patient 

clustering of gene expression microarray data (19). 

Methylation

After stringent control for bias and inflation (Supplemental Figure S1C), we identified 

2,500 DMRs overlapping or within 10 kb of 1,840 genes (Figure 1D, Supplemental Table S1C). 

As an alternative to adjustment for inflation and bias, we performed cell deconvolution analysis 

with RefFreeEWAS (51) and adjusted for cell confounding but this method performed less well 

(Supplemental Figure S3). Of the 2,568 DMR-gene relationships for the DMRs, 31% of DMRs 

are intronic to genes, 24% overlap an exonic region, and 11% are in promoters (defined as within 

2kb upstream of the TSS). On average, significant DMRs contained four Illumina probes and span 

335 bp. The absolute average difference in percent methylation of CpGs within significant DMRs 

in IPF versus control lung tissue is 9.6%. The greatest hypomethylated DMR shows a 30% 

decrease in methylation relative to control tissue. This 709 bp region contains six probes and 

overlaps the 3’ UTR of VMP1 as well as most of the transcribed region of MiR-21, a microRNA 

shown to promote fibrogenesis through upregulation of TGF-β signaling, for which differential 

methylation has not been previously reported (29).  Additional DMRs overlap genes shown to be 
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involved in lung development and fibrosis. We observe hypomethylation in FOXP1, a transcription 

factor involved in secretory epithelial cell fate determination in the lung (52), as well as differential 

methylation of genes previously shown to be involved in IPF such as CCL2 (53).

lncRNA

We identified 1,269 differentially expressed transcripts associated with 1,067 unique 

genes (FDR<0.05) (Figure 1E, Supplemental Table S1D), after controlling for bias and inflation 

(Supplemental Figure S1D). The majority of differentially expressed non-coding RNAs are 

lncRNAs (39%) and antisense RNAs (43%). As expected, most of the lncRNAs are those of 

unknown function. Among most differentially expressed lncRNAs with known function and 

upregulated in IPF are MUC5B-AS1, a noncoding RNA antisense to MUC5B, and LINP2, with 

multiple roles in cancer (54).  lncRNAs of known function downregulated in IPF include long 

intergenic nonprotein coding RNA p53-induced transcript (LINC-PINT), which reduces lung 

cancer progression via sponging of miR-543 to induce tumor suppressor phosphatase and tensin 

homolog (PTEN)(55).  

Protein-coding Transcriptome and Proteome Interactions

To begin to integrate datasets, we first performed pairwise comparisons of coding mRNA 

and protein data, initially focusing on transcripts and proteins with significant changes in both 

datasets. Comparing fold change of protein to mRNA, we demonstrated that most changes with 

large effect sizes (fourfold change in IPF vs control) are consistent directionally (Figure 2A). 

Protein activator of interferon induced protein kinase EIF2AK2 (PRKRA) is especially highly 

upregulated at the mRNA and protein level. This protein kinase is activated by double-stranded 

RNA and mediates the effects of interferon in response to viral infections, which are known risk 

factors of disease (56, 57). PRKRA promoter hypomethylation has been previously reported in 
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IPF lung tissue (23) and our novel observation of mRNA and protein upregulation further suggests 

a role for this gene in disease.

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis 

revealed common pathways, specifically focal adhesion and adherens junctions, in mRNA and 

protein datasets (Figure 2B). Focal adhesion, adhesive contact between the cell and extracellular 

matrix through the interaction of integrin transmembrane proteins with their extracellular ligand, 

is strongly enriched in both mRNA and protein datasets. While the majority of transcripts in the 

focal adhesion pathway are downregulated in IPF, protein-level data demonstrate a mix of up and 

down-regulation, highlighting the importance of studying disease-related genes across ‘omic 

datasets. We observe downregulation of integrin α1 and β5 subunits at the RNA level (ITGA1A 

and ITGA5B) and integrin α1 and β1 subunits at the protein level (ITGA1A and ITGA1B).  

Published findings have established a profibrotic role of integrins αvβ1 and αvβ6 integrins at the 

protein level by activation of TGF-β (58); more work is needed to understand the roles of integrins 

we identified in lung fibrosis. 

Effect of DNA Methylation on Gene Expression 

We next assessed the effect of DNA methylation on expression of nearest protein coding 

RNA (Figure 3A), alternatively spliced RNA (Figure 3B), and protein (Figure 3C). We observed 

only a few relationships within 10 kb among significantly differentially expressed genes, 

acknowledging that methylation marks do not always regulate the nearest gene (59). Inversely 

correlated methylation and expression were observed for genes of interest in IPF such as AGER 

(60), alpha catenin 2 (61), KRT17 (62), and CASZ1 (a gene we previously reported as regulated 

by methylation in IPF(24)). Increasing the distance of overlap to 100 kb reveals many more 

potential cis relationships between DNA methylation and gene expression. A potentially 

interesting novel finding in these data is regulation by methylation of COL17A1, a transmembrane 

protein that is a structural component of hemidesmosomes and has been reported to be regulated 
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by promoter methylation in epithelial cancers (63). Even with the limitation of only focusing on 

relationships with nearest genes, DNA methylation appears to be an important feature of gene 

regulation in IPF.

Multi-Omic Modeling

To fully integrate all four datasets (protein coding RNA, protein, DNA methylation, and 

noncoding RNA), we used the Data Integration Analysis for Biomarker discovery using Latent 

cOmponents (DIABLO) multi-omics integrative method. The DIABLO model differentiates IPF and 

control lungs using one latent variable (Supplemental Figure S4A), demonstrates strong 

correlations of individual features with the top latent variable (Supplemental Figure S4B) as well 

as strong correlations across features from different datasets (Supplemental Figure S4C). 

Contributions of individual dataset features on the top latent variable are shown in Supplemental 

Figure S4D and in Supplemental Table S2A-D. Unsupervised hierarchical clustering using 20 

coding mRNA, protein, methylation, and lncRNA features with highest loadings on the top latent 

variable from the four datasets (80 features total; Figure 4A) demonstrates perfect separation of 

IPF and control lungs (Figure 4B). Among the top protein-coding mRNA features are MMP7, a 

key biomarker of pulmonary fibrosis (13, 47); PROM2, a gene expressed in basal cells that 

differentiates airway from alveolar transcriptional subtype of IPF (19); COL17A1, discussed 

above; and LAMC3, a focal adhesion gene. Among the top protein features are periostin, a protein 

that promotes myofibroblast differentiation and type 1 collagen production (64); palladin, a protein 

involved in cell adhesion; AGER, a gene polymorphic in IPF that encodes soluble RAGE decoy 

receptor (60); focal adhesion proteins LAMC2 and ITGA3; and PECAM1, a protein involved in 

leukocyte migration, angiogenesis, and integrin activation. Among the top DNA methylation 

features (all hypomethylated) are DMRs 5’ to MIR21, a key profibrotic miRNA upregulated in IPF 

(29); the promoter of CCL2, a  T-cell recruiting chemokine with an established role in IPF (65); 

the promoter of TNXB, a gene that has been reported hypomethylated and upregulated in IPF 
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fibroblasts (66); and in an intron of the LTBP1 gene that is upregulated in IPF, especially 

honeycomb cysts, and regulates the effects of TGF-β1 (67).  Long non-coding RNA data are more 

difficult to dissect because of currently unknown functions of many of the lncRNAs. Of the top 20 

lncRNAs, RARA-AS1 is promising as a potential regulator of RARA, a gene that has been shown 

downregulated in IPF fibroblasts (68). LINC01565 or GR6 is another potential candidate based 

on its expression patterns (highest in lung and bone marrow), but no studies have shown its role 

in fibrosis at this time. MIR34AHG is the host gene for miR-34 which has been shown to regulate 

cellular senescence in IPF type II alveolar epithelial cells (69). FENDRR, a lncRNA previously 

associated with IPF (33) is 28th on the extended list of features ranked by the strength of 

association with the top latent variable (Supplemental Table S2D) and we observe 

hypermethylation of a GeneHancer predicted FENDRR enhancer.

In general, we observed strong correlations among features from different ‘omic’ platforms 

that were prioritized by the DIABLO model, as would be expected. Many of the DNA methylation 

marks are negatively correlated to protein-coding RNAs as well as long noncoding RNAs (Figure 

4C). This led us to construct a network of top 20 features from each of the individual datasets 

(Figure 4D). MMP7 RNA, for example, has strong correlations (|r|>0.8) with four proteins (ASH1L, 

BRAP, RHAG; all negative); 18 DMRs (all negative); negative correlations with three lncRNAs 

(AP001189.3, GATA2-AS1, and RARA-AS1) and positive correlations with seven lncRNAs 

(AC007552.2, AC007996.1, AC097478.1, LINC01480, MAST4-AS1, SMC5-AS1, and 

TMEM161B-AS1). MMP7 illustrates how this multi-omic approach may uncover novel 

relationships that will require additional computational (replication) and experimental (functional) 

validation.

Validation of the Multi-Omic Model

We used an unsupervised approach Multi-Omics Factor Analysis (MOFA) to 

independently identify the principal sources of variation in our multi‐omics datasets. Results of 
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this confirmatory analysis are discussed and summarized in the Online Supplement 

(Supplemental Figure S5 and Supplemental Table S4). Overall, a number of the same 

transcriptome and proteome features emerge as prioritized by both DIABLO and MOFA multi-

omic methods while more work will be needed to further assess reproducibility of regulatory 

features of the transcriptome (DNA methylation and lncRNAs).

DISCUSSION

We present the first application of multi-omic integration modalities to IPF lung tissue, 

leveraging coding and non-coding RNA expression, proteomic, and DNA methylation data to 

construct a multi-omic network to gain insights into relevant pathogenic molecules and pathways 

in disease. Our analyses confirm previously validated molecules and pathways known to be 

dysregulated in disease, and implicate novel molecular features as potential drivers and modifiers 

of disease.  

The multi-omic model provides a more complete characterization of molecular pathways 

in IPF and insight into the complex biology of IPF.  It also provides better power for identification 

of such pathways by analysis of multiple datasets on the same tissue, as has been previously 

shown in other settings (38). Multi-omic analysis may be used to identify pathways that are 

dysregulated in IPF both at the transcript and protein level, such as focal adhesion, or regulators 

of genes/proteins already identified as important in IPF. For example, our multi-omic model 

indicated that 18 regions of differential methylation and 10 lncRNAs may be important in 

regulation of MMP7, a gene known with a known role in IPF. Interestingly, RARA-AS1, a potential 

regulator of RARA, a gene that has been shown downregulated in IPF fibroblasts (68), is highly 

negatively correlated with MMP7, suggesting that crosstalk between RARA and MMP7 may 

provide novel targets for IPF therapeutics. However, additional computational (replication) and 

experimental (functional) validation is needed.
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Given that IPF is a complex disease biologically (2), it is not surprising that narrowly 

targeted drugs have generally failed in IPF and currently approved drugs target multiple pathways, 

such as inhibition of several growth factor with Nintedanib (70). Analyzing proteomic, 

transcriptomic and regulatory (methylome and non-coding transcriptome) molecules at the same 

time provides a more complete picture of IPF pathophysiology and will raise the interest for new 

compounds in IPF. Data mining has become an important research direction in drug discovery 

that should take advantage of multi-omics analysis (71). Future work in IPF will likely apply these 

multi-omic methods to longitudinally collected data in peripheral blood, capturing earlier or 

preclinical stages of disease for development of treatments that can be used before the fibrotic 

process involves large portions of the lung and becomes irreversible (72).

By study design, cases were evenly distributed between patients homozygous for the 

major allele and patients heterozygous for the MUC5B promoter polymorphism rs3570950 to 

allow for examination of multi-omic signal in relation to the MUC5B variant. However, differential 

testing within datasets on the basis of the variant did not yield statistically significant results; much 

larger sample sizes will likely be needed to detect the effect of the variant in mixed tissue given 

that the small number of distal airway epithelial cells in which the variant exhibits the strongest 

effect (73, 74). Furthermore, while MUC5B transcript and protein are upregulated in IPF (7.7-fold 

at the transcript level and 2-fold at the protein level in our samples), MUC5B transcript and protein 

are not differentially abundant at FDR<0.05, due to heterogeneity in abundance among cases in 

whole lung tissue. This could also explain why MUC5B-AS1, one of the top differentially abundant 

(increased) antisense RNAs in our RNA-seq data, is not a top weighted feature in the DIABLO 

model. These results are not surprising due to our limited sample size. Further studies examining 

MUC5B genotype contributions to molecular signaling will have increased power if cell types of 

interest can be isolated through microdissection or cell selection/enrichment methodologies.  
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We applied stringent corrections for bias and inflation using methodology specifically 

developed for transcriptome- and epigenome-wide association (TWAS and EWAS) studies. 

Methods developed for genome-wide association studies (GWAS) assume a Gaussian 

distribution of test statistics; this is a valid assumption in GWAS as the vast majority of (generally 

binary) variants are not expected to be associated with the trait of interest. In TWAS and EWAS 

of complex traits such as IPF, it is common to identify changes in hundreds to thousands of 

features, most of which are likely to be true associations but some may be spurious due to inherit 

inflation that has been documented in TWAS and EWAS (43). Because of this, we applied 

stringent corrections within our data for bias and inflation, using Bacon (43) to empirically derive 

a null testing distribution from our data, which takes into account the non-normal mean and 

variance of the data. This greatly reduced the number of differential features meeting significance 

within our datasets, compared to previous publications (19). However, some residual inflation 

remains in the DNA methylation dataset, an issue that is common in the field (75).

Future multi-omic research in IPF should attempt to increase power, as well as the genetic 

context of these molecular patterns. Larger cohort studies will provide the power to derive and 

then test and validate sparse multi-omic signatures for replication in independent samples. Larger 

numbers will also allow for clustering of IPF cases into potentially meaningful subgroups. The 

inclusion of genetic data, which explains a significant proportion of disease variability, will aid in 

patient clustering and recognition of distinct molecular subtypes. These improved integrative 

models hold promise to focus our attention on key molecules and pathways involved in the 

complex biology of lung fibrosis, and potentially identify critical checkpoints that can manipulated 

pharmacologically.  
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TABLES

Table 1. Clinical Characteristics of the subjects included in the +multi-omic profiling.

IPF (n = 24) Controls (n = 14) p

Age 62 +- 5.9 64 +- 5.7 0.323*

Sex (M) 20 (83.3%) 10 (71.4%) 0.433✝

Race (W) 24 (100%) 14 (100%) 1✝

Ethnicity (NH) 24 (100%) 14 (100%) 1✝

Smoking Status 
(Ever)

17 (70.1%) 9 (64.3%) 0.521✝

MUC5B Genotype 
(GG) 

13 (50%) 14 (100%) NA^

         *Assessed w/ student’s t test
        ✝Assessed w/ Fisher’s Exact Test 

  ^By design
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FIGURE LEGENDS

Figure 1. Volcano plots depicting features statistically significant in IPF compared to control lung 

tissue at false discovery rate (FDR<0.05) (blue dots). Protein coding and alternatively spliced 

RNA were captured by polyA/mRNA-seq while lncRNAs were captured by ribosomal RNA 

(rRNA)-depleted sequencing. Alternative splicing includes retained exon annotations from 

Gencode. Noncoding RNA includes lincRNA, antisense RNA, miscellaneous RNA, sense intronic, 

snRNA, miRNA, snoRNA, sense overlapping, bidirectional promoter lncRNA, 3prime overlapping 

ncRNA, scaRNA, ribozyme, noncoding, macro lncRNA, scRNA, and vaultRNA Gencode 

annotations. All data other than the proteome dataset were adjusted for bias and inflation (43). 

Protein data were not adjusted for bias and inflation because of an inherent bias in the proteomics 

assay focusing on proteins/peptides known to be involved in IPF, therefore, inflation is expected 

in this dataset.

Figure 2. Comparison of protein coding mRNA and protein datasets. (A) Protein fold change 

plotted against fold change for the corresponding protein coding mRNA. Transcript/proteins with 

absolute fold change >4 (2 on the log2 scale) are highlighted. (B) KEGG pathway enrichment in 

mRNA (left) and protein (right) datasets. Boxes highlight pathways of interest in common to the 

two datasets. (C) mRNAs/proteins in the Focal Adhesion KEGG pathway are highly dysregulated 

in IPF lung tissue. Red represents upregulation and green represents downregulation.

Figure 3. The effect of DNA methylation on dysregulated gene expression in IPF lung tissue. (A) 

Protein coding mRNA, (B) alternatively spliced mRNA (retain intron), and (C) protein fold change 

plotted against % change in DNA methylation in DMRs assigned to the same genes. All fold 

changes are presented on the log2 scale. DNA methylation changes are presented as % 

methylation changes (on the scale 0-1).
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Figure 4. DIABLO multi-omic model results for the top 20 features in each dataset (blue = coding 

RNA, green = protein, red = methylation, orange = noncoding RNA). IPF lung is represented in 

blue and control in orange. (A) Top 20 features from each dataset contributing to the top latent 

component. (B)  Clustering of cases vs controls based on top 20 features from each dataset. (C) 

Circos plot of correlations (|r|>0.8) for all features contributing to the top latent component. Red 

lines represent positive correlations and blue lines represent negative correlations. (D) An 

interactome network of top features from each of the individual datasets. Red lines represent 

positive correlations and blue lines represent negative correlations.
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Molecular Signatures of Idiopathic Pulmonary Fibrosis

SUPPLEMENTAL METHODS AND RESULTS

Iain R. Konigsberg, Raphael Borie, Avram D. Walts, Jonathan Cardwell, Mauricio Rojas, Fabian 

Metzger, Stefanie M. Hauck, Tasha E. Fingerlin, Ivana V. Yang, David A. Schwartz

METHODS

Ethics Statement

Human tissue was collected after appropriate ethical review for the protection of human 

subjects through the NHLBI-sponsored Lung Tissue Research Consortium (LTRC) and lung 

donor program at the University of Pittsburgh. De-identified data and samples were approved for 

use in this study at the University of Colorado by the Colorado Multiple Institutional Review Board 

(COMIRB # 15-1147).

Study Population

LTRC enrolled donor subjects prior to lung surgery, collected blood and extensive 

phenotypic data from the prospective donors, and then processed surgical waste tissue for 

research use. Clinical data include symptoms, radiologic, and pathological diagnoses, chest CT 

images, pulmonary function tests (spirometry, DLCO, and ABG), exposure (including cigarette 

smoking history) and symptom questionnaires (including Borg dyspnea scale), and family history 

of lung disease. IPF was diagnosed in LTRC using American Thoracic Society/European 

respiratory Society (ATS/ERS) criteria (1) and final LTRC diagnosis was based on an integrated 

clinical, radiologic, and pathologic diagnoses. University of Pittsburgh Lung Donor Core lung 

tissue was collected from subjects that failed regional criteria for transplants using the same 

protocols followed for IPF lungs, ensuring technical comparability across IPF and control lung 

tissue. Potential donor lungs are carefully screened to ensure that there is no evidence of acute 
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or chronic lung disease, that gas exchange is preserved and lung mechanics are normal.  

Accepted donor lungs are processed with 24 hours of resection.  We selected 24 IPF subjects 

from the LTRC and 14 controls from the University of Pittsburgh Lung Core, all non-Hispanic 

whites.

Sample Processing

DNA and RNA were isolated from the same sample of lung tissue using the AllPrep kit 

(Qiagen). Samples with RNA integrity number (RIN) and DNA integrity number (DIN) >5 were 

used. Genotyping for the MUC5B rs35705950 was performed utilizing a TaqMan assay 

(ThermoFisher). RNA and DNA were evaluated by the University of Colorado Genomics Core. 

For proteomic analysis, adjacent pieces of lung tissue samples were processed. These samples 

were washed with cold phosphate-buffered saline (PBS) and transferred to 0.5 ml tubes (Precellys 

CK14 lysing kit- including 2 x 2.8 mm Zirconium oxide beads, Bertin), containing 200 ul 8M Urea. 

Lysis was performed in Precellys 24 (Bertin) homogenizer with 20 second cycles at 5000 RPM 

twice. Total protein content was analyzed by Bradford assay and 10 ug total protein for each 

sample were proteolyzed by filter-aided sample preparation as previously described (2). 

General Statistical Methods

All analyses were performed in R (3.6.2). Principal component analysis was used for 

quality control and no samples had to be excluded on this criterion. Principal component 

regression analysis (PCRA) was used to identify variables associated with top principal 

components, and strong batch effects were regressed out using ComBat (3). Differentially 

abundant features in each dataset were identified using linear models, adjusting for age and sex. 

In the mRNA-seq, lncRNA-seq, and DNA methylation datasets, p values were adjusted for 

inflation and bias using Bacon (4). To control for multiple comparisons, p values were adjusted to 

a 5% false discovery rate (FDR) using the Benjamini-Hochberg procedure (5) in all datasets. 
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Coding Transcriptome

mRNA libraries were prepared from 500 ng total RNA with TruSeq stranded mRNA library 

preparation kits (illumina) and sequenced at the average depth of 80M reads on the Illumina 

NovaSeq 6000 (illumina). RNA paired-end reads were aligned at the transcript level to Ensembl 

GrCh38 using Kallisto (6). 116,503 transcripts were detected in the mRNA dataset using Gencode 

v27. Differential expression was assessed using DESeq2 (7). 41,121 (35%) transcripts were not 

included in differential expression testing based on DESq2 cutoff for low expression (defined as 

1.9 counts in this dataset based on Cook’s distance).  

Proteome

22,198 unique peptides associated with 4,011 unique proteins/genes were detected in our 

samples. Peptides were analyzed on a Q Exactive HF mass spectrometer (ThermoFisher) 

coupled to an RSLC system (Ultimate 3000) in data-independent acquisition (DIA) mode as 

described (8). Protein identification was performed with Spectronaut Pulsar by peptide mapping 

to an in-house spectral library at a precursor Q value cut-off of 0.01 and using the match-between 

run option at a 0.25 percentile threshold. Label-free quantification was performed on the 

intensities of summed MS2 fragment spectra. Raw intensity data were normalized via a local 

retention time-dependent method and log transformation, given the skewness of the data. 

Differential abundance was tested in Limma (9).

DNA Methylome

1 ug of DNA was bisulfite treated using the Zymo EZ DNA Methylation kit, labeled and 

hybridized to Illumina Infinium Human MethylationEPIC BeadChip using standard protocols. 

Illumina idat signal intensity files were processed using seSAMe and Minfi. Probes containing a 

SNP site (minor allele frequency [MAF] > 1% in the general population) as well as probes with 

non-unique mapping and off-target hybridization were removed. Additionally, probes with an 
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average detection P value >= .05 across samples and sex chromosome probes were removed 

prior to analysis. This resulted in 743,256 probes that passed quality control and were tested for 

association with diagnosis. Array position appeared as a batch effect, and was regressed out of 

the data using ComBat (3). Differentially methylated positions were tested using M-values in 

Limma (9). Bacon-adjusted p-values were used to seed DMRs with a window size of 300 bases 

and a corrected P value <0.05 in comb-p (10) that were subsequently annotated to nearest and 

overlapping genes in Ensembl GrCh38.

Non-coding Transcriptome (lncRNA)

rRNA-depleted libraries were prepared from 1 ug RNA with the Epidemiolofy Ribo-Zero 

Gold rRNA Removal Kit (Illumina) and sequenced at the average depth of 80M reads on the 

Illumina NovaSeq 6000 (Illumina). RNA paired-end reads were aligned at the transcript level to 

Ensembl GrCh38 using Kallisto (6). Non-coding RNA’s were selected for differential testing on 

the basis of Gencode v27 transcript biotype (11). Transcripts designated as lncRNA (8714), 

antisense_RNA (8556), misc_RNA (1310), sense_intronic (871), snRNA (795), miRNA (674), 

snoRNA (480), sense_overlapping (234), bidirectional_promoter_lncRNA (32), 

3prime_overlapping_ncRNA (28), scaRNA (27), ribozyme (4), non_coding (3), macro_lncRNA 

(1), scRNA (1), and valutRNA (1) were included for differential testing. 21,733 transcripts aligning 

to 14,956 Ensembl non-coding transcript genes identified. Differential expression was assessed 

using DESeq2 (7). 

Enrichment

Differentially abundant features were tested for enrichment of relevant biological gene lists 

in MSiGDB (12). Specifically, features were tested for enrichment with MSigDB’s hallmark gene 

lists, canonical pathways, and Gene Ontology terms, as well as TISSUE and BTM. 
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DIABLO

Data Integration Analysis for Biomarker discovery using Latent variable approaches for 

Omics studies (DIABLO) (13) was used to determine correlated ‘omic’ features associated with 

diagnosis. DIABLO is a supervised learning approach that builds on Regularized and Sparse 

Generalized Canonical Correlation Analysis (RGCCA), maximizing correlations between multiple 

datasets containing the same individuals and a classifier (DX). Significantly differentially abundant 

features from previous analyses were normalized (variance stabilizing transformation for both 

RNA datasets, protein log2abundance, mean M values for DMR). Using simulations in DIABLO, 

we determined a single latent variable sufficiently captures most of the variation associated with 

diagnosis. 

MOFA

We also analyzed our multi-omic data with an unsupervised approach Multi-Omics Factor 

Analysis (MOFA) (14). MOFA learns latent factors that best explain the variance in and between 

datasets. As such, these factors may represent sources of variation shared between datasets as 

well as dataset-specific variation.  

RESULTS

Validation of the Multi-Omic Model

We used an unsupervised approach Multi-Omics Factor Analysis (MOFA) to 

independently identify the principal sources of variation in our multi‐omics datasets. 

Unsurprisingly, the top two latent factors identified by MOFA are able to distinguish IPF from 

control lung tissue (Supplemental Figure S3). The first MOFA latent factor (LF1) captures most 

of the variation in protein-coding RNA, protein, and lncRNA data while latent factor 2 (LF2) 

captures the majority of variation in the DNA methylation dataset (Supplemental Figure S3). To 

assess reproducibility of the DIABLO model findings in MOFA latent factors, we examined MOFA 
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loadings on LF1 (protein-coding RNA, protein, and lncRNA) and on LF2 (DNA methylation) of top 

100 DIABLO features from each dataset. This analysis revealed good replication of protein-coding 

RNA and protein data; MMP7, PROM2, COL17A1, LAMC3, AGER, and ITGA3 are among the 

top features (Supplemental Table S4A and B). We observed less replication overall in the DNA 

methylation and lncRNA datasets but observed that MOFA prioritized DMR1/MIR21 promoter and 

FENDRR among the features with strongest loadings (Supplemental Table S4C and S4D). 

Taken together, it appears that a number of the same transcriptome and proteome features 

emerge as prioritized by both DIABLO and MOFA multi-omic methods while more work will be 

needed to further assess reproducibility of regulatory features of the transcriptome (DNA 

methylation and lncRNAs).
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SUPPLEMENTAL TABLES (PROVIDED SEPARATELY)

Supplemental Table S1. Differential features (bacon-adjusted FDR-adjusted p<0.05) in 

individual datasets: (A) polyA RNA-seq, (B) proteomics (no bacon adjustment), (C) DNA 

methylation, and (D) rRNA-depleted noncoding RNA-seq.

Supplemental Table S2. DIABLO model loadings on the top latent variable. (A) polyA RNA-seq 

(protein coding and retained intron), (B) proteomics, (C) DNA methylation, and (D) rRNA-depleted 

noncoding RNA-seq.

Supplemental Table S3. MOFA model loadings on the top two latent variables. (A) polyA RNA-

seq (protein coding and retained intron), (B) proteomics, (C) DNA methylation, and (D) rRNA-

depleted noncoding RNA-seq.

Supplemental Table S4. MOFA model loading rank for the top 20 DIABLO model features by 

dataset. (A) polyA RNA-seq (protein coding and retained intron), (B) proteomics, (C) DNA 

methylation, and (D) rRNA-depleted noncoding RNA-seq.
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SUPPLEMENTAL FIGURES

Supplemental Figure S1. Quantile-quantile (Q-Q) plots of observed compared to expected FDR-

adjusted p values for each dataset. In each panel the plot on the left is pre-bacon and the plot on 

the right is post-bacon model fitting to adjust for bias and inflation. Protein data were not fitted to 

a bacon model because of an inherent bias in the proteomics assay focusing on proteins/peptides 

known to be involved in IPF, therefore, inflation is expected in this dataset.
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Supplemental Figure S2. xCell adjustment for cell proportions in DNA methylation analysis. (A) 

Estimated proportions of the fives cell types that are present at significant numbers in >75% of 

our samples (B) Quantile-quantile (Q-Q) plots of observed compared to expected FDR-adjusted 

p values before and after adjustment for the proportions of five cell types. Inclusion of the 

proportions of the five cell types in the model reduce inflation in the data, but to lesser extent than 

using Bacon, suggesting that adjustment for bias and inflation performs better (refer to 

Supplemental Figure S1).
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Supplemental Figure S3. RefFreeEWAS adjustment for cell proportions in DNA methylation 

analysis. (A) Scree plot depicting the amount of variance accounted for the different numbers of 

calculated cell components. (B) Quantile-quantile (Q-Q) plots of observed compared to expected 

FDR-adjusted p values before and after adjustment for 7 cell components identified by 

RefFreeEWAS. Inclusion of these seven components in the model did not reduce inflation in the 

data, suggesting that adjustment for bias and inflation performs better (refer to Supplemental 

Figure S1).
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Supplemental Figure S4. DIABLO multi-omic model. (A) Separation of cases and controls on 

the top two latent variables, (B) Correlation circle plots of individual features with the top two latent 

variables, (C) Pairwise correlations of datasets on top two latent variables, and (D) All features 

from each dataset contributing to the top latent component.
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Supplemental Figure S5. MOFA multi-omic model. (A) Separation of cases and controls on the 

top two latent factors (LF), (B) Total variance explained by individual datasets (top) and variance 

explained by individual datasets per latent factor (bottom).
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