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Abstract: (1) Background: The study aimed to investigate the role of subclinical inflammation on
the association between diurnal cortisol patterns and glycaemia in an aged population. (2) Methods:
Salivary cortisol, interleukin-6 (IL-6) and glycated haemoglobin (HbA1c) were analysed in a sample
of 394 men and 364 women (mean age = 5 ± 6.3, 65–90 years). The ratio of morning after awakening
and late-night cortisol was calculated as an indication of diurnal cortisol slope (DCS). Multivariable
regression models were run to examine whether IL-6 mediates the relationship between the DCS and
glycaemia. The Sobel test and bootstrapping methods were used to quantify the mediation analyses.
(3) Results: In comparison to normoglycaemic counterparts (n = 676, 89.2%), an increase in IL-6
concentrations, in individuals with hyperglycaemia (HbA1c ≥ 6.5%) (n = 82, 10.8%) (p = 0.04), was
significantly associated with a flatter DCS. The link between flatter DCS and elevated HbA1c level
was significant mediated by a heightened IL-6 level. Our results do not suggest reverse-directionality,
whereby cortisol did not mediate the association of IL-6 with HbA1c. (4) Conclusions: In our sample,
the relation between flatter DCS and hyperglycaemia was partly explained by IL-6 levels. The
paradigm of subclinical inflammation-mediated cortisol response on glucose metabolism could have
widespread implications for improving our understanding of the pathophysiology of type 2 diabetes
mellitus.
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1. Introduction

The role of psychological stress factors in the pathogenesis of type 2 diabetes is increas-
ingly acknowledged [1,2], although the exact mechanisms through which psychosocial
stress act on hyperglycaemia are not well understood. There is little doubt that impair-
ments of the hypothalamic-pituitary-adrenal (HPA) axis plays a major role in the crosstalk
between psychosocial stress and the metabolic disruption. Here, cortisol, a glucocorticoid
(GC) hormone and key component of the HPA axis, exerts counterregulating effects on
insulin via induction of hepatic gluconeogenesis and inhibition of the peripheral uptake of
glucose [3].

Stress-induced disruption of the HPA axis can result either in glucocorticoid excess,
presumably based on altered feedback regulation of cortisol, or, conversely, in a blunted
glucocorticoid secretion, most likely due to an impaired glucocorticoid receptor sensitivity
or decreased responsiveness to glucocorticoids, a phenomenon known as glucocorticoid
resistance [4]. A mismatch between the level of the cortisol awakening reaction (CAR) in the
morning and the nadir in the evening, leading to a flatter diurnal cortisol slope (DCS), is a
valid indicator of impaired HPA axis functioning [5]. A meta-analysis of 80 studies recently
evidenced that a flatter DCS was associated with poorer general health outcomes [6].

Besides its critical role in energy balance, GC contributes to immune regulation by
shutting down inflammatory processes to prevent host destruction due to excessive im-
mune activity under acute “healthy” stress conditions [7]. However, sustained psychosocial
stress conditions may promote proinflammatory effects caused by impaired GC receptor
sensitivity [8,9]. Furthermore, the coexistence of dysregulated HPA-axis and increased in-
flammation has been increasingly acknowledged in the pathogenesis of type 2 diabetes [10],
although conclusive evidence is lacking.

However, the pathway that mediates the link between cortisol and impaired glucose
metabolism is still unexplored. To advance our current understanding of the crosstalk
between impaired HPA axis functioning and heightened inflammation on metabolic dys-
regulation, we applied the glycated haemoglobin (HbA1c) measurement as an indicator
of hyperglycaemia in the present study. Therefore, the percentage of HbA1c in blood
samples indicates how well blood glucose has been controlled over the preceding months,
reflecting the cumulative glycaemic history. HbA1c is superior to diabetes diagnosis alone
as it provides a reliable measure of glucose regulation as patients who received antidia-
betic treatments may have normalized blood glucose levels. It is well-established that the
dysregulated cortisol secretion pattern is associated with type 2 diabetes or increased in
glycosylated haemoglobin (HbA1c) levels, as previously shown [11,12]. Meta-analytic re-
sults indicate that IL-6 is the most sensitive inflammatory marker that predicts subsequent
diabetes in initially healthy samples [10], and concentrations of IL-6 are elevated in patients
with type 2 diabetes [13]. We hypothesized that flattened DCS is associated with elevated
HbA1c levels mediated by greater subclinical inflammation as measured by IL-6. Therefore,
in this cross-sectional population-based study, we aimed to elucidate whether subclinical
inflammation mediates the association between diurnal cortisol secretion patterns and
increased HbA1c levels in a representative community-dwelling older men and women.

2. Materials and Methods
2.1. Study Setting and Population

The KORA (Cooperative Health Research in the Region of Augsburg)-Age study is a
follow up examination of the participants (n = 4127, age ≥ 64 years) of the previous four
MONICA/KORA Surveys in the Augsburg region, Southern Germany, which was con-
ducted between November 2008 and November 2009 [14] with participation rates between
67% and 79%. From these, a randomly drawn sample of 1079 participants participated in a
standardised telephone interview and extensive physical examinations at the study cen-
tre, including the collection of blood samples, anthropometric examination, and personal
interview.
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Salivary samples were available from 772 subjects (saliva sampling rate of 72%) [11].
After exclusion of participants with missing data on type 2 diabetes, cortisol, and IL-6,
the final data set for the present analysis consisted of 758 participants (394 males and
364 females) aged 65–90 years (mean = 75 ± 6.3). A drop-out analysis of the excluded
participants revealed no significant age and sex differences.

The study was approved by the Ethics Committee of the Bavarian Medical Association,
and all participants provided written informed consent.

2.2. Biomarker Measurements

For salivary cortisol sampling, participants were individually instructed about the
procedure with detailed written information (Salivette® test kit, Sarstedt, Nümbrecht,
Germany). At home, participants collected 3 saliva samples: in the morning after awak-
ening (M1) while sitting in an upright position, 30 min after awakening (M2), and in the
late night before bedtime, on a day that should not involve any special occasions, such as
family celebration, travel, or a doctor’s visit. Exact times of responses were recorded by
the participants. We did not enforce a specific day for sampling but instructed the study
participants to provide the samples all on the same day to reflect normal daily settings.
Otherwise, the saliva collection should be postponed to other days. Participants were
instructed not to eat, drink, or brush their teeth 15 min before the sampling. Analysis
of self-documented collection times revealed that 95% of the subjects had collected the
M2 sample with less than 5 min deviation from the expected timeframe. Cortisol levels
(ng/mL or nmol/L) were determined in duplicate using a luminescence immunoassay (IBL,
Hamburg, Germany). The lower detection limit of this assay is 0.1 ng/mL (0.276 nmol/L),
intra- and inter-assay coefficients of variation (CV) are below 6% and 9% at concentrations
of 0.4 ng/mL (1.1 nmol/L) and 5.0 ng/mL (1.38 nmol/L), respectively. All of the avail-
able salivary cortisol samples were within the lowest detection limit of the assay. Some
individuals (late-night salivary cortisol, LNSC: n = 16; morning after awakening, n = 21)
were excluded due to insufficient saliva sample volume for analysis. We calculated the
area under the curve (AUC), based on the trapezoid rule, using all available data from the
three time points (n = 734). The mean of total hours awake was 15.5 (±1.5) h.

The diurnal cortisol slope (DCS) represents the degree of change in cortisol from
morning to late-night over the waking day [5]. Therefore, the ratio of M1 and LNSC was
calculated as an indication of DCS. While lower DCS values indicate flatter DCS patterns,
high DCS values correspond to steeper DCS or healthy diurnal patterns. The distributions
of DCS were split by the tertiles, and subjects were stratified into those with flatter, medium,
or steeper DCS.

Serum cortisol, IL-6 and HbA1c measurements were obtained from a blood sample
during the physical examination at the study centre in the morning. Serum cortisol
(µg/dL) was measured using the LIAISON chemiluminescence immunoassay (DiaSorin,
Dietzenbach) according to the manufacturer’s instructions with intra- and inter-assay CV
below 12.4% and 4.4%, respectively. IL-6 levels (pg/mL or IU/mL) were assayed using
the Quantikine HS ELISA, SS600B (R & D Systems, Abingdon, UK) (inter-assay CV = 7.4%,
intra-assay CV = 6.8%). HbA1c (mmol/mol and percentages (%)) was quantified with a
reverse-phase cation-exchange HPLC method using a Menarini–Arkray Analyzer HA-8160
(Menarini Diagnostics, Florence, Italy). Results of the Diabetes Control and Complications
Trial which shown that tight blood glucose control was associated with a reduced risk of
diabetic complications and, therefore, the American Diabetes Association recommends an
HbA1c of <6.5% for people with diabetes [15]. Therefore, individuals with hyperglycaemia
are identified as having HbA1c levels of ≥6.5% (48 mmol/mol).

2.3. Covariate Measurements

Information on covariates was obtained in standardized personal interviews, con-
ducted by trained medical staff, and a self-administered questionnaire as described else-
where in detail [16]. Low education was defined as <12 years of schooling. Someone who
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smoked cigarettes regularly or occasionally was considered as a current smoker. Alcohol
consumption was rated as “daily”, “once or several times a week”, and “no”. To assess
physical activity, participants were classified as ‘active’ during leisure time if they regularly
participated in sports for at least 1 h per week; otherwise, they were considered ‘inactive’.
Type 2 diabetes was self-reported by the participants in the self-administered questionnaire
and verified from physicians and the use of antidiabetic medications. Multimorbidity was
defined as the co-occurrence of more than two disease conditions based on the Charlson
Comorbidity Index [14]. Body mass index (BMI) was calculated as weight (kg)/height2

(m2), which was assessed in a medical examination. Hypertension was defined as blood
pressure ≥ 140/90 mmHg and/or current use of hypertensive medication. Total choles-
terol (TC) and high-density lipoprotein cholesterol (HDL-C) in mmol/L were measured
by enzymatic methods (CHOD-PAP, Boehringer Mannheim, Germany). Psychological
variables included depressive symptoms (cut-off point >5 for mild or moderate depression
using the 15-item German version of the Geriatric Depression Scale), anxiety (cut-off point
≥10 for high anxiety using the Generalized Anxiety Disorder-7), sleeping problems (based
on interview questions concerning the difficulty initiating and maintaining sleep), and
perceived stress from a stressful life event (assessed by a two-item instrument based on the
Psychosocial Stress Questionnaire from the Interheart Study) as previously described [11].

2.4. Statistical Analysis

Participants were grouped based on hyperglycaemic status (HbA1c≥ 6.5% (48 mmol/mol))
and DCS tertile distribution for descriptive data analysis. Therefore, sociodemographic,
lifestyle, clinical, and psychosomatic characteristics were stratified by hyperglycaemic
status in Table 1 and by DCS tertiles in Table 2. Bivariate associations of biomarker groups
and continuous variables were tested using the Kruskal-Wallis test and χ2 test was used for
categorical variables. In case of non-normality, tests were performed on log-transformed
biomarker measurements. LS (least squared) means and 95% confidence interval (CI)
of biomarker measurements were calculated. Differences between groups (in age and
sex adjusted models) and differences between men and women (adjusted for age) were
tested with generalized linear model (GLM) procedures. Geometric means (95% confidence
intervals) of IL-6 levels were calculated based on the antilog of standard deviations of log
means. Associations between cortisol and glycaemic groups were tested with age and
sex-adjusted generalized linear model (GLM) procedures.

We conducted statistical analyses using the biomarkers’ continuous value, modelled as
an increment of 1 standard deviation (SD) of the log-transformed values. We first examined
the interaction between DCS and IL-6 (product term of DCS and IL-6) in linear regression
models with HbA1c levels as the dependent variable. Model 1 was adjusted only for
age and sex. Model 2 was further adjusted for awakening time, education level, physical
activity, current smoker, alcohol consumption, and depressive symptoms, while Model 3
was additionally adjusted for BMI.

We evaluated the accuracy of the mediation effect using the traditional hypothesized
method using linear regression analyses (Baron & Kenny, 1986). We started by defining the
mediation model within a four-step framework described by Baron and Kenny [17]. Step
1 examined the relationship between diurnal cortisol slope (DCS) and IL-6 level (path b).
Step 2 examined the relationship between IL-6 and HbA1c while controlling for DCS (path
c). Step 3 examined the relationship between DCS and HbA1c (path a). Step 4 examined the
relationship between DCS and HbA1c while controlling for the IL-6 levels (path a’). Path a
is the total effect, path a’ is the direct effect, and path b x c is the indirect effect (i.e., flatter
DCS is associated with IL-6 levels, leading to heightened HbA1c levels). Furthermore,
the Sobel test was used to test the significance of a mediation effect. It provides means to
determine whether the reduction in the effect of the independent variable, after including
the mediator, is a significant reduction and therefore, whether the mediation effect is
statistically significant [18]. We then repeated the mediation analyses with nonparametric
bootstrap, with 1000 resamples, to obtain the proportion mediated, the magnitude of the
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average total effect, and the significance of the indirect effects [19]. As a validation to the
salivary samples, we repeated the whole analyses using serum cortisol samples.

Descriptive and regression analyses were run in SAS version 9.4 (SAS Institute Inc.,
Cary, NC, USA). Mediation analyses were performed by using ‘Mediation’ package in
R. The significance level was set at 0.05. The study description followed the STROBE
(STrengthening the Reporting of OBservational studies in Epidemiology) guidelines for
observational studies.

3. Results
3.1. Description of the Study Population

The present investigation includes 758 participants (52% males and 48% females) with
an overall mean of HbA1c of 5.7%, SD ± 0.6 (39.1 mmol/mol, SD ± 6.2), among whom 11%
(n = 82) were identified being in a hyperglycaemic state (HbA1c ≥ 6.5% (48 mmol/mol)).
As shown in Table 1, individuals with hyperglycaemia were more likely to have higher
HbA1c levels, have a flatter DCS (lower M1 to LNSC ratio), have higher IL-6 levels, be
hypertensive, have higher BMI, consume less alcohol, have higher total/HDL cholesterol
levels, and be affected by multimorbidity in comparison to the normoglycemia group.
There were no significant differences between glycaemic groups in sociodemographic and
psychological factors, overall cortisol output (AUC), serum cortisol levels, smoking status,
and physical activity. In sex-stratified analyses, men with hyperglycaemia had higher BMI
and higher total/HDL cholesterol levels while women with hyperglycaemia had higher
IL-6 levels, consumed more alcohol, and suffered more frequently from hypertension.

Table 1. Characteristics of the KORA Age study population stratified by glycemia status
(HbA1c ≥ 6.5% vs. HbA1c < 6.5%) in means (±SD) or N (%) (n = 758).

Hyperglycemia
(n = 82, 10.8%)

Normoglycemia
(n = 676, 89.2%) Overall * Men * Women *

Biomarkers ◦

HbA1c (mmol/mol) 53.2 (±6.0) 37.4 (±3.6) <0.0001 <0.0001 <0.0001
DCS 1.5 (±0.8) 1.7 (±0.8) 0.04 0.19 0.10

CortisolAUC (n = 734) 23.4 (±14.3) 22.7 (±12.5) 0.78 0.14 0.32
IL-6 (IU/mL) 0.3 (±0.2) 0.2 (±0.3) 0.01 0.27 0.02
Serum cortisol

(µg/dL) 9.53 (±3.4) 9.4 (±4.0) 0.78 0.43 0.47

Sociodemographics *
Mean age (SD) 75.8 (±5.7) 75.0 (±6.3) 0.19 0.85 0.07

Female 33 (40.2) 335 (49.6) 0.11 - -
Low education 66 (80.5) 482 (71.3) 0.08 0.07 0.16

Living alone 53 (65.4) 440 (65.4) 0.99 0.83 0.53

Cardiometabolic risk factors *
High alcohol intake 61 (74.4) 584 (90.5) 0.20 0.32 0.12

Current smoker 3 (0.4) 28 (4.1) 0.83 0.52 0.23
Physically inactive 43 (52.4) 282 (41.7) 0.06 0.05 0.50

BMI, kg/m2 31.6 (±4.6) 28.2 (±4.3) <0.0001 <0.0001 <0.0001
Total/HDL
cholesterol 4.3 (±1.1) 3.9 (±1.0) 0.005 0.008 0.30

Hypertension 70 (85.4) 496 (65.5) 0.02 0.26 0.03
Multimorbidity 71 (86.6) 401 (59.5) <0.0001 0.004 0.001

Statin use 34 (41.5) 171 (25.3) 0.002 0.03 0.02
Antidiabetic
medications 65 (79.3) 17 (20.7) <0.0001 <0.0001 <0.0001
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Table 1. Cont.

Hyperglycemia
(n = 82, 10.8%)

Normoglycemia
(n = 676, 89.2%) Overall * Men * Women *

Psychological factors *
Depressed mood 1 (1.3) 11 (1.6) 0.80 0.41 0.63

Anxiety 9 (11.4) 45 (6.7) 0.13 0.67 0.07
Sleep problems 37 (45.1) 328 (48.5) 0.72 0.34 0.50

◦ Age- and/or sex-adjusted least-squared (LS) means (p-values). * p-value for differences across DCS tertiles;
unadjusted p-values, t-test for continuous variables and chi-square-test for categorical variables. Abbreviatons:
Glycated haemoglobin (HbA1c), Diurnal Cortisol Slope (DCS), Interleukin-6 (IL-6), Body-Mass-Index (BMI),
High-density lipoprotein (HDL) cholesterol.

Table 2 presents the study characteristics according to DCS groups. Individuals with a
flatter DCS were more likely to be older, have lower overall cortisol output (AUC), higher
HbA1c, and higher IL-6 levels compared to those with healthier (steeper) DCS profiles. No
sex-specific associations between DCS and baseline risk factors were observed except that
men with flatter DCS were more likely to suffer from comorbidities while women with a
flatter DCS tended to be less physically active.

Table 2. Characteristics of the KORA-Age study population stratified by diurnal cortisol slope (DCS) tertiles (flatter, medium
or steeper) in means (±SD) or N (%) (n = 758).

Flatter
(32.9%, n = 247)

Medium
(34.2%, n = 257)

Steeper
(32.9%, n = 247) Overall Men Women

Biomarkers ◦

DCS 0.80 (±0.5) 2.36 (±2.1) 2.55 (±0.4) <0.0001 <0.0001 <0.0001
Cortisol AUC (n = 734) 19.3 (±11.9) 21.2 (±9.7) 27.7 (±14.5) <0.0001 <0.0001 <0.0001
Serum cortisol (µg/dL) 9.6 (±4.1) 9.4 (±4.1) 9.3 (±3.7) 0.49 0.92 0.46
IL-6 (IU/mL) 0.3 (±0.3) 0.2 (±0.2) 0.2 (±0.2) <0.0001 <0.00001 0.002
HbA1c (mmol/mol) 39.8 (±6.7) 39.2 (±6.4) 38.4 (±5.5) 0.04 0.29 0.15

Sociodemographics *
Mean age (SD) 76.1 (±6.2) 75.1 (±6.2) 74.0 (±6.2) 0.009 0.56 <0.0001
Female 120 (33.0) 124 (34.1) 120 (33.0) 0.99 - -
Low education 177 (71.7) 182 (70.8) 183 (74.1) 0.70 0.60 0.90
Living alone 91 (36.8) 89 (35.2) 78 (31.6) 0.45 0.98 0.18

Cardiometabolic risk factors *
High Alcohol Intake 75 (30.1) 94 (36.7) 70 (28.3) 0.20 0.32 0.12
Current smoker 13 (5.3) 10 (3.9) 8 (3.2) 0.51 0.75 0.60
Physically inactive 120 (49.6) 107 (41.6) 96 (38.9) 0.08 0.81 0.04
BMI, kg/m2 28.9 (±4.7) 28.7 (±4.3) 28.1 (±4.1) 0.27 0.98 0.10
Total/HDL cholesterol 4.0 (±1.1) 3.9 (±0.9) 4.0 (±1.0) 0.96 0.52 0.22
Type 2 diabetes 44 (17.8) 46 (17.9) 43 (17.4) 0.93 0.71 0.55
Antidiabetic medication 40 (37.7) 36 (34.0) 30 (28.3) 0.48 0.90 0.43
Statin use 79 (38.5) 70 (34.2) 56 (27.3) 0.09 0.03 0.87
Hypertension 181 (73.3) 195 (75.9) 183 (74.4) 0.80 0.66 0.18
Multimorbidity 170 (69.1) 153 (59.5) 143 (58.1) 0.11 0.02 0.78

Psychological factors *
Depressed mood 4 (1.7) 5 (2.0) 3 (1.2) 0.80 0.79 0.37
Anxiety 19 (7.8) 19 (7.5) 15 (6.1) 0.73 0.81 0.88
Sleep problems 116 (47.5) 123 (48.8) 124 (50.4) 0.82 0.45 0.87

◦ Age- and/or sex-adjusted least-squared (LS) means (p-values) calculated from GLM models (reference category = steep DCS). * p-value
for differences across DCS tertiles; unadjusted p-values, t-test for continuous variables and chi-square-test for categorical variables.
Abbreviatons: Glycated haemoglobin (HbA1c), Diurnal Cortisol Slope (DCS), Interleukin-6 (IL-6), High-density lipoprotein (HDL)
cholesterol.
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3.2. Association of Cortisol and IL-6 in Individuals with Normoglycemia and Hyperglycemia

Figure 1 displays the linear association between DCS and IL-6 in the total study
population. DCS was negatively associated with IL-6 levels demonstrating that a steeper
DCS, a more dynamic DCS, exhibits lower IL-6 levels while a flattened DCS was associated
with higher IL-6 concentrations. Next, we analysed the association between DCS tertiles
and IL-6 levels stratified by glycaemic status (HbA1c < 6.5% or HbA1c ≥ 6.5%). We
found that a flatter DCS was significantly associated with elevated IL-6 levels in the total
population (p = 0.008) and the effect was strongest in individuals with hyperglycaemia,
even after adjusting for age and sex p = 0.004). Figure 2 illustrates that IL-6 levels were
increased in individuals with hyperglycaemia over the increasing tertiles of the DCS.

Figure 1. Linear regression analysis of the relationship between diurnal cortisol slope (DCS) and
interluekin-6 (IL-6) levels (pg/mL). Higher DCS values indicate a steeper DCS. Abbreviations:
Diurnal Cortisol Slope (DCS); Interleukin-6 (IL-6).

Figure 2. Age and sex-adjusted geometric means of interleukin-6 (IL-6) (pg/mL) levels by diurnal
cortisol slope (DCS) tertiles by glycaemia status (glycated haemoglobin, HbA1c cut-off 6.5%) (n = 758).

The interaction terms of DCS * IL-6 on HbA1c levels were not significant in both crude
and fully adjusted models (Model 1: β = 0.03, SE = 0.04, p = 0.44; Model 2: β = 0.003,
SE = 0.001, p = 0.60). The non-significant effect modification by IL-6 levels on the DCS and
HbA1c link opens the door to further exploring its potential mediation effect.

3.3. Mediation Analysis

Within a three-step framework (Figure 3), a multivariate path analytic model (adjusted
for age and sex, model 1) investigates an indirect relationship from DCS to glycaemia
(HbA1c) via subclinical inflammation (IL-6). The mediating effect was tested by using the
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Sobel test. First, DCS was associated with HbA1c (in a model not adjusted for IL-6, path
a). Second, a flatter DCS was associated with increased IL-6 levels (β = −0.15, SE = 0.03,
p ≤ 0.0001, path b). Third, we observed a significant association between IL-6 levels and
HbA1c, while controlling for DCS measurement (path c). Finally, we observed a weakening
of the association between DCS and HbA1c in the presence of the mediating variable
(IL-6) (path a’) (Sobel Test Statistic = −2.34, p = 0.02). The mediating effect of IL-6 on the
association of flatter DCS with HbA1c levels remained even after further adjustment for
awakening time, education level, physical activity, alcohol intake, smoking status, and
depressive symptoms in Model 2 (p from Sobel test = 0.03).

Figure 3. Mediation analysis of chronic inflammation (measured by interleukin-6, IL-6) on the
association between diurnal cortisol slope (DCS) and glycaemia (HbA1c). Graphical representation
of the mediation analysis: Path a probes the relationship between diurnal cortisol slope (DCS) and
glycated haemoglobin (HbA1c) levels. Path b probes the relationship between Interleukin-6 (IL-6) and
HbA1c levels, while controlling for cortisol measurements. Path c probes the relationship between
DCS and HbA1c. Path c’ probes the relationship between DCS and HbA1c, while controlling for
the IL-6 level. The Sobel test was used to test the significance of the mediation effect of IL-6 on
the association between DCS and HbA1c levels in age and sex-adjusted regression analyses. Beta
estimates with standard deviations and p-values are reported for each association examined. The
values in parentheses indicate the effect of cortisol on HbA1c when IL-6 is entered into the model.

Next, the mediation analysis was then replicated in non-parametric bootstrapping
techniques to estimate the indirect effect and proportion mediating effect of IL-6 on the
association between DCS and HbA1c. As can be seen in Table 3, the pathway comprising
the indirect effect found a significant association between flatter DCS and elevated HbA1c
levels (model 1: β = −0.02, 95% CI −0.03–0.01, p = 0.01). When further analysed in model
2, the proportion mediated was slightly reduced to 17% (model 2: β = −0.02, 95% CI
−0.003–0.001, p = 0.01). The mediation analysis revealed that the proportion mediated
by IL-6 was 18%, indicating the extent that IL-6 has partly contributed to the indirect
relationship between DCS and HbA1c (Table 3). However, further adjusting for BMI
reduced the mediating effect of IL-6 on the association between DCS and HBA1c levels to
non-significance.
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Table 3. Standardized effects (β estimate, 95% CI) and p-values of diurnal cortisol slope (DCS)
on HbA1c via IL-6 as a mediator, and the proportion of association between cortisol and HbA1c
mediated by IL-6 (n = 758).

Direct Effects (DCS
→ HbA1c)

Indirect Effects
(Mediation Effect) DCS
→ IL−6→ HbA1c

Total Effects Proportion
Mediated

β (95% CI) p β (95% CI) p β (95% CI) p β (95% CI) p

Model 1
−0.07

(−0.15;
−0.001)

0.05 −0.02
(−0.03–−0.01) 0.01 −0.10

(−0.16–0.02) 0.03 0.18
(0.04–0.82) 0.03

Model 2 −0.01
(−0.01–0.001) 0.10 −0.02

(−0.003–0.001) 0.01 −0.01
(−0.02–0.001) 0.04 0.17

(−0.003–1.04) 0.04

Model 3 −0.01
(−0.01–0.001) 0.09 0.0002

(−0.001–0.001) 0.71 −0.006
(−0.01–0.001) 0.10 −0.02

(−0.62–0.48) 0.75

Model 1: adjusted for age and sex; Model 2: Model 1 + awakening time, education level, physical activity, alcohol
intake, smoking and depressed mood; Model 3: Model 2 + Body-Mass-Index (BMI). Bold values denote statistical
significance at the p < 0.05 level.

3.4. Sensitivity Analyses

In a sensitivity analysis, as opposed to the initial hypothesis, we tested whether the
DCS mediates the association between IL-6 and HbA1c. We found no significant mediating
effect of DCS on the association between IL-6 and HbA1c (p for indirect effect = 0.07,
Appendix A.1).

We also repeated the mediation analyses to examine whether IL-6 mediates the as-
sociation between serum cortisol and HbA1c levels. In the Sobel test, we found that IL-6
mediates the association of serum cortisol with each SD increase in HbA1c level with
borderline statistical significance (age- and sex-adjusted p value = 0.049) (Appendix A.2).
Similar to the DCS finding, further adjusting for BMI reduced the mediating effect of IL-6
on the relationship between cortisol and HbA1c to non-significance (Appendix A.2). The
non-parametric bootstrapping mediation analysis revealed that the proportion mediated by
IL-6, on the association between serum cortisol and HbA1c levels, did not reach statistical
significance (Appendix A.2).

Additional analyses, with adjustments for antidiabetic medications and multimorbidi-
tiy, that includes conditions which are associated with the use of glucocorticoid medications
(i.e., chronic obstructive pulmonary disease, rheumatoid arthritis, and gastrointestinal dis-
orders), insulin treatment, and lipid lowering drugs (e.g., Statins), did not alter the observed
results (data not shown). Analytical models were also carried out in a dataset without
patients undergoing insulin treatment (n = 27) or patients with microvascular diabetic
complications (e.g., retinopathy, n = 4), which might affect inflammation or cortisol secre-
tion. However, the removal of insulin users, or subjects with retinopathy, did not alter the
significance of the associations (data not shown).

4. Discussion

The present investigation examined the interplay between the diurnal cortisol pattern
and subclinical inflammation on HbA1c levels in a sample of 758 community-dwelling
older adults. This study reaffirms the association of dysregulated cortisol secretion patterns
and hyperglycaemia. We found that a flattened diurnal cortisol slope (DCS)—which was
mainly driven by a substantially low morning after awakening cortisol level and a high
LNSC level, leading to a blunted cortisol secretion pattern—was significantly associated
with increased HbA1c levels. To the best of our knowledge, this study established, for the
first time, by employing a path-analysis model, that subclinical inflammation contributed
significantly to this association.

4.1. Association between Flatter Diurnal Cortisol Slopes and Hyperglycemia

Firstly, the present study provides evidence on a significant association between
flattened diurnal cortisol slopes and impaired glucose regulation, confirming previous
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studies that utilized HbA1c measurement, the KORA-Age study (n = 757, mean age =
75 years) [11], the MESA study (n = 850, mean age = 70 years) [12], as well as in type
2 diabetes participants [20–22]. Controversies still remain of whether the dysregulated
cortisol secretion reflects an enhanced or a blunted cortisol reactivity. In sensitivity analyses,
we found that a flattened DCS was related to lower morning cortisol levels, higher late-night
levels, and a lower overall cortisol output leading to blunted cortisol secretion patterns
(see Appendix A.3). Our results confirmed previous population-based studies, which have
characterized the flattened diurnal profile as a hypoactive HPA-activation in the general
population [23] and among men [22]. However, our data could not show an association
between total AUC and HbA1c levels (data not shown). Previous studies demonstrated that
cortisol was elevated throughout the day in type 2 diabetes participants of a multi-ethnic
population [12] and among women with diabetes in the MESA study [22]. In contrast, men
with diabetes in the MESA study displayed a trend of lower total AUC [22]. Similarly, in
a clinical study, T2DM patients showed blunted HPA axis reactivity with lower overall
AUC than controls, albeit the non-statistical significance [24]. Interestingly, higher total
cortisol AUC was associated with lower BMI or waist circumference, especially in those
with normal fasting glucose [25], suggesting that a higher total AUC does not necessarily
reflect impaired metabolic functioning.

4.2. Association of Flatter Diurnal Cortisol Slopes and Subclinical Inflammation

Next, our data show that a flattened DCS is associated with higher IL-6 levels con-
firming two population-based cohort studies [8,26]. In the MESA study (n = 869, mean
age = 70 years), a less steep diurnal cortisol decline is associated with higher levels of
inflammatory markers (IL-6, IL-10 and CRP) [8]. Similarly, the MIDUS study (n = 799, 34–
84 years) demonstrated that a flattened diurnal slope is associated with greater concurrent
inflammation risk burden at follow-up [26]. In accordance with the role of cortisol as a
potent immune suppressant, our findings of a flattened DCS, associated with a blunted
cortisol response, generally support the notion that an insufficient GC secretion fails to
inhibit the heightened inflammation [7]. Thus, dysregulation of diurnal cortisol, mani-
fested in a hyposecretion pattern, could be related to increased inflammatory activation.
However, one should keep in mind, in some studies, a flattened DCS was associated with
a greater total cortisol output or hypercortisolism (8,23), while this was not observed in
other studies [27–29].

4.3. Association of Subclinical Inflammation and Hyperglycemia

The present investigation also confirms the well-studied relationship between subclin-
ical inflammation and hyperglycaemia [10]. In our analysis, circulating levels of IL-6 were
positively associated with HbA1c levels, which corroborates results from the KORA S4
study (n = 850, mean age = 55–74) [30]. This was expected as subclinical inflammation has
been shown to precede and be a risk factor of future development of type 2 diabetes [10],
and lifestyle modifications and medical treatment attenuating the inflammatory state re-
duce the risk of future development of type 2 diabetes, suggesting the aetiological role of
inflammation in the pathogenesis of type 2 diabetes and associated complications.

4.4. Association of Flatter Diurnal Cortisol Slopes and Hyperglycemia Is Partially Mediated by
Subclinical Inflammation

As an intermediate result, the present investigation, up to now, has strengthened
earlier findings that a flattened diurnal cortisol slope is associated with impaired glucose
regulation and also with heightened inflammation. We found evidence that the flattened
DCS was associated with a lower overall cortisol output, leading to a blunted cortisol
secretion pattern. Guided by a mediation analysis, we were able to show, as a major new
finding, that on the pathway between a dysregulated stress-induced cortisol secretion
pattern as exposure condition and sustained impaired glucose regulation (evidenced by
increased HbA1c levels) as an outcome, and chronic subclinical inflammation (measured
as Il-6) substantially mediated this association. We also performed additional analyses to
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investigate potential reverse causality and found that the data of the present investigation
did not support an alternative path with inflammation as exposure and cortisol as mediator.

To the best of our knowledge, no study has assessed the mediating role of subclinical
inflammation in the link between a dysregulated cortisol secretion pattern and impaired
glucose metabolism so far. Indirect evidence, however, comes from the Whitehall II Study
(n = 4638; 39–63 years), which assessed the association between psychosocial stress (as a
potential cause for the cortisol secretion pattern) and type 2 diabetes and confirmed that
this association was weakly mediated by IL-6 [31]. In contrast, a study in the US Hispanic
population (n = 3923, age = 18–74 years) [32], which measured inflammation by CRP did
not evidence a mediation link between chronic psychosocial stress and hyperglycaemia.
Interestingly, a study by Lehrke et al. found that cortisol was more superior to IL-6
in predicting insulin resistance after an acute intervention of cardiac surgery in non-
diabetic patients [33], suggesting the dominating role of cortisol, compared to inflammatory
markers, in stress-dependent insulin resistance.

Our data suggest that impaired diurnal cortisol slopes may be related to the “stress-
related circadian dysregulation” (SCiD) initiated and maintained by psychosocial stress [6,34]
and pointing to alterations in circadian regulations of the HPA axis, which might result in
counter-regulatory responses of stimulated immune cells and consequent downregulation
of the expression, function, or both of glucocorticoid receptors, rendering immune cells
insensitive to GC, also termed GC resistance [35].

Long-term activation of HPA axis is associated with decreased diurnal variability of
cortisol [6]. It has been noted in individuals with “burned-out” diurnal cortisol secretion
(including lower awakening cortisol and flatter slope), total cortisol secretion was lower
compared to individuals with a more robust high variability diurnal slope, as also seen
in individuals with obesity [25,36]. Thus, flattened DCS or low daily cortisol variability
may reflect a prior over-stimulated HPA axis, and previously high cortisol levels may have
stimulated metabolic disturbances [36]. Because our study was cross-sectional, we cannot
confirm a temporal sequence.

It is interesting to note that further adjusting for BMI reduced the effect of IL-6
substantially, which demonstrates that BMI carries the most substantial impact among
the covariates under investigation, in diminishing the mediating effect of IL-6 on cortisol
measurements and HbA1c levels (p indirect effect after BMI adjustment > 0.05, data not
shown). Apparently, this could be due to the ‘ceiling effect’ of obesity whereby a cortisol-
related association is more strongly observed in lean type 2 diabetes patients than in their
obese counterparts.

4.5. Strengths and Limitations

The present study collected salivary cortisol measures from a large sample of older
community-dwelling of men and women with a high response rate and a very strict quality
assessment. The homogeneous and extended dataset allows for a robust adjustment for a
set of covariates. This study used HbA1c as an indicator of hyperglycaemia and a proxy for
elevated mean glucose levels over the past 2–3 months. HbA1c is also a specific biomarker
of severity for impaired glucose metabolism and increasingly accepted as part of type 2
diabetes diagnosis. The use of HbA1c in addition to type 2 diabetes diagnosis enables the
identification of undetected type 2 diabetes cases, pre-diabetes state and poorly managed
type 2 diabetes. In the present investigation, 82% (n = 67) out of 136 individuals who were
diagnosed with type 2 diabetes and currently under treatment, had an HbA1c ≥ 6.5%,
whereas 18.3% (n = 69) were well-controlled with an HbA1c < 6.5%.

We analysed multiple biological system associations in a cross-sectional study design.
Although cross-sectional results preclude us from making causal conclusions, the mediation
analysis approach has opened the door to analytical tests of the complex interaction
of cortisol, subclinical inflammation and hyperglycaemia. Furthermore, a significant
mediating effect of cortisol on the association between IL-6 and HbA1c levels was not
found in the present study; thus, making potential reverse causality less likely.
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The study is limited due to the saliva sample collection on one single day. We observed
an individual variability in the time of awakening, but 90.4% of the subjects collected the
first sample between 5 and 8 am. We also cannot exclude that the time point of peak cortisol
secretion was missed by this procedure. The DCS is restricted to two measurements, and
the results are approximations of actual diurnal slope values. However, previous studies
have employed similar DCS measures, which were shown to be a robust indicator of
diurnal cortisol rhythms [11]. The study cohort is representative for a middle European
population of Caucasian ancestry and may not be generalizable to other populations.

5. Conclusions

Psychological stress exposure during a lifetime may lead to dysregulated HPA axis
reactivity and subsequent impaired glucocorticoid signalling, contributing to the devel-
opment type 2 diabetes. Here, the present study suggests for a relevant role of IL6 as a
mediator between the initial HPA axis dysregulation and glucose metabolism link in old
age. Routine assessment of non-invasive salivary cortisol measurements, in addition to
inflammatory biomarkers, may allow for a better understanding of the underlying disease
conditions and optimisation of the diabetes management beyond targeting glucose control
alone. To this end, our findings have addressed the importance of integrating inflammatory
state and deregulated HPA axis activation assessments on hyperglycaemia, likely to govern
widespread implications for understanding the progression towards type 2 diabetes.
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Appendix A.1: Standardized effects (β estimate, 95% CI) and p-values of IL-6 on
HbA1c via diurnal cortisol slope (DCS) as a mediator, and the proportion of association
between IL-6 and HbA1c mediated by cortisol (n = 758). Appendix A.2: Association of
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serum cortisol, Interleukin-6 (IL-6) and HbA1c. Appendix A.3: Association of late-night
salivary cortisol (LNSC), Interleukin-6 (IL-6) and HbA1c.

Appendix A.1

Table A1. Standardized effects (β estimate, 95% CI) and p-values of IL-6 on HbA1c via diurnal cortisol
slope (DCS) as a mediator, and the proportion of association between IL-6 and HbA1c mediated by
cortisol (n = 758).

Direct Effects
(IL-6→ HbA1c)

Indirect Effects
(Mediation Effect)

(IL-6→ DCS→ HbA1c)
Total Effects Proportion

Mediated

β (95% CI) p β (95% CI) p β (95% CI) p β (95% CI) p

−0.001
(−0.01–0.01) 0.79 0.001

(−0.0001–0.001) 0.10 −0.0001
(−0.01–0.01) 0.99 −0.01

(−0.6–3.96) 0.98

Models adjusted for age and sex, awakening time, low education level, physical activity, alcohol intake, smoking
and depressed mood.

Appendix A.2. Association of Serum Cortisol, Interleukin-6 (IL-6) and HbA1c

Figure A1. Association of serum cortisol, Interleukin-6 (IL-6) and HbA1c.

Appendix A.2 Figure A1 displays age- and sex-adjusted LS means of Interleukin-6
(IL-6) (IU/mL) concentration by tertiles of serum cortisol according to glycemia status
using the HbA1c cut-off of 6.5% (n = 758). Serum cortisol was not significantly different
between glycemic groups. However, individuals in high serum cortisol tertile display
elevated levels of IL-6, particularly in hyperglycemic compared to normoglycemic group,
albeit non-statistically significant.

Figure A2. Mediation analysis of chronic inflammation (measured by interleukin-6, IL-6) on the
association between serum cortisol levels and glycaemia (HbA1c).
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Graphical representation of the mediation analysis: Path a probes the relationship
between serum cortisol and glycated hemoglobin (HbA1c) levels. Path b probes the
relationship between Interleukin-6 (IL-6) and HbA1c levels, while controlling for serum
cortisol measurements. Path c probes the relationship between serum cortisol and HbA1c.
Path c’ probes the relationship between serum cortisol and HbA1c, while controlling for the
IL-6 level. The Sobel test was used to test the significance of the mediation effect of IL-6 on
the association between DCS and HbA1c levels in age and sex-adjusted regression analyses.
Beta estimates with standard deviations and p-values are reported for each association
examined. The values in parentheses indicate the effect of serum cortisol on HbA1c when
IL-6 is entered into the model.

Table A2. Standardized effects of serum cortisol measures on HbA1c via IL-6 as mediator, in age and
sex adjusted models (Estimate, 95% CI, p-value).

Direct Effects
(Serum Cortisol→

HbA1c)

Indirect Effects
(Mediation Effect)

(Serum Cortisol→ IL-6
→ HbA1c)

Total Effects Proportion
Mediated

β (95% CI) p β (95% CI) p β (95% CI) p β (95% CI) p

Model 1 −0.002
(−0.08–0.06) 0.66 0.001

(0.002–0.02) 0.01 −0.10
(−0.07–0.07) 0.88 −0.10

(−5.10–−5.04) 0.88

Model 2 −0.004
(−0.02–0.01) 0.53 0.002

(−0.0003–0.001) 0.12 −0.002
(−0.02–0.01) 0.72 −0.14

(−4.08–4.04) 0.72

Model 3 0.0001
(−0.002–0.001) 0.93 −0.008

(−0.002–0.01) 0.93 0.0003
(−0.001–0.01) 0.97 −0.0005

(−0.20–1.31) 0.97

Model 1: adjusted for age and sex; Model 2: Model 1+ awakening time, education level, physical activity, alcohol
intake, smoking and depressed mood; Model 3: Model 2+ Body-Mass-Index (BMI).

Appendix A.3. Association of Late-Night Salivary Cortisol (LNSC), Interleukin-6 (IL-6)
and HbA1c

Figure A3. Age and sex-adjusted geometric means of LNSC, morning after awakening (M1) cortisol,
and total cortisol output calculated by AUC.

Appendix A.3 Figure A3 depicts the age and sex-adjusted geometric means of LNSC,
morning after awakening (M1) cortisol, and total cortisol output calculated by AUC. Next,
further analyses were only performed in a model that included LNSC as the independent
variable due to the significant association between LNSC and HbA1c as reported in our
previous publication [11]. LNSC was not significantly different between glycemic groups.
However, individuals in high LNSC tertile display elevated levels of IL-6, particularly in
hyperglycemic compared to normoglycemic group, albeit non-statistically significant (See
Appendix A.3 Figure A4).
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Figure A4. Age- and sex-adjusted LSmeans of Interleukin-6 (IL-6) (pg/mL) concentration by tertiles
of LNSC according to glycemia status using the HbA1c cut-off of 6.5% (n = 758).

Appendix A.3 Figure A4 displays age- and sex-adjusted LSmeans of Interleukin-6
(IL-6) (pg/mL) concentration by tertiles of LNSC according to glycemia status using the
HbA1c cut-off of 6.5% (n = 758). Table A2 presents the β estimates (95% CI, p-value) of
LNSC measurements on HbA1c via IL-6 as a mediator, and the proportion of association
between cortisol and HbA1c mediated by IL-6 (n = 758). Additional analyses revealed
that individuals with flatter diurnal cortisol slope (DCS) were more likely to display lower
morning after awakening (M1) levels, elevated late-night (LNSC) cortisol levels and lower
overall cortisol output (measured by AUC).

Table A3. β estimates (95% CI, p-value) of late-night salivary cortisol (LNSC) measurement on HbA1c
via IL-6 as a mediator, and the proportion of association between cortisol and HbA1c mediated by
IL-6 (n = 758).

Direct Effects
(LNSC→ HbA1c)

Indirect
(Mediation Effect
(LNSC→IL-6→

HbA1c)

Total Effects Proportion
Mediated

β (95% CI) p β (95% CI) p β (95% CI) p β (95% CI) p

Model 1 0.07
(−0.03–0.14) 0.06 0.02

(0.01–0.03) <0.001 0.08
(0.013–0.15) 0.01 0.20

(0.04–1.06) 0.01

Model 2 0.01
(−0.001–0.02) 0.09 0.02

(0.0001–0.001) 0.04 0.01
(0.004–0.02) 0.04 0.20

(-0.03–1.11) 0.07

Model 3 0.01
(0.001–0.02) 0.03 −0.0003

(−0.002–0.001) 0.67 0.01
(0.001–0.02) 0.04 -0.03

(-0.32–0.20) 0.68

Model 1: adjusted for age and sex; Model 2: Model 1 + awakening time, education level, physical activity, alcohol
intake, smoking and depressed mood; Model 3: Model 2 + Body-Mass-Index (BMI).

In multivariable linear regression analyses, there was no significant interaction be-
tween LNSC and IL-6 on the association with HbA1c levels (age and sex-adjusted model:
β = −0.01, SE = 0.04, p = 0.85; fully adjusted model: β = 0.0001, SE = 0.001, p = 0.99). As
can be seen in Appendix A.3 Table A3, the pathway comprising the indirect effect found
a significant association between elevated LNSC and elevated HbA1c levels (model 2:
β = 0.02, 95% CI = 0.0001–0.001, p = 0.04). However, a significant proportion mediated
effect for LNSC was not found (LNSC: β= 0.20, 95% CI= −0.03–1.11, p = 0.07). Further ad-
justing for BMI reduced the strength of mediating effect of IL-6 on the association between
DCS or LNSC and HBA1c levels. To test for the potential reverse causality, we further
tested whether LNSC mediates the association between IL-6 and HbA1c. There was no
signification mediating effect of LNSC on the association between IL-6 and HbA1c (p for
indirect effect = 0.70).
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