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Abstract
The increase in the usage of silica nanoparticles (SiNPs) in the industrial and medical fields has raised concerns about their 
possible adverse effects on human health. The present study aimed to investigate the potential adverse effects of SiNPs at 
daily doses of 25 and 100 mg/kg body weight intraperitoneally (i.p.) for 28 consecutive days on markers of liver damage in 
adult male rats. Results revealed that SiNPs induced a marked increase in serum markers of liver damage, including lactate 
dehydrogenase (LDH), alanine aminotransferase (ALAT), and aspartate aminotransferase (ASAT). SiNPs also induced an 
elevation of reactive oxygen species (ROS) production in liver, along with an increase in oxidative stress markers (NO, MDA, 
PCO, and  H2O2), and a decrease in antioxidant enzyme activities (CAT, SOD, and GPx). Quantitative real-time PCR showed 
that SiNPs also induced upregulation of pro-apoptotic gene expression (including Bax, p53, Caspase-9/3) and downregula-
tion of anti-apoptotic factors Bcl-2. Moreover, histopathological analysis revealed that SiNPs induced hepatocyte alterations, 
which was accompanied by sinusoidal dilatation, Kupffer cell hyperplasia, and the presence of inflammatory cells in the liver. 
Taken together, these data showed that SiNPs trigger hepatic damage through ROS-activated caspase signaling pathway, 
which plays a fundamental role in SiNP-induced apoptosis in the liver.
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Introduction

Silica nanoparticles (SiNPs) have been widely used in bio-
medicine for drug delivery, imaging, cell tracking, and pho-
tothermal therapy due to their unique characteristics, includ-
ing large surface area, high structural stability, easy surface 
functionalization, low production costs, excellent biocom-
patibility, and protracted circulation properties [12, 32]. 
Given the rapid development of nanotechnology and the use 
of silica particles in the nanoscale, there have been concerns 
about their potential toxicity. Previous studies showed that 
SiNPs administered to rodents distributed in various periph-
eral organs, including the liver, spleen, lungs, and kidneys 
[40, 42] and could perturb various physiological systems, 
such as cardiovascular, nervous, reproductive, and immune 
systems [45, 61]. In particular, a recent study by Balli et al. 
[8] showed that silica can cause toxic effects in the brain, 
liver, and kidneys of rats after exposure to SiNPs of different 
sizes (6, 20, and 50 nm). Additionally, in vivo experiments 
have shown that intravenous exposure to SiNPs caused his-
topathological alterations and functional impairments in the 
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liver [11]. However, the underlying molecular mechanism 
leading to such toxicological effects induced by SiNPs expo-
sure is poorly elucidated [60].

During the interaction of cells, SiNP was shown to cause 
membrane destabilization, which leads to protein oxidation, 
enzyme inactivation, DNA damage, and finally cell death 
[53]. In recent years, a large number of in vitro investigations 
also demonstrated that SiNPs can induce oxidative stress in 
different cell lines [25, 49]. Elevated oxidative stress can col-
lapse the mitochondrial membrane potential (Δψm), induce 
cytochrome c release from mitochondria to cytoplasm, acti-
vating mitochondria-dependent apoptotic signaling [26, 31]. 
Several genes are known to control the apoptotic pathway 
and act as death switches. The p53 gene is known as the 
guardian of the genome and induces cell cycle arrest or 
apoptosis in response to DNA damage [20, 54]. The Bcl-2 
and Bax are two distinct members of a gene family that play 
a crucial role in apoptosis [7]. These proteins can both act as 
anti-apoptotic and pro-apoptotic regulators. An increase in 
the ratio of Bax/Bcl-2 is indicative of cell death switch, lead-
ing to apoptosis [18]. Furthermore, apoptotic stimuli leading 
to destabilization of the mitochondrial integrity precedes 
activation of caspases, which play a central role in the execu-
tion of apoptosis [44]. To date, reports on hepatotoxicity of 
SiNPs mainly focus on the morphometric alterations, hema-
tological alterations, inflammation, and fibrosis in the liver 
[5, 36]. However, the manner in which liver cells respond to 
SiNPs is yet to be elucidated in in vivo studies.

Therefore, the current study aimed to investigate the 
hepatic histopathology and oxidative stress induced by 
subacute exposure to SiNPs in rats and to elucidate the rela-
tionship between oxidative damage and intrinsic apoptotic 
pathways.

Materials and Methods

Chemicals

Spherical and porous silica powder (SiNPs) particles were 
prepared from Sigma Chemicals Aldrich (Deisenhofen, 
Germany). XRD results showed that SiNPs are in amor-
phous form with a primary size of 15 nm. Purification of 
SiNPs was determined as 99.5% with a surface area of 640 
 m2/g. All chemical products used for biochemical assays 
were obtained from Sigma Chemicals Aldrich (Deisenhofen, 
Germany).

Preparation of Silica Nanoparticles

SiNPs were suspended in deionized water at 37 °C. Nano-
particles were dispersed by ultrasonication (Sonorex RK 
52 H, Bandelin, Germany) for 15 min before being diluted 

immediately before use. Nanoparticle solution was prepared 
so that the necessary dose could be administered intraperi-
toneally (i.p.).

Experimental Animals

Adult male Wistar rats aged between 7 and 8 weeks old and 
weighing about 220 ± 20 g were obtained from the Central 
Pharmacy of Tunis (SIPHAT, Tunisia). The animals were 
put in plastic cages located in a well-ventilated vivarium 
and with a 12-h light: dark cycle; they also had free access 
to food and water throughout the experiment [21]. After a 
period of acclimatization, animals were randomly divided 
into three groups of ten rats each (n = 10): group 1 serving as 
controls received an injection of sterile water by intraperito-
neal way; group 2 was treated with a low dose of SiNPs of 
25 mg /kg bw; group 3 was treated with a high dose of SiNPs 
of 100 mg /kg bw. Doses used in this study represent (1/200 
DL50 and 1/50 DL50, respectively) of SiNPs [51]. SiNPs 
were injected once daily for 28 consecutive days. All animal 
procedures were approved by the local Ethics Committee 
of the Faculty of Sfax and performed in strict accordance 
with Ethical principles and guidelines for experiments on 
animals.

Biochemical Analysis

At the end of the study, control and treated animals were 
euthanized by cervical decapitation to avoid stress condi-
tions. Blood was collected and serum was separated by cen-
trifugation. The serum was kept at − 80 °C until analysis for 
the assessment of hepatic biomarkers (ALAT, ASAT, and 
LDH) using reagent kits from Biomaghreb (Ariana, Tunis, 
Tunisia). Livers were excised, washed with ice-cold physi-
ological saline, and weighed. Portions were taken for histo-
pathological studies and the remaining parts of livers were 
homogenized in 0.1 M phosphate buffer (pH = 7.4). The 
supernatants were separated, aliquoted, and stored at − 80 °C 
until analysis.

Determination of Enzymatic and Non‑enzymatic 
Antioxidant Activities in the Liver

Catalase (CAT) activity was assayed by the decomposition 
of hydrogen peroxide  (H2O2) according to the method of 
Aebi [2]. A decrease in absorbance due to  H2O2 degradation 
was monitored at 240 nm for 1 min and the enzyme activ-
ity was expressed as μmol  H2O2 consumed/min/mg protein.

Total superoxide dismutase activity (SOD) was evalu-
ated by measuring the inhibition of pyrogallol activity as 
described by Marklund and Marklund [37]. One unit (U) 
corresponded to the enzyme activity required to inhibit the 
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half of pyrogallol oxidation. SOD activity was expressed as 
U/mg protein.

Glutathione peroxidase activity (GPx) was measured 
according to Flohe and Gunzler [22]. The enzyme activity 
was expressed as nmol of GSH oxidized/min/mg protein.

Reduced glutathione in the liver was determined by the 
method of Ellman [17] based on the development of a yel-
low color when 5,5-dithiobis-2-nitrobenzoic acid (DTNB) 
was added to compounds containing sulfhydryl groups. The 
absorbance was measured at 412 nm after 10 min using a 
microplate reader. Total GSH content was expressed as 
nmol/mg protein.

Determination of Oxidative Stress Markers in the Liver

Lipid peroxidation in the hippocampus tissue was estimated 
colorimetrically by measuring thiobarbituric acid reactive 
substances (TBARS), which were expressed in terms of 
malondialdehyde contents according to Draper and Hadley 
[14] method. Briefly, 100 μL of trichloroacetic acid (5%) 
was added to 100 μL of hippocampus supernatants and cen-
trifuged at 4000 × g for 10 min. One hundred microliters 
of the supernatants were transferred into Pyrex tubes and 
incubated with 200 μL of thiobarbituric acid reagent (TBA, 
0.67%) in a water bath at 90 °C for 15 min. The TBARS 
were determined using a microplate reader at 532 nm. MDA 
values were calculated using 1,1,3,3-tetraethoxypropane as 
the standard and expressed as nmoles of MDA/mg protein.

Protein carbonyl (PCO) contents were detected by the 
reaction with 2,4-dinitrophenylhydrazine (DNPH) as 
reported by Levine et al. (1990). Briefly, the DNPH reac-
tion proteins were precipitated with an equal volume of 20% 
(w/v) trichloroacetic acid and washed three times with 2 mL 
of an ethanol/ethyl acetate mixture (1:1). Finally, the pre-
cipitates were dissolved in a 6 M guanidine HCl solution. 
The absorbance was measured at 370 nm using the molar 
extinction coefficient of DNPH, e = 22,000  M−1  cm−1 and 
results were expressed as nmol/mg protein.

Hydroperoxide assay  (H2O2) was determined by the 
method of Gay et al. [23]. Briefly, 50 μL of the sample 
was added to 950 μL of FOX 1 reagent (25 mM sulfuric 
acid, 250 μM ferrous ammonium sulfate, 100 μM xylenol 
orange, and 0.1 M sorbitol) and incubated for 30 min at 
room temperature. This assay is based on the ability of  H2O2 
to oxidize the ferrous  Fe2+ ions to the ferric  Fe3+ ions, which 
react with xylenol orange to form a colored complex. The 
absorbance of the samples was read at 570 nm and the con-
centration of  H2O2 was determined using standard peroxide 
solutions in the same microtiter plate.

Nitric oxide production was determined based on the 
Griess reaction [24]. Briefly, 50 μL of deproteinized sample 
was incubated with 50 μL of the Griess reagent at room tem-
perature for 10 min. Absorbance was measured at 550 nm 

using a microplate reader. Nitrite concentration was deter-
mined from a standard nitrite curve generated using  NaNO2. 
Results were expressed as μmol/mg protein.

Measurement of ROS Production in the Liver

Levels of oxygen reactive species in the liver of rats were 
measured according to the method of [15]. The supernatant 
was incubated with 10 μL of 5 mM 2′,7′-dichlorofluorescein 
diacetate (DCHF-DA). Levels of oxygen reactive species 
levels were determined by a spectrofluorimetric method, 
using DCHF-DA assay. The oxidation of DCHF-DA to fluo-
rescent dichlorofluorescein was measured for the detection 
of intracellular oxygen reactive species. The fluorescence 
intensity was measured using a fluorescence plate reader 
with an excitation wavelength of 485 nm and emission detec-
tion at 530 nm.

Protein Quantification

The protein content of the tissues was measured by the 
method of Bradford [10],

RNA Isolation and Real‑Time RT‑PCR

Total RNA was extracted using the iScriptTM RT-qPCR 
sample preparation reagent and according to the manu-
facturer’s instructions (170–8898, Bio-Rad)). RNA con-
centrations and purity were determined by measuring the 
A260/280 absorbance ratios using NanoPhotometer™ 
(Implen, GmBH). The synthesized cDNA was the template 
for real-time qPCR amplification carried out by the CFX96 
real-time PCR detection system using iQ SYBR supermix 
(Bio-Rad Laboratories GmbH, Munich, Germany) [6]. Lists 
of primer sequences of Bax, Bcl-2, P53, Caspase-3, and Cas-
pase-9 are listed in Table 1. The  2−ΔΔCt method was used to 
analyze the relative changes in gene expression [33]. Data 
were normalized to the housekeeping gene β-actin.

Semiquantitative Histopathological Evaluation of Hepatic 
Tissue

Liver tissues from the control and treated rats were fixed 
in 10% buffered formalin and were processed for paraffin 
sectioning. Sections of 5 μm thickness were stained with 
hematoxylin and eosin (H&E) and examined with a Leica® 
microscope fitted with a Sony® digital camera to capture 
images for histological studies. A semiquantitative evalua-
tion was performed in examined fields (n = 10) according to 
the percentage, degree, and extent of tissue damage and was 
scored according to Michael [39] as follows: ( −), normal 
appearance (absence of pathological lesion 0%),( +), mild 
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(< 25% of sections); (+ +), moderate (25–50% of sections); 
and (+ + +), severe (51–75% of sections).

Statistical Analysis

Statistical analyses were performed using GraphPad Prism 
8.0 for Windows (GraphPad Software, San Diego, CA). 
Data are presented as mean ± SEM. Significant differences 
between treatment effects were determined by one-way 
ANOVA, followed by Tukey’s post hoc test for multiple 
comparisons, while correlation analyses were performed by 
Pearson correlation test. The level of significance was set at 
*p < 0.05, **p < 0.01, ***p < 0.001 between treated groups 
and controls.

Results

Effect of Silica Nanoparticles on Hepatic Toxicity 
Serum Markers

Table 2 shows biochemical markers of liver injury in rats 
after daily subacute exposure to SiNPs at 25 and 100 mg/
kg bw. The levels of hepatic enzyme such as alanine ami-
notransferase (ALAT), aspartate aminotransferase (ASAT), 
and lactate dehydrogenase (LDH) were significantly 
(p < 0.01) increased in both SiNPs-treated groups compared 

to controls. The effect was more accentuated at the higher 
dose of SiNPs (100 mg/kg bw).

Effect of Silica Nanoparticles on Generation of ROS 
and NO in the Liver

ROS and NO levels were determined to evaluate the effect 
of SiNPs on the redox balance in the liver of rats. ROS lev-
els were significantly increased in the liver of rats treated 
with 25 and 100 mg/kg bw of SiNPs compared to controls 
(p < 0.01 and p < 0.001, respectively) (Fig. 1A). NO was 
also increased in the liver of rats following administration 
of SiNPs at the dose 100 mg/kg bw compared to controls 
(p < 0.001) (Fig. 1B).

Effect of silica nanoparticles exposure on oxidative 
stress markers in the liver

Figure 2 shows that SiNP exposure significantly increased 
MDA, PCO, and  H2O2 levels in a dose-dependent manner 
when compared with the control group (p < 0.001 for MDA 
and  H2O2 between the dose 100 mg/kg bw and controls; 
p < 0.01 for PCO between the dose 100 mg/kw and controls 
as well as for PCO and  H2O2 between the dose 25 mg/kg 
bw and controls).

Effect of Silica Nanoparticles on Hepatic Antioxidant 
Defense System

Results of enzymatic and non-enzymatic antioxidant param-
eters are presented in Fig. 3. Rats receiving 25 mg/kg bw 
of SiNPs showed no significant (p > 0.05) changes in GSH 
contents and GPx activity when compared with the control 
group (Fig. 3A, B). On the other hand, exposure to SiNPs at 
a dose of 100 mg/kg decreased significantly GSH (p < 0.05) 
and GPx activity (p < 0.001) in comparison with the control 
group. The antioxidant enzyme activities of CAT and SOD 
were significantly (p < 0.001) declined in the liver of SiNP-
treated rats at both treatment doses (25 and 100 mg/kg bw) 
when compared to the control group (Fig. 3C, D).

Table 1  Sequence of all primer 
used in RT-qPCR experiment

Gene name Primer sequences
Forward Reverse

β-actin 5′-GAG ATT ACT GCC CT GGC TCC TA-3′ 5′-GAC TCA TCG TAC TC CTG CTT GCTG-3′
Bax 5′-AAA CTG GTG CTC AAG GCC -3′ 5′-GGG TCC CGA AGT AGG AAA GG-3′
Bcl-2 5′-GCT ACG AGT GGG ATA CTG G-3′ 5′-GTG TGC AGA TGC CGG TTC A-3′
P53 5′-CCA GGG TGG TTG GGT GAG ACT-3′ 5′-TGG GAG GTC AGC AGG GTA GAT-3′
Caspase-3 5′-GGT ATT GAG ACA GAC AGT GG-3′ 5′-CAT GGG ATC TGT TTC TTT GC-3′
Caspase-9 5′-AGA TGC TGT CCC ATA CCA GG-3′ 5′-CAG GAA CCG CTC TTC TTG TC-3′

Table 2  Effect of subchronic daily administration of SiNPs at doses 
of 25 and 100 mg/kg b.w/day for 28 days on hepatic marker levels in 
rats

a Values are expressed as mean ± SEM, n = 10rats/group. One-
way ANOVA-Student followed by Tukey’s post hoc test for com-
parison between SiNP groups with controls; *p < 0.05, **p < 0.01, 
***p < 0.001

Parameters Groups

Control 25 mg SiNPs/kg 100 mg SiNPs/kg

LDH (U/I) 167 ± 15.5 227 ± 22.7* 255 ± 66.7***
ALAT (U/I) 29.4 ± 3.08 38.2 ± 6.44* 45.9 ± 5.32**
ASAT (U/I) 106 ± 39.1 124 ± 15.1* 132 ± 7.14**
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Effect of Silica nanoparticles on Apoptosis‑Related 
Gene Expression Levels in Liver

The mRNA level of some apoptotic genes (p53, Bax, Bcl-2, 
Casp3, and Casp9) were analyzed in the liver of rats treated 
with SiNPs (25 and 100 mg/kg bw for 28 days). Results of 
quantitative real-time PCR (qRT-PCR) showed that SiNP 
exposure upregulated the expression of pro-apoptotic genes 
(p53 and Bax) and downregulated the anti-apoptotic gene 
Bcl-2 (Fig. 4A, B, and C, respectively). Furthermore, Bcl-2/

Bax ratio was significantly decreased in SiNP-treated groups 
compared to controls (Fig. 4D). The expression of caspase 
genes (Casp-3 and Casp-9) was significantly increased in the 
liver of SiNP-treated groups compared to controls (Fig. 4E 
and F).

The correlational analyses showed that hepatic ROS 
levels were positively correlated with mRNA levels of Bax 
(r = 0.957; p < 0.001), p53 (r = 0.661; p > 0.05), caspase-3 
(r = 0.749; p < 0.05), and caspase-9 (r = 0.531; p < 0.05) and 
inversely correlated with the mRNA levels of Bcl-2 gene 

Fig. 1  Intracellular ROS (A) 
and NO (B) generation in liver 
tissues of different experi-
mental rat groups treated i.p. 
with SiNPs at 25 and 100 mg/
kg bw/day for 28 days. Values 
are expressed as mean ± SEM, 
n = 10 rats/group. ** = p < 0.01 
and *** = p < 0.001 when com-
paring SiNP-treated rats with 
controls

Fig. 2  Effect of i.p. adminis-
tration of SiNPs at doses of 
25 and 100 mg/kg bw/day for 
28 days on lipid peroxidation 
(MDA) (A), protein carbonyla-
tion (PCO) (B), and hydroper-
oxide generation  (H2O2) (C) 
in the liver of rats. Values are 
expressed as mean ± SEM, 
n = 10 rats/group. ** = p < 0.01 
and *** = p < 0.001 when com-
paring SiNP-treated rats with 
controls
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Fig. 3  Effect of i.p. administra-
tion of SiNPs at doses of 25 and 
100 mg/kg bw/day for 28 days 
on the enzymatic and non-enzy-
matic antioxidant activities in 
the liver of rats: A Glutathione 
(GSH) activity (µmol/mg pro-
tein), B glutathione peroxidase 
(GPx) activity (μmol GSH 
consumed/min/mg of proteins), 
C catalase (CAT) activity 
(μmol/min/mg of protein), 
and D superoxide dismutase 
(SOD) activity (U/mg of pro-
tein). Values are expressed as 
mean ± SEM, n = 10 rats/group. 
* = p < 0.05, ** = p < 0.01, and 
*** = p < 0.001 when compar-
ing SiNP-treated rats with 
controls

Fig. 4  Effect of i.p. administration of SiNPs at doses of 25 and 
100 mg/kg bw/day for 28 days on p53 (A), Bax (B), Bcl-2 (C), Bcl-2/
Bax ratio (D), Caspase-3 (E), and Caspase-9 (F) gene expression. 

Values are expressed as mean ± SEM, n = 6 rats/group. ** = p < 0.01 
and *** = p < 0.001 when comparing SiNP-treated rats with controls
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(r =  − 0.428, p < 0.05). These results suggest that SiNPs 
altered the regulation of apoptotic gene expression via ROS 
generation.

Histological Alterations in the liver Rats after Silica 
Nanoparticle Exposure

The hepatic effects of SiNPs were confirmed by the histo-
pathological findings (Fig. 5; Table 3). In the control group, 
no histopathological changes were observed, with regular 
arrangement along the sinusoids with spherically localized 
nuclei (Fig. 5a). On the other hand, the group exposed to 
low-dose SiNPs (25 mg/kg bw) showed abnormal architec-
ture along with dilated sinusoids, Kupffer cell hyperplasia, 
and infiltration of inflammatory cells (Fig. 5b–d). In the 
group receiving 100 mg/kg bw SiNPs, there was necrosis 
(arrow) (e), Kupffer cell hyperplasia (f), sinusoidal dilatation 

(arrow) (g), and infiltration of inflammatory cells with 
aggregation of inflammatory cells in the hepatic portal space 
(arrow) (Fig. 5e–h).

Fig. 5  Histopathology of 
hematoxylin and eosin (H and 
E, × 400)–stained liver of rats: 
(a) from the control group 
showing normal hepatic lobule, 
central veins, and portal area; 
b–d receiving 25 mg/kg SiNPs 
and showing Kupffer cell hyper-
plasia (b), sinusoidal dilatation 
and widening of the capillaries 
lining of the hepatic strands 
(c), and infiltration of lobular 
inflammatory cells (mainly 
lymphocytes) in the lobular 
hepatic strands (arrow) (d); e–h 
receiving 100 mg/kg SiNPs and 
exhibiting necrosis (arrow) (e), 
Kupffer cell hyperplasia (f), 
sinusoidal dilatation (arrow) 
(g), and infiltration of inflam-
matory cells with aggregation 
of inflammatory cells in the 
hepatic portal space (arrow) (h)

Table 3  Histopathological alterations in rat liver induced by SiNPs 
after 28 days of daily exposure

( −) No change, ( +) mild change, (+ +) moderate change, and (+ + +) 
severe change

  Controls SiNPs treated rats 
(mg/kg bw/day)

25 100

Kupffer cells hyperplasia -  +  +  +  +  + 
Sinusoidal dilatation -  +  +  +  +  + 
Necrotic hepatocytes - -  +  +  + 
Vacuolar degeneration - -  +  + 
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Discussion

Inorganic nanoparticles are important environmental pol-
lutants with documented adverse effects on multiple sys-
tems, although the specific mechanisms leading to such 
effects are not fully understood. Inorganic nanoparticles 
are known to cross epithelial barriers and distribute to the 
different organs due to their small size [29]. In particular, 
ingested NPs can cross the small intestine walls and reach 
the blood, brain, lung, heart, kidney, spleen, liver, intes-
tine, and stomach [59] [13, 47].

In the present study, subacute exposure to SiNPs caused 
a significant increase in serum ASAT, ALAT, and LDH 
activities indicating hepatotoxic effects of SiNPs. Eleva-
tion of serum aminotransferases activities is important 
which are markers in the diagnosis of hepatocellular dam-
age and liver diseases [38]. These enzymes normally exist 
in the hepatocytes, and their presence in blood confirms 
the deterioration of the cell membrane integrity [46]. In 
the current work, biochemical results were also corre-
lated with histopathological observation of liver sections, 
which showed that SiNPs induced sinusoidal dilatation 
and hyperplasia of Kupffer cells with infiltration of inflam-
matory cells. According to previous studies, infiltration 
of inflammatory cells induced by SiNPs (30 mg/kg,70 nm 
may suggest that these particles interact with interstitial 
hepatic tissues leading to various immune responses [3, 
43]. Furthermore, Kupffer cell hyperplasia observed in 
SiNP-treated groups might be considered a defense mecha-
nism against hepatic oxidative stress [27, 59].

The increase in MDA and PCO levels observed in the 
current study was further indicative of oxidative damage 
in the tissue caused by the SiNPs, leading to the release of 
lipid peroxidation and protein oxidation products, which 
can impair cell function [41, 50]. This generation of ROS 
and oxidative stress response is in fact an important mech-
anism observed in response to exposure to a variety of 
nanomaterials [1, 57]. These data are in agreement with 
previous studies that confirmed the involvement of oxida-
tive stress and lipid peroxidation in SiNPs-induced hepatic 
and renal toxicity [36, 58].

Accordingly, the observed increase in nitric oxide (NO) 
levels in the liver could be attributed to the activation of 
NO synthase enzyme by SiNPs. The most important fea-
ture of NO is its ability to react with superoxide anion 

(O2) to generate peroxynitrite (ONOO −), a potent oxi-
dant that causes oxidative DNA damage and cell injury by 
oxidizing and nitrating cellular macromolecules [30, 35].

Furthermore, the decrease in GSH levels observed in 
SiNP-treated groups may have occurred as a result of its 
consumption in scavenging the increased ROS and NO 
species. Under normal conditions, the overproduction 
of ROS is neutralized by the antioxidant defense mecha-
nisms, which induces both enzymatic and non-enzymatic 
antioxidants. Reduced glutathione, a major endogenous 
antioxidant, plays an important role in protecting cells 
against oxidative stress by direct scavenging of free radi-
cals or serving as a substrate for some antioxidant enzymes 
(like thioredoxin, glutathione peroxidase, and glutathione-
S-transferases) by accepting or donating hydrogen atoms 
[9]. Moreover, our study showed a decline in antioxidant 
enzyme activities (CAT, SOD, GPx) in SiNP-treated rats. 
These findings confirmed that SiNP-induced oxidative 
stress is not only attributed to excessive production of 
toxic oxygen metabolites but also results from the dete-
rioration of antioxidant defense mechanisms.

Finally, our findings clearly revealed that exposure to 
SiNPs triggers apoptosis in liver tissues by activating the 
Bax/Bcl2 and caspase-3 pathway. Hepatocyte apoptosis 
has been documented as a major mechanism caused by 
NP-induced oxidative stress [19]. It is well known that 
apoptosis is a regulated form of cellular death, with sev-
eral checkpoints and mediators, activated through extrin-
sic and intrinsic pathways [55]. Apoptosis signaling path-
ways involve Bax as a proapoptotic protein and Bcl-2 as 
an anti-apoptotic protein. Mitochondria rapidly collapse 
their membrane potential (ΔΨm) and generate ROS, con-
tributing to the release of cytochrome c, which activates 
the caspase signaling to initiate cell death. In this study, 
we demonstrated that SiNPs downregulated Bcl-2 expres-
sion and upregulated Bax, p53, and both the caspase-3/9 
expressions (apoptotic initiator and executioners). These 
results are in accordance with previous studies, which 
revealed that nanoparticles activate apoptotic signaling 
[52].

In conclusion, the results of the present study suggest that 
subacute exposure of male rats to SiNP-induced hepatotoxic-
ity as evidenced by an increase in oxidative stress markers, 
as well as induction of apoptotic (Bax/Bcl2/Casp3/9) gene 
expressions, associated with histological alterations (Fig. 6).
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