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Abstract 

Billions of functionally distinct blood cells emerge from a pool of hematopoietic stem cells  in our 

bodies every day. This progressive differentiation process is hierarchically structured and 

remarkably robust. We provide an introductory review to mathematical approaches addressing the 

functional aspects of how lineage choice is potentially implemented on a molecular level. Emerging 

from studies on the mutual repression of key transcription factors we illustrate how those simple 

concepts have been challenged in recent years and subsequently extended. Especially the 

analysis of omics data on the single cell level with computational tools provide descriptive insights 

on a yet unknown level, while their embedding into a consistent mechanistic and mathematical 

framework is still incomplete. 

The production of blood cells as a dynamic equilibrium 

The hematopoietic system is a primary example to illustrate how a population of resident tissue 

stem cells continuously contributes to the replenishment of a spectrum of mature cell types. While 

the dynamics and the particular contribution to the different blood lineages are tightly regulated 

processes, the overall theme, namely the differentiation of a pool of “undecided”, multipotent stem 

cells towards committed cell types, is remarkably robust. The accessibility, but also the clinical 

relevance in the context of stem cell  transplantation, make hematopoiesis probably the best-

studied example of cellular decision making in mammals. 

On a more abstract level, the differentiation of hematopoietic stem cells into mature blood cells is 

the realization of a general principle that also governs the development of multicellular organisms, 

consisting of cells with distinct phenotypes and functions. During development, these different cell 

types arise from a common, totipotent cell (usually a zygote) in a sequence of decision steps. It is 

well established that a wealth of spatial, physical and temporal factors influence this process while 

the repertoire of developmental options is encoded in the genomic sequence. However, it is still 

one of the fundamental questions in biology, how this genotypic basis translates into a robust 

phenotypic decision process with adequate abundance, timing, and spatial orientation. 

In the 1950s, Conrad Waddington [1] suggested a visualization of this decision making process 

by comparing it to a marble rolling down a slope with emerging valleys and ridges and thus 

projecting the myriad of molecular, morphological, and functional features onto a three 

dimensional landscape. With the rise of molecular biology, this picture provided an interpretation 

of the valleys as cell types with distinct biochemical configurations, making Waddington’s 

landscape a landmark visualization for stem cell differentiation. Already in the 1960s and 70s, 

Stuart Kauffman developed the formal concept that cell lineages can be viewed as attractors in 

gene regulatory networks and that cell differentiation represents a transition between those 

dynamic equilibria [2]. However, understanding the nature of the branching point that initially 

separates two or more distinct lineages is still an ongoing struggle. 
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Stem cell decision making and the concept of bistability 

Mathematical modelling has long accompanied research on molecular decision making [3–6]. 

Corresponding models contributed particularly to the understanding of switch-like decisions in 

bacteria, as they commonly occur in response to changing environmental conditions [7]. In seminal 

work, Timothy Gardner and colleagues took a reductionists approach to demonstrate how a 

synthetic genetic toggle switch built on the mutual interaction of two repressible operons 

establishes bistability and exemplifies the minimal requirements of a binary molecular decision 

making process, in which the choice of one option intrinsically represses the other [8]. This simple 

but elegant example combined the mathematical concept with its experimental validation in a 

bacterial cell line. 

Around the same time, efforts intensified to experimentally investigate the role of transcription 

factors in initiating and maintaining decision processes during hematopoietic differentiation [9,10]. 

Several studies revealed an antagonism between the transcription factor PU.1, which acts as a 

key regulator in myeloid and lymphoid cells and is constantly upregulated in granulocytic-

monocytic progenitors, and the transcription factor Gata-1, which is required for the differentiation 

and maturation of megakaryocytic-erythroid cells (reviewed in [10,11]). The further discovery of 

direct, repressive interactions between the two factors PU.1 and Gata-1 as well as the 

identification of an uncommitted, up-stream state, in which lineage specific transcription factors 

are lowly expressed, led to a series of conceptual works to explore whether bistable switches can 

also serve as blueprint for decision making in hematopoiesis [12]. Formalizing this concept in 

terms of ordinary differential equations (ODE), several models [11,13,14] predicted that the 

hematopoietic differentiation landscape qualitatively changes from a co-expression state of PU.1 

and Gata-1 (usually referred to as priming) towards a bistable region in which the system 

converges to either of the two dominating states (indicating commitment, compare Figure 1). Such 

qualitative changes in the available system states (referred to as bifurcations) appear as a 

plausible conceptualization to account for progressive differentiation processes in tissue formation 

and maintenance, and can also be facilitated by other molecular network motifs such as feed 

forward loops or positive autoregulation. The concept of direct interactions between potentially 

counteracting transcription factors has also been applied to related phenomena in hematology 

[15,16], as well as to other tissues [17,18]. 

Extensions to the toggle switch model 

The initial ODE-based models centered around the emergence of steady states through 

bifurcations and symmetry breaking, while sacrificing many of the molecular details. For the 

example of the PU.1-Gata-1 toggle switch, increasingly precise measurements revealed additional 

properties that had not been captured by the simple, conceptual models and fostered more 

sophisticated approaches. As first reported in [19], only tens of PU.1 mRNAs are present in 

progenitor blood cells, prompting the development of stochastic toggle switch models [20], some 

of them also explicitly considering transcription and translation as two processes with distinct time 

scales [21,22]. Bayesian networks that included epigenetic and gene expression data successfully 

accounted for epigenetic changes during lineage specification [23]. Beyond the regulatory motif of 

only two transcription factors, Boolean networks can be used to represent major interaction axes 

and describe on/off gene expression states [24–26]including further upstream and downstream 

regulators. Modeling challenges remain, in particular the inherent non-stationarity of the system 

due to cell cycle that induces a continuous growth of cell volume and the number of cellular 
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constituents, but also abrupt changes e.g. in the number of gene copies during DNA replication or 

during cell division. 

Single cell omics profiling of lineage decisions in blood 

The single cell omics revolution that we currently witness provides an unprecedentedly wide and 

detailed view on cellular differentiation (reviewed in [27]). After pioneer RNA sequencing of 

thousands of genes in thousands of single blood cells in mouse embryos [25] and adult humans 

[28], it is now recognized that differentiation shows many features of a continuous process instead 

of a sequential transition through clearly separable states [29,30]. To arrive at this conclusion and 

harness the large, high-dimensional single cell data, we rely on computational methods. A variety 

of tools has been established to allow trajectory inference and pseudotime estimation in high-

dimensional state spaces (compared in [31]), recently also exploiting splicing gradients in single 

cells to predict future gene expression through RNA velocity [32,33]. Nowadays, multiple tools are 

even bundled in convenient packages [34,35]. Single cell RNA sequencing has recently also been 

used to link molecular profiles to stem cell functionality in transplantation assays [36] and to identify 

hierarchical mixed-lineage states preceding differentiation [37]. The combination of single-cell 

transcriptomics and lineage tracing methods can further reveal to which extent differentiation 

preferences are clonaly fixed or subject to external influences [38]. Beyond gene expression, 

chromatin accessibility via single cell ATAC sequencing in defined hematopoietic populations 

revealed heterogeneities in human progenitor populations and allowed analyzing regulation and 

expression of transcription factors [39], while CITE-seq allows to measure both protein abundance 

and gene expression [40]. Notably, recently launched commercial kits to simultaneously profile 

gene expression and chromatin state or surface markers in the same cell will allow for increasingly 

precise analyses of cell identity. The combination of these two data types has also been used for 

the assembly of regulatory networks from gene-gene correlations [41–43] and points towards a 

more comprehensive approach beyond mRNA abundance that also integrates information of the 

epigenetic level. 

Tracking hematopoietic decision making with real time imaging 

In contrast to the snapshot data obtained from the simultaneous analysis of thousands of cells, 

quantitative live cell imaging techniques with fluorescent reporters allow to continuously track the 

abundance of a few essential regulators over time [44]. While RNA sequencing is powerful to 

identify differential expression patterns along a pseudotime trajectory, image based tracking can 

measure gene expression in real time. Here however, the analysis is limited by the number of 

labelled factors and separable fluorescence channels. The resulting data catches the dynamics of 

potentially interacting proteins within the same cell and provides essential information about 

timing, coexpression and inheritance of protein expression, but also about their variability between 

cells. While fluorescence labeling of critical transcription factors during hematopoietic 

differentiation yields great potential for dynamical assessment of the interaction network [45], few 

works took live cell imaging data to the point at which mechanistic mathematical models could be 

evaluated [46]. In a recent work, single-molecule RNA imaging of PU.1, Gata-1 and Gata-2 was 

combined with time-lapse microscopy [47]. Stochastic modeling suggests that differentiation is 

preceded by a reversible transition between different co-expression states that most likely results 

from the intrinsic stochasticity of gene expression. 

https://paperpile.com/c/Laxurr/2OSwz
https://paperpile.com/c/Laxurr/rAbrI
https://paperpile.com/c/Laxurr/WhqD7
https://paperpile.com/c/Laxurr/rhnIO+9pMVZ
https://paperpile.com/c/Laxurr/zd4Tw
https://paperpile.com/c/Laxurr/oyZU2+uxBVR
https://paperpile.com/c/Laxurr/b1Zsl+JHTT7
https://paperpile.com/c/Laxurr/m6RMv
https://paperpile.com/c/Laxurr/VowcS
https://paperpile.com/c/Laxurr/QUvZH
https://paperpile.com/c/Laxurr/Fep0d
https://paperpile.com/c/Laxurr/afw8Q
https://paperpile.com/c/Laxurr/NmQiy+3lLhM+UtYKF
https://paperpile.com/c/Laxurr/IXhy4
https://paperpile.com/c/Laxurr/v1DlF
https://paperpile.com/c/Laxurr/xTks7
https://paperpile.com/c/Laxurr/IQrJV


 

 

Glauche/Marr - Current Opinion in Systems Biology - Revision 4 

Linking single cell data with mechanistic models 

The notion of a continuous differentiation process, together with the appearance of intrinsic 

molecular heterogeneity make the identification and understanding of molecular principles 

governing hematopoietic decisions a fascinating and challenging endeavor. The conceptual notion 

of differentiation as a transition between dynamical attractors in larger gene regulatory networks 

has been conceptually discussed since the late 1960s [2,48]. The single cell omics revolution 

largely confirms this interpretation and describes differentiation as a continuous trajectory in a 

high-dimensional state space. While this topological embedding is increasingly accepted, we need 

to further identify the “driving forces” that direct cells along those trajectories and execute decision 

processes at the branching points.  

Several works aim to link the quasi-potential Waddington landscape with regulatory networks in 

more formal [49,50] or data-driven [51] manifestations, but up to now, mathematical models are 

rarely applied to the rapidly increasing volume of single cell data to foster a mechanistic 

understanding of the decision processes (Fig. 1). While population approaches can be fitted to the 

overall gene expression trajectory of a differentiation process [52], a stochastic transition model 

(like in [47]) captures the sequence of co-expression states preceding differentiation onset. In 

contrast to descriptive approaches, a general framework to evaluate mechanistic interaction 

models with single cell data faces a number of challenges: How can we identify the crucial 

regulators initiating and directing differentiation? How to infer the true differentiation time from 

snapshot data? And which model classes can sufficiently represent the expression and temporal 

heterogeneity observed in single cell data? Modern machine learning methods, such as informed 

neural networks [53], graph neural networks, or autoencoders [54] might help to reduce the 

number of genes and features to a minimum and merge different data modalities and prior 

knowledge.  

More generally, we may need to answer the question whether the low-dimensional representation 

of a differentiation process as proposed by Waddington and propagated by modern embeddings 

truly emerges from binary decision processes that are captured with the mathematics of bifurcation 

theory. There is no inherent reason why gene regulatory networks should favor the cross 

regulation of only two factors, especially if molecular redundancies can stabilize a decision process 

and make it more robust to variation. The theory of gene regulatory networks is a powerful 

theoretical approach to explain cellular plasticity and decision making, but it needs to be extended 

to include other data types and to deal with variability, cellular heterogeneity, and higher-

dimensional regulations. However, it remains to be shown how the phenotypic, but also molecular 

data obtained from advanced sequencing and imaging techniques can truly be embedded into 

such an extended mathematical framework describing mutual interactions of key transcription 

factors on the mechanistic and biochemical level, and whether our basic understanding of 

molecular regulations and interactions provides the right framework to account for the apparent 

heterogeneity and robustness of lineage specification processes. 
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Figure 1: While the PU.1-Gata-1 toggle switch model (left) has been successfully used to describe 

the concept of binary fate choice from a conceptual perspective, it evidently does not capture the 

full complexity of the early myeloid lineage decision. Single-cell gene expression analysis provides 

a better understanding of differentiation trajectories (often visualised as low-dimensional 

embeddings), while an explicit link between causative, mechanistic mathematical models and the 

high dimensional data is still an ongoing challenge.  
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* The PDE model in this study describes cell population flux along continuous transcriptomic 

trajectories that are obtained from single-cell RNA-sequencing data. This pseudodynamics 

framework accounts for confounding effects such as proliferation and cell death, and reconciles 

population dynamics with differentiation trajectories inferred from time-series single-cell data.  
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Waddington's landscape explicitly with fate determination into context 
(marked in red) and added 3 references. 
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