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Human activity has already changed the climate1. The 
world is now an average of ~1 °C above the pre-industrial  
era, although with substantial geographic heterogene-

ity; several high-population regions have warmed by >2 °C, while  
others have experienced relatively little change1. An immediate 
and direct impact of climate change is through human exposure  
to high outdoor temperatures, which is associated with morbidity 
and an increased risk of premature death (mortality)2–4. Although 
several studies have projected the impacts of heat exposure  
under different potential future climate scenarios5,6, there have  
been no systematic, large-scale studies quantifying the heat-related 
health burdens attributable to climate change that have already 
occurred.























Detection and attribution studies evaluate the 


contribution of 

different factors, including anthropogenic forcings, to observed 
changes in climate and weather7,8. These studies are often con-
ducted in the climate science disciplines and rarely take the addi-
tional step of estimating associated human health impacts9–11. Here, 
we take that step and quantify the contribution of human-induced 
warming to the heat-related mortality burden in 732 locations from 
43 countries over the period 1991–2018. We do so by applying 
state-of-the-art methods from climate change epidemiology to the 
largest database ever assembled on weather and health and the latest 

Q1 Q2 Q3 Q4

Q5 Q6 Q7

climate simulations carried out in support of attribution and detec-
tion studies. To our knowledge, this is the largest attribution study 
to date on the health impacts of climate change.

Attributing heat-related mortality to climate change
Our analysis proceeded in two steps. In the first step, we applied 
cutting-edge time-series regression techniques to observed tem-
perature and mortality data from all 732 locations (Table  1 and 
Supplementary Tables  1 and 2) to estimate location-specific 
exposure-response functions12–15. These functions characterize the 
complex relationship between daily mean temperature and mor-
tality from all causes (or non-external causes) by simultaneously 
accounting for the nonlinear and delayed dependencies typically 
found in this type of assessment2. The functions were estimated 
using an extension of the widely applied two-stage design that 
uses a mixed model approach to properly account for the hierar-
chical structure of the data (Methods)12–14. As described in detail 
in the Methods, a first-stage model estimates associations for each 
location, which are then pooled in a meta-analysis (the second 
stage). The observed temperature and mortality data were col-
lected through the Multi-Country Multi-City (MCC) Collaborative 
Research Network, the largest weather and health data consortium 
to date (https://mccstudy.lshtm.ac.uk). Supplementary Table  1 
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Table 1 | Summary of the observed temperature and mortality data for the 732 locations during the warm season

Region Country Locations (n) Data period Total deaths (n) Daily deaths (median 
[IQR])

Daily mean temperature 
(median [IQR])

Australia Australia 3 1991–2009 311,185 45.3 [40.0; 51.0] 21.8 [20.2; 23.9]

North America Canada 26 1991–2015 999,566 12.5 [10.1; 14.8] 17.8 [15.1; 20.2]

North America United States 210 1991–2006 5,978,402 14.4 [12.2; 16.9] 23.2 [20.9; 25.3]

Caribbean and Central 
America

Costa Rica 1 2000–2016 9,485 4.0 [3.0; 6.0] 23.3 [22.7; 24.0]

Caribbean and Central 
America

Guatemala 1 2009–2016 20,826 21.0 [18.0; 25.0] 20.5 [19.7; 21.2]

Caribbean and Central 
America

Mexico 10 1998–2014 921,711 43.8 [38.1; 50.2] 22.4 [20.9; 23.8]

Caribbean and Central 
America

Panama 1 2013–2016 3,895 8.0 [6.0; 10.0] 28.7 [27.9; 29.4]

South America Argentina 3 2005–2015 205,651 51.3 [46.1; 57.0] 23.8 [21.7; 26.0]

South America Brazil 18 1997–2011 1,091,290 33.9 [29.8; 38.6] 26.1 [25.2; 27.0]

South America Chile 4 2004–2014 98,028 27.5 [24.2; 31.2] 18.3 [16.6; 19.7]

South America Colombia 5 1998–2013 322,750 32.8 [28.4; 37.0] 23.9 [23.1; 24.6]

South America Ecuador 2 2014–2016 21,729 30.0 [26.0; 34.5] 21.7 [21.0; 22.3]

South America Paraguay 1 2004–2016 12,665 8.0 [6.0; 10.0] 27.2 [25.6; 28.9]

South America Peru 18 2008–2014 208,060 13.4 [11.0; 16.0] 19.4 [18.6; 20.2]

South America Uruguay 1 2012–2016 45,487 75.0 [68.0; 81.0] 24.3 [21.6; 26.3]

Northern Europe Estonia 5 1997–2015 46,094 3.8 [2.6; 5.2] 15.4 [13.1; 17.8]

Northern Europe Finland 1 1994–2014 48,810 19.0 [16.0; 22.0] 15.7 [13.2; 18.1]

Northern Europe Ireland 6 1991–2007 222,228 17.5 [15.0; 20.7] 14.3 [12.9; 15.7]

Northern Europe Norway 1 1991–2016 40,054 13.0 [10.0; 15.0] 13.6 [11.4; 15.7]

Northern Europe Sweden 3 1991–2016 215,611 22.3 [19.3; 25.7] 16.3 [14.1; 18.4]

Northern Europe United Kingdom 70 1991–2016 1,781,605 7.8 [6.2; 9.6] 15.8 [14.1; 17.5]

Western Europe France 18 2000–2014 512,911 15.3 [12.9; 17.8] 19.2 [17.1; 21.4]

Western Europe Germany 12 1993–2015 975,429 28.5 [24.8; 32.6] 17.2 [14.7; 20.0]

Western Europe Switzerland 8 1995–2013 75,022 3.9 [2.5; 5.3] 18.0 [15.4; 20.6]

Eastern Europe Czech Republic 4 1994–2015 226,645 20.8 [17.5; 24.0] 17.4 [14.5; 20.3]

Eastern Europe Moldova 4 2001–2010 18,828 3.8 [2.8; 4.8] 21.0 [18.1; 23.3]

Eastern Europe Romania 8 1994–2016 300,031 13.1 [10.8; 15.6] 20.6 [18.0; 23.0]

Southern Europe Greece 1 2001–2010 90,845 73.0 [66.0; 82.0] 27.6 [24.6; 29.6]

Southern Europe Italy 11 1991–2010 224,176 11.9 [9.7; 14.0] 23.4 [20.9; 25.5]

Southern Europe Portugal 5 1991–2016 351,284 22.0 [18.6; 25.0] 21.1 [19.3; 23.2]

Southern Europe Spain 52 1991–2014 884,307 5.6 [4.2; 7.1] 22.4 [20.2; 24.5]

Eastern Asia China 14 1996–2015 336,900 38.4 [33.5; 44.6] 25.0 [22.7; 27.1]

Eastern Asia Japan 47 1991–2015 7,864,627 53.8 [46.6; 62.5] 24.8 [22.3; 27.1]

Eastern Asia South Korea 36 1997–2016 867,142 9.6 [7.9; 11.6] 23.3 [21.2; 25.5]

Eastern Asia Taiwan 3 1994–2014 385,617 50.0 [44.0; 56.0] 28.7 [27.6; 29.7]

Southern and Western 
Asia

Iran 1 2004–2013 40,824 32.0 [26.0; 40.0] 26.4 [24.0; 28.3]

Southern and Western 
Asia

Kuwait 1 2000–2016 22,347 11.0 [8.0; 13.0] 38.1 [36.3; 39.6]

Southeastern Asia Philippines 4 2006–2010 90,034 36.5 [32.2; 41.2] 29.1 [28.4; 29.8]

Southeastern Asia Thailand 61 1999–2008 610,780 7.9 [6.1; 10.1] 29.1 [28.1; 30.0]

Southeastern Asia Vietnam 2 2009–2013 37,677 37.5 [33.5; 42.5] 29.5 [28.5; 30.4]

Africa South Africa 45 1997–2013 2,454,409 26.3 [20.7; 31.9] 22.3 [20.6; 23.9]

TOTALa 732 1991–2016 29,936,896 9.0 [4.0; 22.0] 22.6 [18.9–25.6]

IQR, interquartile range. aEstimates derived from the city-specific summaries.
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provides a brief description of the observed MCC Collaborative 
Research Network temperature and mortality series, including 
the data sources and level of aggregation (city, metropolitan area 
or small region). The data used in the present study consisted of 
counts of daily mortality from all causes or non-external causes 
only (International Classification of Diseases, ICD-9: 0-799; ICD-
10: A00-R99) and daily mean temperature (°C). The analysis was 
limited to the warm season, defined as the four warmest consecu-
tive months in each location, to focus on heat-related mortality only 
(see Supplementary Table 2 for selected months in each location). 
The analysis included 29,936,896 deaths across all 732 locations 
from 43 countries in overlapping periods between 1991 and 2015 
(Table  1). The study countries vary widely in terms of local cli-
mate, ranging from average warm-season temperatures of ~15 °C in 
countries of North and Central Europe and Canada to much hotter 
weather >25 °C in South Asia, the Middle East and parts of Central 
and South America.

In the second step, we used the estimated exposure-response 
functions to compute the heat-related mortality burden between 
1991 and 2018 for each location under two scenarios: a factual 
scenario consisting of simulations of historical climate (all climate 
forcings) and a counterfactual scenario where climate simulations 
are driven by natural forcings only, thus approximating the climate 
that would have occurred in a world without human-induced or 
anthropogenic climate change16. A more detailed description of the 

scenarios and how the impacts were quantified is provided in the 
following paragraphs and Methods.

The factual and counterfactual scenarios
The two scenarios (factual and counterfactual) were based on 
simulation runs from the Detection and Attribution Model 
Intercomparison Project (DAMIP)17,18. DAMIP is the compo-
nent of the Coupled Model Intercomparison Project Phase 6 
(CMIP6) that aims to assess the individual contributions of dif-
ferent external factors, including anthropogenic forcings, on past 
and future changes in global and regional climate. We used pairs 
of factual–counterfactual ensemble runs of daily mean tempera-
ture between 1991 and 2018 from ten general circulation models 
(ACCESS-ESM1-5, CanESM5, CESM2, FGOALS-g3, GFDL-ESM4, 
HadGEM3-GC31-LL, IPSL-CM6A-LR, MIROC6, MRI-ESM2-0 
and NorESM2-LM; Supplementary Table 3) for which suitable data 
were available at the time of the analysis. Specifically, for the fac-
tual scenario, we used CMIP6 historical simulations merged with 
SSP2-4.5 runs of each model which accounts for anthropogenic 
and natural forcings. The corresponding counterfactual consists of 
simulations of the historical climate driven with natural forcings 
only (that is, anthropogenic forcings are absent) derived from the 
‘hist-nat’ experiment. Location-specific temperature series were 
extracted from the gridded products on the basis of the correspond-
ing centroid and bias-corrected following a method described  
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Fig. 1 | Temperature modelled under the factual (with both anthropogenic and natural forcings) and counterfactual (with only natural forcings) scenarios. 
a, Warm-season average temperature since 1900, including the 1991–2018 study period (shaded) across the 732 locations. b, Temperature differences 
between scenarios in the 43 study countries, respectively, during the study period (warm season only). Country results are based on included locations 
only. c, Average temperature difference between scenarios in the 732 study locations (warm season only).
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elsewhere19. The burden attributable to recent human-induced cli-
mate change is defined as the difference in heat-related mortality 
between the two scenarios.

Figure  1 reports a summary description of the simulated 
warm-season mean temperatures in the factual (accounting for nat-
ural and anthropogenic forcings) and counterfactual (accounting for 
natural forcings only) scenarios. Across the 732 locations, the annual 
average temperature in the warm season in the factual scenario 
increased from nearly 21.5 °C at the end of the twentieth century to 
almost 23 °C in the 2010s, whereas in the counterfactual scenario, 
annual temperatures remained relatively stable at around 21.5 °C 
(Fig.  1a, model-specific time-series plots are shown in Extended 
Data Fig. 1). Similar patterns of warming over time can be observed 
across countries, although with variable magnitude (Extended Data 

Fig. 2). Warming is also reflected in the overall temperature differ-
ence between scenarios over the study period (1991–2018), with 
~0.8 °C increase on average and strong differences across regions 
of the world (Fig. 1b and Extended Data Fig. 3). For example, the 
country-specific average temperature increase ranged from ~0.5 °C 
in Argentina to >1 °C in Iran, Kuwait, some countries in South and 
Central America and North of Europe (Fig.  1b). Figure 1c shows 
the temperature differences for each of the 732 study locations, with 
some of the largest effects seen in Brazil and western locations in 
South America, Southern Europe and Thailand.

Location-specific temperature-mortality relationships
Exposure-response associations were estimated for all 732 loca-
tions. The curves for 16 representative locations—including at least 
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one from each (inhabited) continent—are presented in Fig. 2. The 
functions represent the cumulative relative risk of death over a 10-d 
lag period for each temperature value in the observed range. Prior 
research has demonstrated that heat risks tend to occur quickly after 
exposure and then disappear within 10 d (ref. 20). Relative risk is a 
measure of association which represents the change in mortality risk 
at any given temperature compared with a reference temperature, 
which in this case corresponds to the point of minimum mortality 
(the temperature value for which the risk of death is lowest), often 
referred as the ‘optimum'. In Chicago, for example, a 31 °C day (cor-
responding to the 99th percentile temperature) was associated with 
a 36% (95% confidence interval (CI): 28–47%) increase in mortality 
risk from all causes, whereas in Johannesburg the 99th percentile 
temperature (24 °C) was associated with a 9% (95% CI: 0.5–17%) 
increase and in Berlin (28 °C) a 57% (95% CI: 47–67%) increase.

The displayed curves indicate potential geographical patterns 
in the heat-mortality relationship across and between regions, 
a finding particularly evident in Fig.  3, which summarizes the 
exposure-response functions for all 732 locations, again as the rela-
tive risk of death at the 99th percentile temperature versus the opti-
mum. Heat-related mortality risks ranged from 0.97 to 2.47 but with 
only 28 of the 732 locations <1. Larger risks are observed in the 
European region, in particular the Western and Central area of the 
continent, while smaller estimates <1.5 were found in most loca-
tions in Asia and the Americas. All risks should be interpreted as 
an approximation of the average heat-mortality association in each 
location across the study period.

Heat-mortality impacts attributed to climate change
The estimated heat-related mortality burden by country for each sce-
nario is derived by applying the location-specific exposure-response 
functions to the corresponding modelled location-specific daily 
mean warm-season temperature series and average baseline mor-
tality between 1991 and 2018 (see Methods for further details on the 
estimation of mortality burden). Results are reported as heat-related 
mortality fractions estimated as the number of deaths attributed 
to heat (days above the optimum) divided by the total number of 
deaths during the warm season in each location. The level of uncer-
tainty of the impact estimates is expressed in terms of 95% CI, 
which account for both the statistical uncertainty when estimating 
the exposure-response function and the variability in the tempera-
ture series across model-specific simulations (see Methods section 

for further details on the quantification of uncertainty). Across all 
locations, heat-related mortality in the factual scenario amounted 
to an average of 1.56% (95% CI, 0.62–2.41) of all warm-season 
deaths (Fig. 4a). The country-specific estimates ranged from <1% 
(for example, United States, Colombia, Sweden, Norway, United 
Kingdom, Japan and South Korea) to >5% in countries of Southern 
Europe (Supplementary Table  4). As expected, there was less 
heat-related mortality in all countries under the counterfactual sce-
nario, with an average estimate of 0.98% (95% CI, 0.26–1.80) across 
all locations.

The difference between the factual and counterfactual scenar-
ios is interpretable as the proportion of total deaths during warm 
season attributable to human-induced climate change. The overall 
estimate that 0.58% (95% CI: 0.24–1.14) of all deaths are attrib-
utable to climate change translates to an average of 9,702 (95% 
CI, 4,005–19,135) deaths per warm season across the 732 loca-
tions (see Supplementary Table  5 for location-specific estimates). 
Country-specific estimates (Fig. 4b) show a clear north–south pat-
tern within regions; human-induced climate change attributable 
deaths are <1% of total deaths for countries in northern subre-
gions of America, Europe and Asia, while larger contributions were 
observed in southern Europe, southern and western Asia and some 
countries in southeast Asia and South America. This geographical 
gradient can be also observed in Extended Data Fig. 4 that displays 
the location-specific estimates.

To further contextualize the results, Fig.  4c displays the per-
centage of heat-related mortality (as opposed to total mortality) 
that is attributable to human-induced climate change. The overall 
estimate is 37.0% but this percentage varied widely across subre-
gions and countries. The largest climate change-induced contribu-
tions (>50%) were in southern and western Asia (Iran and Kuwait), 
southeast Asia (Philippines and Thailand) and several countries in 
Central and South America (see Supplementary Tables 4 and 5 and 
Extended Data Fig. 5 for location-specific estimates).

Taken together, our findings demonstrate that a substantial pro-
portion of total and heat-related deaths during our study period 
can be attributed to human-induced climate change, which is in 
line with the small number of existing attribution studies on this 
topic, mainly from Europe10,21. Unlike those studies, however, the 
wide and heterogeneous geographical scope of our dataset allowed 
us to assess spatial patterns in the estimated impacts and to identify 
areas that have already been disproportionately affected. Impacts 

1.0 1.5 2.0
Heat−mortality risk (relative risk)

Fig. 3 | Heat-related mortality associations in the 732 locations. These are expressed as the estimated relative risk at the 99th percentile of the 
location-specific warm-season temperature distribution using the temperature of minimum mortality as reference. Estimates are represented by the 
location-specific BLUPs (Methods).
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were evident in all of our study countries, which included locations 
on every inhabited continent (Fig. 4 and Extended Data Figs. 4 and 
5). As locations differ in size, Fig. 5 displays the heat-related deaths 

attributable to human-induced climate change as a mortality rate, 
indicating a relatively heavy population-level burden in southern 
and eastern Europe, where rates in several countries are >6 per 
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100,000 population over the 1991–2018 period compared to the 
study average of 2.2 per 100,000.

Some limitations of this study should be acknowledged. Despite 
the extensive spatial extent of our study, we were not able to include 
locations in all world regions—for example, large parts of Africa 
and South Asia—due to a lack of the empirical data needed to esti-
mate the exposure-response functions. For reference, our overall 
estimate that heat exposure from human-induced climate change is 
responsible for ~0.6% of total deaths in warm season would trans-
late to more than a hundred thousand deaths per year if applied 
globally. However, we caution against this sort of crude extrapo-
lation considering the variation we observed in location-specific 
estimates of attributable fractions (Fig.  4, Extended Data Fig.  4 
and Supplementary Table 5). Whether the excluded regions would 
have high or low heat-related mortality burdens is difficult to pre-
dict and may depend on factors including the level of warming, 
the built environment and the age structure and underlying health 
status of the population (amongst other factors)11,22,23. Additionally, 
estimates should not necessarily be considered representative of 
country-specific average effects, as the study included a sample of 
locations which, in some cases, were restricted to one or two cit-
ies (in Finland and Iran). Another limitation is the use of a single, 
time-invariant exposure-response function in each location. This 
approach can be interpreted as an approximation of the average 
effect across the study period in each location but would not capture 
the precise dynamics of any potential attenuation in heat-related 
risks, which has been reported in some locations24,25.

We have conducted this large attribution study on the health 
impacts of climate change by applying cutting-edge epidemiological 
modelling techniques to the most expansive database ever assembled 

on weather and health (the MCC Collaborative Research Network 
database) and the latest temperature simulations developed for cli-
mate change attribution and detection studies (DAMIP data). The 
methodology allowed us to properly account for the uncertainty 
that arose from estimating the exposure-response functions and the 
variability across climate models (see Extended Data Fig. 6 for the 
model-specific estimates for heat-related mortality). We have dem-
onstrated that health burdens from anthropogenic climate change 
are occurring, are geographically widespread and are non-trivial; in 
many locations, the attributable mortality is already on the order of 
dozens to hundreds of deaths each year (Supplementary Table 5). 
This has occurred with average global temperature increase of only 
~1 °C, which is lower than even the strictest climate targets outlined 
in the Paris Agreement (1.5–2 °C) and a fraction of what may occur 
if emissions are left unchecked26. As a result, our findings provide 
further evidence of the potential benefits of adopting strong mitiga-
tion policies to reduce future warming and of enacting adaptation 
interventions to protect populations from the adverse consequences 
of heat exposure.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41558-021-01058-x.
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Fig. 4 | Heat-related mortality and the contribution of human-induced climate change, 1991–2018. a, Heat-related mortality as a percentage of total 
mortality during warm season (mortality fraction, %) estimated in the 43 countries under the factual (all anthropogenic and natural forcings, shaded) 
and counterfactual (natural forcings only, unshaded) climate scenarios. b, Percentage of total deaths during warm season attributable to heat-related 
human-induced climate change, estimated as the difference in heat-related mortality in the factual compared to the counterfactual scenario, with the 
corresponding 95% CI. c, Proportion of heat-related mortality attributable to human-induced climate change estimated as the fraction of heat-related 
mortality in the factual scenario that results from the contribution of anthropogenic forcings.

0.9 1.4 2.0 3.0Heat−related mortality rate attributed 
to human−induced climate change (per 100,000)

Fig. 5 | Heat-related mortality rate attributable to human-induced climate change, 1991–2018. The estimated rate in each country is based on the 
attributable fractions for the location(s) within the country. The rates indicate the total burden in the population and are thus a complementary measure 
of impact to that of Fig. 4b, which reports the attributable fraction. For example, the rate shown here for Brazil is relatively modest, whereas the fraction is 
high; the opposite is true in a country like Greece.
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Methods
Observed temperature and mortality data: the MCC Collaborative Research 
Network database. We extracted observed daily temperature and mortality data 
for the 732 locations from the MCC Collaborative Research Network database 
(http://mccstudy.lshtm.ac.uk/). Supplementary Table 1 provides information on 
data collection for each country, while descriptive statistics for each location are 
reported in Supplementary Table 2. Data used in the present study consisted of 
counts of daily mortality from all causes or non-external causes (ICD-9: 0-799; 
ICD-10: A00-R99) and daily mean temperature (°C). The length of the observed 
data varied by location but included part or all of our study period (1 January 
1991 to 31 December 2018). As we were interested in heat-related mortality, we 
restricted the data series to the warmest four consecutive months in each location 
(Supplementary Table 2).

Description of the factual and counterfactual climate datasets. We defined 
two scenarios, one representing the historical (factual) climate and an alternative 
(counterfactual) that approximates a hypothetical world without anthropogenic 
climate change. The temperature series for these scenarios were extracted from the 
DAMIP (http://damip.lbl.gov) climate database. DAMIP is part of the CMIP6 and 
was specifically designed to allow for the assessment of the individual contributions 
of various external factors to past and future changes in global and regional 
climate17,18. This study included the ensemble member simulations of ten general 
circulation models included in CMIP6 from two different experiments for which 
relevant data were available at the time of the analysis. Information about the models 
and selected simulations are shown in Supplementary Table 3. For the factual 
scenario, we used historical climate simulations (‘hist’) of mean daily temperature 
available up to 2014 merged with simulations of ssp2rcp45 for the remaining years 
until 2018. These simulations are driven by all types of natural and anthropogenic 
forcings, which mimics the actual historical climate. The corresponding 
counterfactual climate data consisted of the simulations of the ‘hist-nat’ experiment, 
for which only natural forcings are considered (solar irradiance and stratospheric 
aerosols). The counterfactual climate dataset approximates a hypothetical climate 
with no human influences (that is, an absence of anthropogenic climate change) 
since the beginning of the twentieth century where only natural forcings were 
present. This approach allows for a formal distinction between natural and 
anthropogenic climate change. Location-specific series of daily mean temperature 
(near surface air temperature—tas) were extracted from the globally gridded 
datasets (https://esgf-node.llnl.gov/search/cmip6/) and bias-corrected using local 
weather station data (MCC Collaborative Research Network database) following a 
method described elsewhere15,27,28. In brief, observed temperature series were used 
to bias-correct the temperature series in the factual scenario and apply the same 
correcting factors to the series of the counterfactual scenario.

Description of the epidemiological analysis. We estimated the association 
between heat and mortality using observed data in each location through a 
two-stage approach widely applied in multilocation time-series studies.

First stage. To estimate location-specific heat-mortality associations, we performed 
separate time-series analyses with generalized linear models using observed 
temperature and mortality data over the four warmest consecutive months 
in each location (see Supplementary Table 2 for the selected months in each 
location). We applied a quasi-Poisson regression in which a quasi-likelihood 
was used to scale the standard deviation of the coefficients proportionally 
to the potential overdispersion. We modelled the nonlinear and delayed 
association using distributed-lag nonlinear models (DLNMs), a class of models 
that can describe the complex nonlinear and lagged dependencies typically 
found in temperature-mortality studies12. DLNMs account for delayed effects 
of time-varying exposures and quantify net effects over a predefined lag 
period. Following the DLNM methodology, we modelled the bidimensional 
exposure-lag-response association through the combination of two functions 
defined within a cross-basis term. Specifically, we selected a natural spline function 
with two internal knots at the 50th and 90th percentile of the warm-season 
temperature distribution to model the exposure-response curve and a natural 
spline function with two internal knots at equally spaced values in the log scale 
over 10 d of lag for the lag-response dimension. Seasonality was modelled with a 
natural spline with 4 degrees of freedom (d.f.) of day of the year. We introduced 
an interaction between this spline term and year to allow different seasonal trends 
across the study period. The model also included a natural spline function of 
time with one knot per year to control for long-term trends and an indicator for 
day of the week. These choices that specify the cross-basis and model terms used 
to control for long-term and seasonal trends were based on related studies from 
the MCC Collaborative Research Network20,24. The resulting bidimensional set of 
coefficients from each location was then reduced across the lag dimension into the 
overall cumulative exposure-response curve representing the association between 
heat and mortality across the 10 d of lag13.

Second stage. The location-specific set of reduced coefficients estimated in the 
first stage were then pooled in a multivariate metaregression model14. This 
approach provides improved estimates of heat-mortality associations at the 

location level, defined as best linear unbiased predictions (BLUPs). BLUPs borrow 
information across units within the same hierarchical level and can offer more 
accurate estimates, especially in locations with small daily mortality counts or 
short series. We also included, as metapredictors, country-level gross domestic 
product, location-specific average temperature and interquartile range and 
indicators of climatic classification29. We tested the presence of heterogeneity using 
multilevel extensions of the Cochran Q test and I² statistic30. The location-specific 
associations defined by the BLUPs were used in the quantification of the 
heat-related mortality impacts. All the analyses were performed in the R software 
environment (v.3.5.2) using the packages dlnm and mixmeta, which were 
developed by the authors14,31.

Quantification of heat-related mortality. Finally, we quantified the heat-related 
mortality in each location during the warm season in each location during the 
study period of 1991–2018 under both scenarios, following a method we describe 
in previous work15. For each location–scenario–model–day combination, we 
computed the number of heat-related deaths on the basis of the corresponding 
modelled temperature series, daily baseline mortality and the estimated 
heat-mortality association represented by the location-specific BLUPs16. The 
daily baseline mortality corresponds to the annual series of total mortality counts 
derived as the average number of deaths per day of the year in each location. 
The annual series was then replicated along the study period of 1991–2018. We 
then estimated the total number of heat-related deaths in each location/scenario 
for each model and ensemble across the study period by summing the daily 
mortality contributions when the temperature on a specific day was higher than 
the location-specific reference temperature. This reference value corresponds to 
the minimum point of the BLUP curve and represents the optimal temperature 
value with the lowest mortality risk, often referred to as the minimum mortality 
temperature. We quantified the uncertainty of the estimates by generating 1,000 
samples of the coefficients of the BLUPs (representing the association) through 
Monte Carlo simulations, assuming a multivariate normal distribution for the 
estimated spline model coefficients and then generating results for each of the 
ten models4. We obtained empirical confidence intervals corresponding to the 
2.5th and 97.5th percentiles of the empirical distribution of the heat-related 
mortality impacts across coefficients and models. In this way, the derived empirical 
confidence intervals account for both the imprecision of the exposure-response 
function and the inherent variability of the temperature simulations across models 
in each scenario.

To obtain the contribution of climate change, we subtracted the heat-related 
mortality estimates in the counterfactual scenario from those in the factual 
scenario. Finally, we computed the mortality fractions in both scenarios and the 
estimated difference using the related total number of deaths as the denominator. 
Climate change attributable heat-related mortality rates for each country were 
estimated by multiplying the attributable fraction(s) by the corresponding crude 
mortality rate for each country. These were computed as the average crude 
mortality rates in each country between 1991 and 2017 (https://datacatalog.
worldbank.org/dataset/world-development-indicators) and multiplied by a factor 
corresponding to the warm-season mortality divided by the total annual mortality 
in each country.

Data availability
A sample of data is made available in the open repository ‘BORIS’ of the University 
of Bern under https://doi.org/10.48350/155666

Code availability
A sample of the code to reproduce the analysis is made available in the 
open repository ‘BORIS’ of the University of Bern under https://doi.
org/10.48350/155666
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Time series plots of the warm-season mean daily temperatures in each scenario provided by each model. The time series plots 
depict the temporal trends in average warm-season temperatures across the 732 locations included in the study. Factual scenario (with natural and 
anthropogenic forcings) is depicted in brown, while counterfactual scenario (with natural forcings only) in orange. The grey dark area corresponds to the 
study period 1991–2018. (ACC: ACCESS-ESM1-5, CAN: CanESM5, CNR: CESM2, FGO: FGOALS-g3, GFD: GFDL-ESM4, HAD: HadGEM3-GC31-LL, IPS: 
IPSL-CM6A-LR, MIR: MIROC6, MRI: MRI-ESM2-0, Nor: NorESM2-LM).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Time series plots of the warm-season mean daily temperatures in each scenario in the 43 countries included in the study. As 
Fig.1, factual scenario (with natural and anthropogenic forcings) is depicted in brown, while counterfactual scenario (with natural forcings only) in orange. 
The shaded area corresponds to 1 standard deviation across model-specific average estimates. The dashed line shows the start of the study period 
(1991–2018).
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Extended Data Fig. 3 | Country-averaged warm-season temperature distributions modelled in each scenario. As Fig.1, factual scenario (with natural and 
anthropogenic forcings) is depicted in brown, while counterfactual scenario (with natural forcings only) in orange.
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Extended Data Fig. 4 | Location-specific heat-related mortality attributed to human-induced climate change (CC) between 1991–2018. Map with the 
location-specific estimates of heat-related mortality fractions attributed to human-induced climate change (expressed in %). Estimates ranged between 
0.2% and 0.8%, corresponding to the interquartile range, with a maximum value of 3.8%, and 23 locations reported an estimate below 0 (minimum value 
of -0.1%).
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Extended Data Fig. 5 | Proportion of heat-related mortality attributed to human-induced climate change (CC), between 1991–2018. Map with the 
location-specific estimates of the proportion of heat-related mortality attributed to human-induced climate change (expressed in %). Estimates ranged 
between 28.6% and 54.2%, corresponding to the interquartile range, with a maximum value of 92%, and 1 location with estimates below 0 (minimum 
value of -0.1%).
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Extended Data Fig. 6 | Model-specific estimates of the heat-related mortality attributed to human-induced climate change (CC) for each country, 
expressed as mortality fraction (%). The plot shows the model-specific estimates of heat-related mortality fraction attributed to human-induced 
climate change for each country (1991–2018). ACC: ACCESS-ESM1-5, CAN: CanESM5, CNR: CESM2, FGO: FGOALS-g3, GFD: GFDL-ESM4, HAD: 
HadGEM3-GC31-LL, IPS: IPSL-CM6A-LR, MIR: MIROC6, MRI: MRI-ESM2-0, Nor: NorESM2-LM.
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