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Figure.S1 Unaltered renal morphology in adult akr1a1a-/- mutants.

(A,B). Representative Periodic acid–Schiff (PAS) staining showed normal gross structure of akr1a1a+/+ and akr1a1a-/- kidneys. Red arrow:

glomeruli. Black arrow: proximal tubule. Black triangle: distal tubule. Black scale bar: 20 µm.



Figure.S2 An overview of RNA Sequencing Results.

(A). Results of the quality control in gene expression analysis between akr1a1a+/+, akr1a1a-/- and akr1a1a+/+ with ACR treatment zebrafish

larvae at 120 hpf. Principal component 1, 2 and 3 are on the axis. The plots showed the akr1a1a-/- (n = 6) in green, akr1a1a+/+ (n = 5) in red and

akr1a1a+/+ with ACR treatment in blue. (B). Heatmaps of each samples showed comparable property between akr1a1a-/- , akr1a1a+/+ and

akr1a1a+/+ with ACR treatment zebrafish larvae.
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Figure.S3 Metabolomic profiling displayed minor alterations between akr1a1a+/+ and akr1a1a-/- zebrafish larvae at 96 hpf.

(A). Lysine and putrescin were significantly increased in akr1a1a-/- mutants. Leucine and phenylalanine displayed increasing tendency

while spermin displayed a decreasing tendency in akr1a1a-/- mutants. n = 3 clutches with 50 larvae. (B). Cysteine and GSH were

unaltered in akr1a1a-/- mutants, n = 3 clutches with 50 larvae. (C). Adenosines were unaltered in akr1a1a-/- mutants , n = 3 clutches

with 50 larvae. (D). C20:3n6 was increased in akr1a1a-/- mutants, n = 3 clutches with 50 larvae. For statistical analysis Student’s t-test
was applied; *p<0.05.
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Figure.S4 Metabolomic profiling displayed minor alterations between adult akr1a1a+/+ and akr1a1a-/- zebrafish livers.

(A). Primary metabolites displayed non-significant alterations in akr1a1a-/- mutants, n = 7-8. (B). C20:3n6 and C18:3n6 were increased

while cholesterol was decreased significantly in akr1a1a-/- mutants, n = 7-8. For statistical analysis Student’s t-test was applied; *p<0.05.
** p<0.01.
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Figure.S5 Glycolytic enzyme expression and activity in adult akr1a1a-/- livers.

(A). Pfk and hk1 mRNA expression showed decreasing tendency while pk expression increased in akr1a1a-/- livers. n = 6. (B-C). PK and GK

enzyme activity were unaltered in akr1a1a-/- livers. n = 4. For statistical analysis Student’s t-test was applied. *p<0.05. NS, not significant. Pfk,

Phosphofructokinase. Pk, Pyruvate kinase. Hk, Hexokinase. GK, Glucokinase.
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Figure.S6 S-nitrosylated proteins were unaltered in akr1a1a-/- livers

Western blot showed unchanged S-nitrosylated proteins (SNOs) in akr1a1a-/- livers. b-

actin served as loading control.
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Figure.S7 insra/insrb expression and ACR concentrations were unaltered in akr1a1b mutants.

(A,B). insra and insrb mRNA expression were unaltered in akr1a1b-/- larvae at 5dpf. n = 6 clutches with 30 larvae. (C). ACR was unchanged

in akr1a1b-/- larvae. n = 4-6 clutches with 50 larvae. (D,E). insra and insrb mRNA expression were unaltered in akr1a1b-/- liver. n = 7-8. (F).

ACR was unchanged in akr1a1b-/- liver. n = 7-8. For statistical analysis Student’s t-test was applied. NS, not significant.
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Figure.S8 Hyaloid vasculature is unaltered in akr1a1b-/- larvae at 5dpf.

(A). Representative confocal images of hyaloid vasculature. White scale bar: 20 μm. (B,C). Quantification of hyaloid

vasculature showed unalterted branches and sprouts in akr1a1b-/- larvae at 5dpf. n = 9-10. For statistical analysis

Student’s t-test was applied. NS, not significant.
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Figure.S9 Glo1 and ALDH enzyme activity were unaltered in akr1a1a-/- larvae.
(A,B). Glo1 and ALDH enzyme activities were unaltered in akr1a1a-/- larvae. n = 6 clutches with 50 larvae. n = 6 clutches

with 50 larvae. For statistical analysis Student’s t-test was applied. NS, not significant.
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Figure.S10 Insra/insrb morpholino design and validation.

(A). SB-insra-MO and SB-insrb-MO targeting exon3-intron3 and exon7-intron7 junctions of insra/insrb, respectively. (B).

Validation of splice-blocking morpholinos: SB-insra-MO and SB-insrb-MO. RT-PCR of Control-MO, SB-insra-MO and SB-insrb-

MO injected larvae showed wild type and generation of morphant insra/insrb signals at 24 hpf. 2 ng of morpholinos: Control-MO,

SB-insra-MO and SB-insrb-MO were injected into the one-cell stage of zebrafish embryos, respectively. WT, wild type; MO,

morpholino; Morph: morphant.



Figure.S11 Reduced AKR activity using ACR as substrate in insra/insrb morphants.

(A). insra/insrb morphants showed unaltered AKR enzyme activity (DL-Glyceraldehyde served as substrate) measured

by spectrophotometric analysis in zebrafish lysates at 96 hpf; n = 3-4 clutches with 50 larvae. (B). insra/insrb morphants

showed decreased AKR enzyme activity (ACR served as substrate) measured by spectrophotometric analysis in

zebrafish lysates at 96 hpf; n = 3-4 clutches with 50 larvae. For statistical analysis one-way ANOVA followed by Tukey’s

multiple comparison test was applied, *p<0.05. **p<0.01. NS, not significant.
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Figure.S12 High concentrations of ACR harm development of zebrafish larvae.

(A). Representative microscopic images showed destructive effects of 20µM on wildtype zebrafish larvae. Red arrow: heart edema. Black

arrow: curly tail. Scale bar: 200 µm. (B). Survival rate showed strong lethality of 50µM ACR. (C). The number of larvae with heart edema

increased significantly with 20µM ACR treatment. For statistical analysis one-way ANOVA followed by Tukey‘s multiple comparisons test

was applied. *p < 0.05. NS, not significant.
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Figure.S13 Carnosine and PK11195 can alleviate the angiogenic retinal hyaloid vasculature in akr1a1a-/- larvae at 5dpf.

(A). Representative confocal images of hyaloid vasculature. White scale bar: 20 μm. (B,C). Quantification of hyaloid vasculature showed

Carnosine (dissolved in egg water) and PK11195 (dissolved in DMSO) can reverse the increasing numbers of branches in akr1a1b-/- larvae at

5dpf. n = 11-15. For statistical analysis one-way ANOVA followed by Tukey‘s multiple comparisons test was applied. ****p<0.0001. NS, not

significant. DMSO, dimethylsulfoxid. CAR, carnosine. PK, PK11195.
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CRISPR-construct Oligonucleotide sequence(5‘ to 3‘) 

akr1a1a-CRISPR-for TAGGTCAGAGGATGCCAACGGT 
akr1a1a-CRISPR-rev AAACACCGTTGGCATCCTCTGA 

Genotyping primer Primer sequence (5‘ to 3‘) 

akr1a1a-Crisp-Genotype-for TCATTTGGGCAGGAAAACGT 
akr1a1a-Crisp-Genotype-rev GTAGCCACAGTCTAAAGCTGC 

 
 
Table S1. CRISPR construct and genotyping primers for zebrafish akr1a1a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2 
 

 
 

qPCR primer name  Primer sequence 

b2m-qPCR-for ACTGCTGAAGAACGGACAGG 

b2m-qPCR-rev GCAACGCTCTTTGTGAGGTG 

insa-qPCR-for GGTCGTGTCCAGTGTAAGCA 

insa-qPCR-rev GGAAGGAAACCCAGAAGGGG 

Insra-qPCR-for AGAGGCCAGCGAGCTCTAC 

Insra-qPCR-rev CACTTGTGTGGGGGCTCT 

Insrb-qPCR-for GCCTCTGCGGATCACTACAT 

Insrb-qPCR-rev CTCCTGCGTGGTCTTGAAC 

pfkla-qPCR-for ACTGCCACTCCAGCGTTAAA 

pfkla-qPCR-rev CAGAGCTGGAGTTCACCCTC 

pfklb-qPCR-for GCCGTTCAACATTCACGACC 

pfklb-qPCR-rev TGCAGTCGAACACTCCTTGG 

pkl-qPCR-for TCCTGGAGCATCTGTGTCTG 

pkl -qPCR-rev GTCTGGCGATGTTCATTCCT 

hK1-qPCR-for ATGATAGCGGCACAGCTTCT 

hk1-qPCR-rev GTTGGTGTCTCGTGCCAATC 

 
 
Table S2. qPCR primers. 
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Morpholinos sequence 

SB-insra-MO CACACAAGCAGCAGGGTACTTACGT 
(exon3-intron3 junction)  
SB-insrb-MO ACTGAAAGGACCACACTCACGCTTC 
(exon7-intron7 junction)  
Control-MO CCTCTTACCTCAGTTACAATTTATA 
  

Genotyping primer Primer sequence  

SB-insra-MO GAGCTCCACAACAAGTGCAA 
 CTCCAGCTGTCCCAGGTTAG 
SB-insrb-MO ACACAAATCCGCACCATGAG 
 CAATGGCCCAGCTGTTAGAG 

 
Table S3. Morpholinos and the genotyping primers for zebrafish insra/insrb 
morpholinos. 


