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Lung microbiome composition and bronchial epithelial gene 
expression in patients with COPD versus healthy individuals: 
a bacterial 16S rRNA gene sequencing and host 
transcriptomic analysis
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Timm Greulich, Adam Nowinski, Imre Barta, Mariarita Stendardo, Piera Boschetto, Damian Korzybski, Antje Prasse, David G Parr, Jens M Hohlfeld, 
Balázs Döme, Tobias Welte, Simon Heath, Ivo Gut, Julie A Morrissey, Loems Ziegler-Heitbrock, Michael R Barer, Dave Singh, 
Christopher E Brightling

Summary
Background Chronic obstructive pulmonary disease (COPD) is associated with airway inflammation and bacterial 
dysbiosis. The relationship between the airway microbiome and bronchial gene expression in COPD is poorly understood. 
We aimed to identify differences in the airway microbiome from bronchial brushings in patients with COPD and healthy 
individuals and to investigate whether any distinguishing bacteria are related to bronchial gene expression.

Methods For this 16S rRNA gene sequencing and host transcriptomic analysis, individuals aged 45–75 years with 
mild-to-moderate COPD either receiving or not receiving inhaled corticosteroids and healthy individuals in the same 
age group were recruited as part of the Emphysema versus Airways Disease (EvA) consortium from nine centres in 
the UK, Germany, Italy, Poland, and Hungary. Individuals underwent clinical characterisation, spirometry, CT scans, 
and bronchoscopy. From bronchoscopic bronchial brush samples, we obtained the microbial profiles using 
16S rRNA gene sequencing and gene expression using the RNA-Seq technique. We analysed bacterial genera relative 
abundance and the associations between genus abundance and clinical characteristics or between genus abundance 
and host lung transcriptional signals in patients with COPD versus healthy individuals, and in patients with COPD 
with versus without inhaled corticosteroids treatment.

Findings Between February, 2009, and March, 2012, we obtained brush samples from 574 individuals. We used 546 of 
574 samples for analysis, including 207 from healthy individuals and 339 from patients with COPD (192 with inhaled 
corticosteroids and 147 without). The bacterial genera that most strongly distinguished patients with COPD from 
healthy individuals were Prevotella (median relative abundance 33·5%, IQR 14·5–49·4, in patients with COPD vs 
47·7%, 31·1–60·7, in healthy individuals; p<0·0001), Streptococcus (8·6%, 3·8–15·8, vs 5·3%, 3·0–10·1; p<0·0001), 
and Moraxella (0·05%, 0·02–0·14, vs 0·02%, 0–0·07; p<0·0001). Prevotella abundance was inversely related to COPD 
severity in terms of symptoms and positively related to lung function and exercise capacity. 446 samples had assessable 
RNA-seq data, 257 from patients with COPD (136 with inhaled corticosteroids and 121 without) and 189 from healthy 
individuals. No significant associations were observed between lung transcriptional signals from bronchial brushings 
and abundance of bacterial genera in patients with COPD without inhaled corticosteroids treatment and in healthy 
individuals. In patients with COPD treated with inhaled corticosteroids, Prevotella abundance was positively associated 
with expression of epithelial genes involved in tight junction promotion and Moraxella abundance was associated 
with expression of the IL-17 and TNF inflammatory pathways.

Interpretation With increasing severity of COPD, the airway microbiome is associated with decreased abundance of 
Prevotella and increased abundance of Moraxella in concert with downregulation of genes promoting epithelial 
defence and upregulation of pro-inflammatory genes associated with inhaled corticosteroids use. Our work provides 
further insight in understanding the relationship between microbiome alteration and host inflammatory response, 
which might lead to novel therapeutic strategies for COPD.
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Introduction
Chronic obstructive pulmonary disease (COPD) is 
characterised by persistent airflow obstruction and 

airway inflammation,1 typically associated with airway 
bacterial dysbiosis.2–5 Although associations of airway host 
transcriptome, protein biomarkers, and infla mmatory 
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cells3,6,7 with specific bacterial pathogens have been 
investigated, a systems biology approach examining both 
microbiome and host transcriptome profiles has not 
been used.

The airway microbiome is affected by corticosteroid 
therapy. Oral corticosteroids are associated with a reduc
tion in microbial diversity and an increased Proteo bacteria
toFirmicutes ratio;3,8 however, the effects of inhaled 
corticosteroids on the lung microbiome of patients with 
COPD are poorly understood.

To date, most studies of airway dysbiosis have used 
sputum samples, which might be affected by upper 
airway contamination, to investigate the airway micro
biome in patients with COPD, whereas studies based on 
bronchoscopy, which minimises upper airway 
contamination, have generally involved small numbers 
of individuals.

We hypothesised that the airway microbiome from 
bronchial brush samples would be different between 
patients with mildtomoderate COPD and healthy 
controls. We also hypothesised a difference in airway 
microbiome between patients with COPD with and 
without inhaled corticosteroids treatment, and that specific 
bacterial 16S rRNA gene signals would associate with 
specific host cell gene expression. To test these hypotheses, 
we used 16S rRNA gene sequencing and RNASeq to 
obtain microbiome and host transcriptome profiles from 
patients with COPD with and without inhaled corti
costeroids treat ment and from healthy controls.

Methods
Study design and participants
For this bacterial gene sequencing and host trans
criptomic analysis, adults aged 45–75 years who were 
patients with COPD or healthy controls were recruited as 
part of the Emphysema versus Airways Disease (EvA) 
Consortium from nine clinical centres in five European 
countries (Leicester, Manchester, and Coventry [UK]; 
Munich, Marburg, and Freiburg [Germany]; Ferrara 
[Italy]; Warsaw [Poland]; and Budapest [Hungary]).9 A 
diagnosis of COPD was based on a postbronchodilator 
ratio of forced expiratory volume in 1 s (FEV1) to forced 
vital capacity (FVC) lower than 70%. Patients were 
excluded if they had very severe COPD (FEV1 % of 
predicted <30% predicted or FEV1 <1 L), had broncho
dilator reversibility greater than 400 mL, had smoked 
within the preceding 12 months, or had a primary 
diagnosis of asthma, bronchiectasis, or any other relevant 
respiratory or other comorbid diseases such as sympto
matic coronary artery disease, arrhythmias, uncontrolled 
hypertension, or severe liver and kidney diseases. The 
same exclusion criteria were applied for individuals in the 
healthy control group to match their criteria with those 
of patients with COPD. All participants provided written 
informed consent and local ethics approvals were 
obtained for this study (appendix p 3).9 Additional 
information on methods, study participants, DNA and 
RNA sequencing, reagent controls, and biostatistical 
analyses is provided in the appendix (pp 3–5).

Research in context

Evidence before this study
We searched PubMed for studies on chronic obstructive 
pulmonary disease (COPD) published from database inception 
to July 1, 2020, with the search terms “COPD” AND 
“microbiome” AND “transcriptome”, with no language 
restrictions. We found two articles with these search criteria. 
The first study was a single centre trial done in 2016, that 
analysed the sputum of eight Taiwanese Han men with 
moderate or severe COPD. The second study was a 
longitudinal, single centre trial done in 2019, that used 
101 sputum samples from 16 healthy individuals and 
43 patients with COPD to investigate host–microbiome 
interactions. The study found that the genus Haemophilus was 
associated with host responses in stable disease and during 
exacerbation states, whereas Moraxella was associated with 
host factors during COPD exacerbations. We found no studies 
about the relationship between airway microbiome dysbiosis 
and gene expression of bronchial brush-derived cells in COPD.

Added value of this study
To our knowledge, this was the first and largest (comprising 
339 patients with COPD and 207 healthy individuals) 
multicentre study to date that investigated the host–microbiome 
interaction from the same bronchial brush samples in patients 

with mild-to-moderate COPD. Our study showed a distinct 
microbial profile in patients with COPD compared with that of 
healthy individuals. We found that bacteria from the 
Bacteroidetes, Firmicutes, and Proteobacteria phyla were the 
major contributors for discriminating between COPD and the 
healthy lung microbiome, with Prevotella, Streptococcus, and 
Moraxella being the key genera. Microbiome dysbiosis in COPD 
was associated with downregulation of epithelial genes involved 
in the repair of epithelium (associated with increased 
Moraxella abundance) and upregulation of inflammatory 
pathway responses (associated with reduced Prevotella 
abundance).

Implications of all the available evidence
This study supports a pathogenic role for lower airway 
microbiome dysbiosis in COPD and presents new evidence of 
the consequent effect on the host bronchial epithelial 
inflammatory and repair responses. Our findings suggest 
altered host epithelial repair mechanisms in association with 
microbial dysbiosis. This study offers a framework for future 
investigations, which might lead to the discovery of novel 
therapies targeting microbial dysbiosis or epithelial repair 
for COPD.

See Online for appendix
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Procedures
All participants had clinical characterisation, including 
lung function testing before and after bronchodilatation, 
6min walk distance, quantification of dyspnoea with 
the modified Medical Research Council (MRC) scale, 
thoracic CT, venous blood sampling, and sputum 
induction. The BODE index was determined for all 
participants by use of bodymass index, airflow 
obstruction, dyspnoea, and 6min walk distance values.

Participants underwent videoassisted bronchoscopy, 
with bronchial brushings done in the right lung with 
sheathed brushes with a diameter of 5 mm at bristle 
level (#BC202D 5010; Olympus, Hamburg, Germany). 
We used the AllPrep DNA/RNA Mini Kit (Qiagen, 
Hilden, Germany) to extract RNA and DNA from 
bronchial brush samples, following the manufacturer’s 
protocol.

We used the Hiseq 2000 sequecing system (Illumina, 
San Diego, CA, USA) with 100 bp pairedend reads for 
the RNASeq. Samples with low sequencing throughput 
(<10 million reads) were removed from the analysis. 
Additional details of the RNA sequencing protocol are 
described in the appendix (p 4).

After using the Qiagen kit, we measured the total 
bacterial burden using quantitative PCR by targeting the 
16s rRNA gene, as previously described.10 We have 
previously shown this extraction kit to achieve less 
efficient extraction from bacteria than bacteriaspecific 
DNA extraction kits, but that all major phyla are detected.11 
For microbiomic analyses, we amplified the V4 and V5 
hypervariable regions of the 16S rRNA gene with PCR, 
and we did 2 × 300 bp pairended DNA sequencing of 
amplified DNA fragments on the Illumina MiSeq 
platform. Samples were randomised to reduce the batch 
effect and, altogether, seven MiSeq runs were done to 
sequence all the samples. Two negative and two positive 
controls (additional details in appendix p 4) were included 
in each of the sequencing runs, and additional measures 
were taken to minimise potential contamination 
(ie, evaluating the potential effect of bacterial burden and 
using protected bronchial brushes to minimise upper 
airway contamination; appendix p 4). After trimming 
the sequence reads and removing the adaptors with 
Trimmomatic (version 0.36), we used Quantitative 
Insights into Microbial Ecology pipeline (version 1.9.1) to 
process the sequences. Pairended sequences were joined 
and potential host sequences and chimeras were removed. 
We selected a rarefaction depth of 10 000 reads per sample 
for 16S rRNA sequencing on the basis of a jackknifed 
principal coordinate resampling analysis. The sequence 
reads were subject to a close reference operational 
taxonomic unit picking (97% identity cutoff), in which 
reads were clustered against the Greengenes reference 
database (version 13.8) and their taxonomic identities 
were assigned by the RDP classifier (version 2.12) using 
naive Bayes classification. Additional details on the 
microbiome analysis are described in the appendix (p 4).

Statistical analysis
We did comparisons between patients with COPD and 
healthy individuals, as well as between patients 
with COPD with and without inhaled corticosteroids 
treatment, using twosided WilcoxonMannWhitney 
tests for continuous variables (ie, relative abundance of 
bacterial phyla and genera) and χ² tests for categorical 
variables (ie, clinical characteristics such as modified 
MRC dyspnoea scale and BODE index). We did a per
mutation multivariate analysis of variance based on both 
unweighted and weighted UniFrac distance to compare β 
diversity between patients with COPD and healthy 
individuals or between patients with COPD receiving 
and those not receiving inhaled corticosteroids treatment. 
We used a generalised linear mixed model to identify the 
bacterial taxa and α diversity indices that were 
significantly different between patients with COPD and 
healthy individuals or between patients with COPD 
receiving and those not receiving inhaled corticosteroids 
treatment. We used the same method to assess the 
association of clinical characteristics such as lung 
function, symptoms, and physical function with 
microbiome profile. Several factors were adjusted for 
different confounders including age, sex, clinical centre, 
batch effect, packyear history, and Global Initiative for 
Chronic Obstructive Lung Disease (GOLD) grades.1 We 
used clinical centre and batch effect as random factors. 
We did Cliff’s δ effect size test to assess clinically relevant 
results. Linear discriminant analysis effect size analysis 
was done to rank the discriminating taxonomic groups 
between healthy individuals and patients with COPD 
and, separately, between patients with COPD receiving 
and those not receiving inhaled corticosteroids treatment, 
on the basis of the linear discriminant analysis score. We 
used the compositionality corrected by renormalisation 
and permutation method, based on an ndimensional 
checkerboard score, to construct interaction networks of 
all detected bacterial genera in the lung microbiome. We 
analysed differential gene expression and did a linear 
mixed model analysis of gene expression with the 
presented bacterial genera in the network analysis 
with a significant association with combined patients 
with COPD and controls as continuous variables, using 
limma and lme4. Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analyses were 
done using STRING (version 11.0). We used false 
discovery rate (FDR) to adjust the p value of all of our 
analyses according to the Benjamini and Hochberg 
method.12 We considered adjusted p values lower than 
0·05 statistically significant. Additional details on the 
statistical analysis are described in the appendix (p 5). All 
analyses were done in R, version 3.5.1.

Role of the funding source
The study funders had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.
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Results
Between February, 2009, and March, 2012, brush samples 
from 574 individuals (360 patients with COPD and 
214 healthy individuals) were obtained as part of the EvA 
consortium. Seven samples (three from patients with 
COPD and four from healthy individuals) were excluded 
from 16S rRNA and RNA sequencing because of 
insufficient amounts of DNA and RNA. On the basis of 
the sequencing depth cutoff, an additional 21 samples 
(18 from patients with COPD and three from healthy 
individuals) were excluded from 16S rRNA sequencing 
and 121 samples (100 from patients with COPD and 
21 from healthy individuals) were excluded from host 
RNA sequencing, resulting in 546 samples (339 from 
patients with COPD, 207 from healthy individuals) used 
for 16S rRNA sequencing and 446 samples (257 from 
patients with COPD, 189 from healthy individuals) used 
for host RNA sequencing (figure 1). The study population 
included more men (234 [69%] of 339 with COPD and 
129 [62%] of 207 who were healthy) than women (105 [31%] 
with COPD and 78 [38%] who were healthy), and the 
median age was 65 years (IQR 61–70) for patients with 
COPD and 60 years (52–66) for healthy individuals. 
Baseline and clinical characteristics of these patients are 
described in tables 1 and 2; all patients with COPD and 
30 healthy individuals had a CT scan.

58 077 234 sequencing reads (geometric mean 
73 391 reads per sample, SD 2·03) were generated for 
16SrRNA analyses after quality control filtering and 
removal of potential human DNA contamination. In 
total, 4687 operational taxonomic units were assigned at 
97% sequence identity across all the bronchial brush 
samples.

We observed no significant differences in the total 
bacterial burden between patients with COPD and 
healthy individuals or between patients with COPD 

with and without inhaled corticosteroids treatment 
(appendix p 6). Therefore, all subsequent analyses focused 
on microbiomedetermined bacterial relative abundance. 
The evenness and richness of bacterial community 
compositions were compared between patients with 
COPD and healthy individuals (appendix p 7). The 
number of observed species or operational taxonomic 
units was significantly greater in healthy individuals 
(median 201, IQR 168–237) than in patients with 
COPD (181, 152–218; p<0·0001). The α diversity (microbial 
diversity within a sample) was reduced in patients with 
COPD versus healthy individuals (appendix p 19). These 
differences were observed after correction for age, sex, 
centre, batch effect, packyear history, and GOLD grades 
(appendix p 19). No significant difference in α diversity 
was observed between patients with COPD with and 
without inhaled corticosteroids treatment (appendix p 8). 
The analysis of β diversity (microbial composition 
dissimilarity between samples) showed no significant 
difference between patients with COPD and healthy 
individuals or between patients with and without inhaled 
corticosteroids treatment after adjustment for age, sex, 
centre, batch effect, packyear history, and GOLD grades 
(appendix pp 9–10).
Of the 26 phyla detected in samples of both patients with 
COPD and healthy individuals, the most abundant were 
Bacteroidetes (mean relative abundance 43·0%, median 
46·7% [IQR 26·2–58·9]) followed by Firmicutes (24·5%, 
21·7% [15·9–30·7]), Proteobacteria (20·3%, 13·9% 
[7·4–25·4]), Actinobacteria (6·6%, 3·0% [1·6–6·7]), and 
Fusobacteria (4·1%, 3·4% [1·6–5·7]), comprising approxi
mately 99% of sequences (9852 of 10 000). Comparing 
patients with COPD and healthy individuals, the relative 
abundance of Bacteroidetes and Fusobacteria was 
significantly higher in healthy individuals, whereas 
Firmicutes, Proteobacteria, and Actinobacteria were more 
abundant in patients with COPD (figure 2A, appendix 
p 20). Among the phyla with less than 1% relative 
abundance, only Saccharibacteria (formerly known as 
TM7) and Spirochaetes (both higher in healthy 
individuals) were significantly different between patients 
with COPD and healthy individuals (appendix p 20). The 
relative abundances of two phyla were significantly 
different in patients with COPD with versus without 
inhaled corticosteroids treatment: Bacteroidetes (mean 
34·6%, median 35·3% [IQR 15·3–50·4], vs 43·1%, 47·9% 
[24·5–58·8]; p=0·0036) and Proteobacteria (25·0%, 
18·2% [7·8–33·4], vs 20·2%, 13·4% [7·6–24·9]; p=0·037; 
figure 2B, appendix p 25).

Of the 704 detected genera, Prevotella was the most 
abundant (mean 37·7%, median 38·4% [IQR 20·1–54·6]) 
and was significantly lower in patients with COPD 
(33·2%, 33·5% [14·5–49·4]) than in healthy individuals 
(45·3%, 47·7% [31·1–60·7]; p<0·0001), whereas 
Streptococcus, at mean 10·5% (median 6·9% [3·3–13·8]) 
of total reads, was more abundant in patients with 
COPD (12·2%, 8·6% [3·8–15·8]) than in healthy 

Figure 1: Flow diagram of sample processing
COPD=chronic obstructive pulmonary disease. ICS=inhaled corticosteroids.

574 brush samples 

7 did not have enough extracted DNA and RNA

567 sent for 16S rRNA sequencing

21 excluded (sequencing depth 
<10 000 reads)

567 sent for host RNA sequencing

546 used for further analyses
339 from patients with COPD

192 with ICS treatment
147 without ICS treatment

207 from healthy individuals

446 used for further analyses
257 from patients with COPD

136 with ICS treatment
121 without ICS treatment

189 from healthy individuals

121 excluded (sequencing depth 
<10 000 000 reads)
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individuals (7·7%, 5·3% [3·0–10·1]; p<0·0001). 
Veillonella (8·0%, 7·2% [3·9–11·0], of total reads) and 
Haemophilus (4·1%, 2·6% [1·1–4·8]) showed similar 
relative abundances in health and disease (figure 2C, E). 
Pairwise correlation of the top four genera in 
samples, as well as Moraxella, are presented in the 
appendix (p 11). We also included Moraxella because we 
observed that its relative abundance (1·60%, 0·04% 
[0·01–0·11], overall) was significantly different in 
patients with COPD (2·30%, 0·05% [0·02–0·14]) and 
healthy participants (0·39%, 0·02% [0–0·07]; p<0·0001). 
Prevotella abundance was negatively correlated with 
three genera, Streptococcus, Haemophilus, and Moraxella, 
each of which includes notable respiratory tract 
pathogens. In total, 50 genera were significantly 
differentially represented in patients with COPD versus 
healthy individuals, on the basis of the WilcoxonMann
Whitney tests and FDRcorrected p values, with 17 more 
abundant in patients with COPD and 33 more abundant 
in healthy individuals (appendix pp 21–24). Prevotella 
and Veillonella were significantly more abundant in 
patients with COPD without inhaled corticosteroids 
treatment than in those treated with inhaled 
corticosteroids (figure 2D, appendix p 25).

We modelled phyla and genera that were significantly 
different between patients with COPD and healthy 
individuals or between patients with and without inhaled 
corticosteroids treatment, after controlling for possible 
confounding factors. All phyla except Spirochaetes 
remained significantly different between patients 
with COPD and healthy individuals (appendix p 20). 
Bacteroidetes was the only phylum that remained 
significantly lower in patients with COPD with inhaled 
corticosteroids treatment than in those without inhaled 
corticosteroids treatment (estimate 0·08, 95% CI 
0·03–0·12; p=0·015; appendix p 25). Additionally, Bacteroi
detes had the largest effect size among phyla (0·40 for 
patients with COPD vs healthy individuals, and 0·23 for 
patients receiving inhaled corticos teroids vs those not 
receiving inhaled corticosteroids; appendix pp 20, 25). Of 
50 genera with a significant difference between patients 
with COPD and healthy individuals, 14 remained 
significant (nine were more abundant in patients with 
COPD; appendix pp 21–24). Prevotella was the only genus 
that remained significantly higher in patients with COPD 
without inhaled corticosteroids treatment than in those 
treated with inhaled corticosteroids (0·07, 0·03–0·11; 
p=0·021; appendix p 25). Additionally, Prevotella had the 
largest effect size among genera (0·40 for patients with 
COPD vs healthy individuals, and 0·23 for patients 
receiving inhaled corticosteroids vs those not receiving 
inhaled corticosteroids; appendix pp 21–25).

We did microbial community network analyses using 
samples of both patients with COPD and healthy 
individuals to investigate the cooccurrence or coexclusion 
network of bacterial genera in the lung microbiome. Four 
distinct communities were obtained (appendix p 12). All 

genera were positively associated with each other 
apart from Prevotella, which was inversely related to 
Streptococcus, Moraxella, Staphylococcus, Propionibacterium, 
Corynebacterium, Acinetobacter, and Pseudomonas (all had 

Patients with COPD 
(n=339)

Healthy participants 
(n=207)

p value

Sex ·· ·· 0·11

Female 105 (31%) 78 (38%) ··

Male 234 (69%) 129 (62%) ··

Age, years 65 (61 to 70) 60 (52 to 66) <0·0001

Body-mass index 27·94 (24·44 to 30·76) 27·73 (24·77 to 30·83) 0·78

Smoking status ·· ·· NA

Never smoker 0 31 (15%) ··

Ex-smoker 339 (100%) 176 (85%) ··

Pack-year history 38·0 (26·1 to 54·0) 22·5 (8·7 to 35·0) <0·0001

Physical function (walking ability), m 462 (390 to 520) 540 (471 to 610) <0·0001

Post-bronchodilator FEV1, L 1·92 (1·54 to 2·43) 3·21 (2·74 to 3·68) <0·0001

Post-bronchodilator FEV1, % 
predicted

71·48% (57·81 to 86·07) 108·20% (99·34 to 119·50) <0·0001

Post-bronchodilator FEV1/FVC ratio, 
%

58·17% (49·96 to 64·86) 78·98% (75·44 to 82·19) <0·0001

Reversibility, mL 146 (70 to 240) 100 (20 to 180) <0·0001

TLCO/VA 1·10 (0·87 to 1·35) 1·46 (1·32 to 1·64) <0·0001

GOLD grades ·· ·· NA

1 112 (33%) NA ··

2 185 (55%) NA ··

3 42 (12%) NA ··

4 0 NA ··

Modified MRC dyspnoea scale, mode 
(range)

1 (4) 0 (2) <0·0001

BODE index, mode (range) 1 (8) 0 (3) <0·0001

Treatment ·· ·· NA

LABA alone 14 (4%) 0 ··

LAMA alone 29 (9%) 0 ··

ICS alone 12 (4%) 0 ··

ICS combined with LABA or LAMA 84 (25%) 0 ··

Combined LABA, LAMA, and ICS 96 (28%) 0 ··

Total cell count, × 10⁶ cells per g 
sputum

1·28 (0·49 to 3·48) 0·75 (0·40 to 1·56) 0·0025

Sputum neutrophil count 77·00% (63·06 to 86·00) 55·13% (40·75 to 76·25) <0·0001

Sputum eosinophil count 1·75% (0·31 to 5·00) 0·50% (0 to 1·75) <0·0001

Blood white cell count, × 10⁹ cells 
per L

7·20 (6·10 to 8·41) 6·40 (5·50 to 7·30) <0·0001

Blood neutrophil count, × 10⁹ cells 
per L

4·50 (3·60 to 5·63) 3·90 (3·10 to 4·80) <0·0001

Blood eosinophil count, × 10⁹ cells 
per L

0·16 (0·10 to 0·27) 0·13 (0·08 to 0·20) <0·0001

Lung density, Perc15 HU –918·4 (–931·9 to –906·3) –907·0 (–914·4 to –890·9) <0·0001

Wall area, %* 63·45 (59·27 to 68·21) 59·65 (54·95 to 65·93) 0·035

Data are n (%) or median (IQR), unless otherwise specified. BODE=body-mass index, airflow obstruction, dyspnoea, and 
exercise. COPD=chronic obstructive pulmonary disease. FEV1=forced expiratory volume in 1 s. FVC=forced vital capacity. 
GOLD=Global Initiative for Chronic Obstructive Lung Disease. ICS=inhaled corticosteroids. LABA=long-acting 
β agonists. LAMA=long-acting muscarinic antagonists. MRC=Medical Research Council. NA=not applicable. 
Perc15 HU=15th percentile Hounsfield units. TLCO/VA=transfer factor for carbon monoxide/alveolar volume. 
*Data were available for only 25 healthy individuals.

Table 1: Clinical characteristics of patients with COPD and healthy individuals
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significantly higher relative abundance in patients with 
COPD than in healthy individuals). The coexclusion 
pattern of Streptococcus and Moraxella with Prevotella 

remained significant when microbial community network 
analyses were done by use of samples from either patients 
with COPD or healthy individuals alone (data not shown).

We used linear discriminant analysis to identify which 
bacterial groups best distinguished the microbiomes 
from healthy individuals and patients with COPD 
(appendix p 13). Among those genera significantly 
differentially detected, Prevotella, Streptococcus, and 
Moraxella contributed the greatest differences between 
patients and controls (figure 3A) and between patients 
with COPD with and without inhaled corticosteroids 
treatment (figure 3B).

We investigated the association of Prevotella with clinical 
characteristics using generalised linear mixed models 
after adjusting for age, sex, centre, batch effect, and 
packyear history. The relative abundance of Prevotella 
was positively associated with postbronchodilator FEV1, 
postbronchodilator FEV1/FVC ratio, and 6min walk 
distance but negatively associated with modified MRC 
dyspnoea scale and BODE index in all patients with COPD 
(appendix p 14). Similar associations between Prevotella 
and clinical characteristics were observed in patients with 
COPD treated with inhaled corticosteroids (appendix p 14). 
By contrast, we observed no significant associations 
between Prevotella abundance and clinical characteristics 
when patients with COPD not treated with inhaled 
corticosteroids were considered alone (appendix p 14). 
Neither Moraxella nor Streptococcus abundance were 
significantly associated with the clinical characteristics 
associated with Prevotella (data not shown). Modified MRC 
dyspnoea scale and BODE index scores for all participants 
are shown in the appendix (p 15).

Of the 546 bronchial brush samples used for 
microbiome analysis, 446 also had assessable RNASeq 
data, including data from 257 patients with COPD 
(136 with and 121 without inhaled corticosteroids 
treatment) and 189 healthy individuals. 7399 lung genes 
were differentially expressed (and met FDR criteria) 
between samples of patients with COPD and those of 
healthy individuals (3813 genes upregulated in patients 
with COPD) after correction for age, sex, centre, batch 
effect, packyear history, and GOLD grades (data not 
shown). Pathway analysis of these differentially expressed 
genes revealed that 60 genes (45 genes upregulated in 
patients with COPD) were involved in TNF signalling 
pathways (appendix p 26).

472 genes were differentially expressed between samples 
of patients with COPD treated with inhaled corticosteroids 
and those of patients not treated with inhaled 
corticosteroids (230 upregulated in patients treated with 
inhaled corticosteroids) by use of the same corrections 
and FDR criteria previously applied (appendix pp 27–32). 
However, common pathways for these genes were not 
identified.

A linear mixed model analysis of the lung 
transcriptional signal from bronchial brushings versus 
Prevotella abundance in combined samples of patients 

Patients treated with ICS 
(n=192)

Patients not treated with ICS 
(n=147)

p value

Sex ·· ·· 0·91

Female 59 (31%) 46 (31%) ··

Male 133 (69%) 101 (69%) ··

Age, years 67 (61 to 71) 64 (60 to 69) 0·031

Body-mass index 27·80 (24·46 to 31·12) 28·07 (24·38 to 30·64) 0·69

Smoking status ·· ·· NA

Never smoker 0 0 ··

Ex-smoker 192 (100%) 147 (100%) ··

Pack-year history 36·75 (23·81 to 49·88) 40·00 (28·00 to 56·00) 0·023

Physical function (walking ability), 
m

436·0 (360·8 to 500·5) 486·0 (425·0 to 550·0) <0·0001

Post-bronchodilator FEV1, L 1·78 (1·42 to 2·28) 2·09 (1·73 to 2·62) <0·0001

Post-bronchodilator FEV1, % 
predicted

67·48 (52·98 to 79·93) 76·07 (66·64 to 91·48) <0·0001

Post-bronchodilator FEV1/FVC 
ratio, %

55·60 (47·62 to 62·19) 61·76 (53·24 to 65·99) <0·0001

Reversibility, mL 130 (70 to 220) 160 (70 to 270) 0·17

TLCO/VA 1·06 (0·85 to 1·30) 1·15 (0·94 to 1·40) 0·03

GOLD stages ·· ·· 0·0003

1 49 (26%) 63 (43%) ··

2 110 (57%) 75 (51%) ··

3 33 (17%) 9 (6%) ··

4 0 0 ··

Modified MRC dyspnoea scale, 
mode (range)

1 (4) 1 (3) <0·0001

BODE index, mode (range) 1 (8) 0 (8) <0·0001

Treatment ·· ·· NA

LABA alone 79 (41%) 14 (10%) ··

LAMA alone 5 (3%) 29 (20%) ··

ICS alone 12 (6%) 0 ··

ICS combined with LABA or 
LAMA

84 (44%) 0 ··

Combined LABA, LAMA, and ICS 96 (50%) 0 ··

Total cell count, × 10⁶ cells per g 
sputum

1·28 (0·44 to 3·60) 1·27 (0·57 to 3·41) 0·80

Sputum neutrophil count 77·00 (61·00 to 87·25) 77·00 (66·00 to 84·25) 0·87

Sputum eosinophil count 1·75 (0·25 to 5·00) 2·00 (0·50 to 5·00) 0·63

Blood white cell count, × 10⁹ cells 
per L

7·22 (6·28 to 8·60) 7·05 (5·78 to 8·10) 0·036

Blood neutrophil count, × 10⁹ cells 
per L

4·60 (3·66 to 5·81) 4·21 (3·35 to 5·53) 0·017

Blood eosinophil count, × 10⁹ cells 
per L

0·16 (0·10 to 0·28) 0·16 (0·10 to 0·27) 0·53

Lung density, Perc15 HU –920·6 (–934·7 to –909·0) –912·5 (–925·3 to –900·0) 0·015

Wall area, %* 64·19 (59·30 to 68·37) 63·14 (58·26 to 67·45) 0·44

Data are n (%) or median (IQR), unless otherwise specified. BODE=body-mass index, airflow obstruction, dyspnoea, and 
exercise. COPD=chronic obstructive pulmonary disease. FEV1=forced expiratory volume in 1 s. FVC=forced vital capacity. 
GOLD=Global Initiative for Chronic Obstructive Lung Disease. ICS=inhaled corticosteroids. LABA=long-acting 
β agonists. LAMA=long-acting muscarinic antagonists. MRC=Medical Research Council. NA=not applicable. 
Perc15 HU=15th percentile Hounsfield units. TLCO/VA=transfer factor for carbon monoxide/alveolar volume. 
*Data were available for only 25 healthy individuals.

Table 2: Clinical characteristics of patients with COPD who were or not treated with ICS
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with COPD and healthy individuals revealed no 
significant associations with use of the same corrections 
and FDR criteria (data not shown). Similarly, we observed 

no significant associations between gene expression and 
Prevotella abundance when patients with COPD 
and healthy individuals were analysed separately (data 

Figure 2: Comparison of 
relative abundance (%) 
of major phyla and genera 
within the lung microbiome
p values were computed with 
two-sided Wilcoxon-Mann-
Whitney tests. (A and C) 
Comparison between patients 
with COPD and healthy 
individuals. (B and D) 
Comparison between patients 
with COPD treated with ICS 
and without ICS. 
(E) Inter-subject variation of 
relative abundance of major 
genera in healthy individuals 
and patients with COPD 
treated with ICS and without 
ICS; darker areas with 
horizontal line represent 
median (IQR), and lighter 
areas represent the 
distribution of the relative 
abundance of genera across 
samples. COPD=chronic 
obstructive pulmonary 
disease. ICS=inhaled 
corticosteroids.
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not shown). A list of the top 10 upregulated and 
downregulated genes linearly associated with increasing 
relative abundance of Prevotella in combined samples of 
patients with COPD and healthy individuals is shown in 
the appendix (p 33).

We observed 327 positive and 202 negative associations 
between lung gene expression and Prevotella abundance in 
samples from patients with COPD treated with inhaled 
corticosteroids, using the same corrections and FDR 
criteria (appendix pp 34–40). The top 100 genes with 
significant positive and negative associations with Prevotella 
abundance are shown in the appendix (p 16). Again, no 
significant associations were observed between bronchial 
transcriptional signals and Prevotella abundance when 
patients with COPD without inhaled corticosteroids 
treatment were considered separately (data not shown).

We did a pathway analysis of genes showing significant 
association with Prevotella in samples from patients 
with COPD treated with inhaled corticosteroids. 
64 genes (53 downregulated and 11 upregulated) were 
involved in eight KEGGdefined pathways, including 
metabolic pathways, protein processing in endoplasm, 
biosynthesis of antibiotics, carbon metabolism, tight 
junction, bio synthesis of amino acids, glycolysis and 
gluco neogenesis, and glyco sphingolipid biosynthesis 
(appendix p 17).

Similar linear mixed model and pathway analyses were 
done with Streptococcus and Moraxella abundance versus 
lung transcriptional signals from bronchial brushings. 
No significant associations were found with Streptococcus 
(data not shown). However, 192 positive and 35 negative 
associations (appendix pp 41–43) were observed with 
Moraxella in samples from patient with COPD with 
inhaled corticosteroids treatment; of these, 15 genes were 
enriched in TNF and IL17 signalling pathways 
(appendix p 18).

We observed no significant associations between each 
of the genera presented in the microbial network and the 
lung transcriptional signal from bronchial brushings 
(data not shown).

Discussion
To our knowledge, this study is the first to characterise 
airway host–microbiome relationship in COPD using 
host RNA and microbial DNA isolated from the same 
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Figure 3: Bacterial groups with the most influence on distinguishing healthy 
from COPD microbiome (A) and the microbiome of patients with COPD 
treated with ICS from those without ICS (B)
Each of the circles in the cladogram represents a bacterial taxa, and each ring a 
taxonomy level starting with kingdom in the innermost circle, followed by 
phylum, class, order, family, and genus, in the outermost circle. Green and red 
circles and zones represent differentially enriched bacterial taxa based on LDA 
score (>4). Yellow circles represent bacterial taxa with no significant differential 
enrichment between groups (LDA score <4). Different shades of colour intensity 
indicate different taxonomy levels. Each circle’s diameter is proportional to the 
taxon’s abundance and correlated with LDA score. COPD=chronic obstructive 
pulmonary disease. ICS=inhaled corticosteroids. LDA=linear discriminant analysis.



Articles

www.thelancet.com/microbe   Vol 2 July 2021 e308

bronchial brush samples. The main bacterial genera 
differentiating the airway microbiomes between patients 
with mildtomoderate COPD and healthy individuals 
were Prevotella, Streptococcus, and Moraxella. The relative 
abundance of Prevotella had a significant negative 
association with Streptococcus and Moraxella. Prevotella 
abundance was significantly greater in healthy individuals, 
and its abundance was significantly associated with better 
lung function and reduced symptoms in patients with 
COPD. By contrast, Streptococcus and Moraxella abundance 
was significantly higher in patients with COPD than in 
healthy individuals and was not significantly associated 
with clinical characteristics. Significant associations were 
observed between host lung gene expression profile and 
Prevotella and Moraxella, but not Streptococcus. Among 
these bacterial genera, Prevotella abundance was much 
greater in the airway microbiome, and thus was the genus 
that had the most discriminatory power between the 
healthy and COPD microbiome. Likewise, Prevotella 
was the only genus that significantly distinguished 
between patients with COPD with and without inhaled 
corticosteroids treatment.

The decrease in Prevotella abundance in patients 
treated with inhaled corticosteroids was associated with 
increased severity of COPD. The effect of inhaled 
corticosteroids on the lung microbiome of patients with 
COPD is poorly understood; however, growing evidence 
exists that inhaled corticosteroids can alter airway 
microbiome in individuals with asthma.13,14 Our findings 
support the view that clinical characteristics of COPD 
and gene expression are related to microbial dysbiosis. 
We cannot say whether changes in the airway microbiome 
precede or are a consequence of worsening lung disease, 
or what contribution inhaled corticosteroids make 
to this balance. Nonetheless, dynamic host–microbiota 
interactions are likely to be important and might amplify 
airway inflammation, reduce resistance to acute and 
chronic infection, and potentiate lung damage.

Host gene expression and microbiome associations have 
been investigated in several studies.6,15–18 Previous studies 
using bronchial brush samples have analysed either lung 
transcriptome or microbiome profile independently.9,19–21 In 
our study, we examined both host transcriptome and 
microbiome interaction from the same bronchial 
brush samples of patients with COPD. Prevotella and 
Moraxella were significantly associated with host airway 
transcriptome profiles, particularly genes involved in 
immunity and inflammation, suggesting that these 
bacterial genera might play a leading role in airway host–
microbiome interaction in COPD. The pathway analysis 
suggests that Prevotella might promote innate immunity 
and reduce lung epithelial cell permeability by modulating 
the expression of tight junction protein. On one hand, the 
promotion of tight junction function observed with 
Prevotella could be due to a direct effect of Prevotella upon 
the epithelium, or through immunomodulatory response22 
due to upregulation of tolllike receptors (TLRs). On the 

other, Moraxella abundance was associated with an 
epithelial cellderived signature of IL17 and TNF 
inflammation23 that is likely to be due to the effect of 
lipopolysaccharides on TLRs. The reciprocal relationship 
between Prevotella and Moraxella might be due to 
their differential abundance and the different types of 
lipopolysaccharides they produce, which have dissimilar 
TLR stimulating capacity.24 Further investigation, for 
example by use of airliquid interface epithelial cultures 
with Prevotella and Moraxella, is required to understand 
the microbial effect on epithelial repair.

Associations between Proteobacteria abundance and 
COPD severity and exacerbations have been reported 
previously.3,8 However, a potential homoeostatic function 
for Prevotella in the healthy airway has not yet been shown. 
A few strains of Prevotella are known to cause opportunistic 
endogenous infections,25 but they are generally considered 
commensal bacteria. The high abundance of Prevotella in 
healthy individuals in our study suggests that a mutualistic 
relationship has coevolved between humans and 
Prevotella, where colonisation by these bacteria is tolerable 
to the respiratory immune system. Yadava and colleagues26 
have used inhaled lipopolysaccharides and elastase to 
induce a chronic lung inflammation, resembling COPD, 
in mice; this resulted in reduced abundance of Prevotella 
and an increase in Pseudomonas and Lactobacillus. This 
finding suggests that chronic inflammation might have a 
direct effect upon Prevotella, reducing its abundance by 
forming a hostile microenvironment. Microaspiration is 
thought to cause the seeding of healthy lungs with upper 
respiratory tract microbiota, such as Prevotella.27 The weak 
TLR stimulating capacity of Prevotella mediates a lowgrade 
inflammatory process that will cause Prevotella removal 
but might also protect the lung from invasion by respiratory 
pathogens and chronic disease under homoeostatic 
conditions.

Our study is a large multicentre study, but some 
limitations need to be highlighted. We used protected 
bronchial brushes, which minimise upper airway 
contamination,28,29 but we cannot exclude the possibility 
of minor contamination from the oropharynx. We did 
not record the frequency of exacerbations or the 
specific inhaled corticosteroids formulations, and these 
factors could influence the microbial composition and 
transcriptomic patterns. Our findings are only associative 
and cannot show causality. Similar to many other studies, 
we considered COPD as a single disease entity. However, 
COPD is a heterogeneous disease, in which the diverse 
components of the microbiota could be involved in 
different disease phenotypes. We did not investigate 
protein expression in the bronchoscopic samples; 
evaluation of both the transcriptome and proteome, 
along with the use of other socalled omic approaches, 
could enhance our understanding of the host–microbiota 
interface and its role in disease pathogenesis.

In summary, our bronchial brush data indicate that 
Prevotella was the genus that most robustly distinguished 
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samples of patients with mildtomoderate COPD from 
those of healthy individuals. Prevotella was associated 
with a distinct host bronchial gene expression, which 
involved promotion of tight junction function. Further 
insights into the biological mechanisms by which the 
microbiome influences alterations in host transcriptome 
profile, or vice versa, will inform disease understanding 
and the development of novel therapeutic strategies for 
COPD.
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