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Single-nucleus RNA-seq2 reveals functional
crosstalk between liver zonation and ploidy
M. L. Richter 1,9, I. K. Deligiannis1,9, K. Yin1,2, A. Danese 3, E. Lleshi2, P. Coupland 2, C. A. Vallejos 4,

K. P. Matchett 5, N. C. Henderson 4,5, M. Colome-Tatche 3,6,7✉ & C. P. Martinez-Jimenez 1,8✉

Single-cell RNA-seq reveals the role of pathogenic cell populations in development and

progression of chronic diseases. In order to expand our knowledge on cellular heterogeneity,

we have developed a single-nucleus RNA-seq2 method tailored for the comprehensive

analysis of the nuclear transcriptome from frozen tissues, allowing the dissection of all cell

types present in the liver, regardless of cell size or cellular fragility. We use this approach to

characterize the transcriptional profile of individual hepatocytes with different levels of ploidy,

and have discovered that ploidy states are associated with different metabolic potential, and

gene expression in tetraploid mononucleated hepatocytes is conditioned by their position

within the hepatic lobule. Our work reveals a remarkable crosstalk between gene dosage and

spatial distribution of hepatocytes.
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The liver performs a wide variety of physiological functions,
including the metabolism of xenobiotics1–5 and the reg-
ulation of energy homeostasis6,7, among others. These

functions are mostly performed by parenchymal hepatocytes
which constitute about 70% of the liver mass. Liver non-
parenchymal cells (NPCs), namely, liver sinusoidal endothelial
cells, biliary cells, Kupffer cells, hepatic stellate cells, and immune
cell populations constitute the remaining 30% of cell types. All
these cells are organized in repetitive structures known as liver
lobules8,9. The analysis of individual cells by single-cell genomics
is changing our understanding of liver homeostasis and patho-
genic conditions by taking into account their spatial
distribution10–16. However, single-cell isolations from the liver
require harsh enzymatic or mechanical dissociation protocols that
perturb mRNA levels17. In particular, the two-step collagenase
perfusion generally used to isolate hepatocytes from human livers
leads to the downregulation of liver-specific transcription factors
such as Hnf4a, Cebpa, Hnf1a, and Foxa318, as well as their
downstream target genes such as Cyp2c9, Cyp2e1, Cyp2B6,
Cyp2D6, Cyp3A5, and Cyp3A417,19.

Single-nucleus RNA-seq (snRNA-seq) has emerged as a com-
plementary approach to study complex tissues at single-cell
level20,21, including brain21–27, lung28, kidney29–32, liver33, and
heart34,35 in mouse and human frozen samples36,37. However,
there are no snRNA-seq methods tailored for frozen liver tissues.
The nuclear transcriptome of individual cells has shown a high
correlation to cytoplasmic RNA23,38, indicating that snRNA-seq
is a powerful tool to study tissues from which intact and fresh
cells are difficult to obtain. Here, we have developed a robust
single-nucleus RNA-seq2 (snRNA-seq2) approach that relies on
efficient lysis of the nuclear membrane. Our approach permits the
unbiased characterization of all major cell types present in the
liver from frozen archived samples with high resolution.

With snRNA-seq2, we explore at single-cell resolution, a
defining feature of hepatocytes ploidy39–44. At birth, all hepato-
cytes are diploid, with a single nucleus containing two copies of
each chromosome. During development, polyploidization gra-
dually increases, leading to hepatocytes with several levels of
ploidy. Hepatocyte ploidy depends on the DNA content of each
nucleus (e.g., diploid, tetraploid, etc.) and the number of nuclei
per hepatocyte (e.g., mono- or bi-nucleated)41. Here we present a
thorough analysis of diploid (2n) and tetraploid (4n) nuclei from
the mouse liver and demonstrate that ploidy is an additional
source of hepatocyte heterogeneity, linking gene dosage and liver
zonation.

Results
snRNA-seq2 allows deep and robust characterization of single
nuclei isolated from frozen livers. In order to explore archived
samples associated with health and disease conditions, we have
developed a robust methodology that combines transcriptomics
and efficient low-volume reactions in single nuclei isolated from
frozen livers.

Purified diploid (2n) and tetraploid (4n) nuclei were FACS
sorted according to their genome content, using a gating strategy
as previously described39 and followed by a modified version of
Smart-seq chemistry using liquid handling robots for volume
miniaturization (Fig. 1A, see “Methods”). This approach allows
the detection of over 550 000 reads per nucleus, leading to an
average detection of more than 11 000 transcripts (~4000 genes)
per nucleus (Supp. Fig. 1). As expected for the nuclear
transcriptome, the percentage of reads mapping to intronic
regions was more than 68%, and the ribosomal reads were 1.2%
(Fig. 1B). To show the robustness and reproducibility of this
method, four different mice of three months old and C57BL/6J

background were used (Animal ID). Different nuclei isolations
were performed from the same liver (Plate ID). Two technical
replicates were used to assess technical variability due to
sequencing and were removed for downstream analysis (Tech-
nical replicate) (Supp. Fig. 1A–D, Supp Dataset 1 and
“Methods”). Additionally, ERCC RNA spike-in mix was used to
address technical noise and account for plate effects (including
library preparation and sequencing)45,46. ERCC normalization
was used to make counts comparable across cells and minimize
results purely driven by ploidy47–50 (“Methods”; Supp. Fig. 1A).
SnRNA-seq2 detected approximately 4000 genes per nucleus,
which is a high number of genes detected per nucleus compared
with other single-cell approaches in which intact cells are isolated
from livers12,51,52 (Fig. 1C and Supp. Fig. 1E). Furthermore, our
approach showed a Pearson correlation of 0.62 between gene
expression in the nuclei using our snRNA-seq2 and scRNA-seq
from intact cells isolated from fresh livers (Supp. Fig. 1F). This
correlation shows that single-nucleus RNA-seq2 is a robust and
reliable approach to study transcriptional profiles of individual
cells from archived frozen tissues20,23,25,37,53–55.

The main improvement of our approach relies on the addition
of a supplementary lysis buffer compatible with the generation of
full-length cDNA and library preparation without the need for
additional clean-up steps. This second lysis buffer (LB2) is
compatible with a wide range of commercially available platforms
and chemistries, including C1 Fluidigm (Fluidigm), well-plate
approaches combined with liquid handling robots (Mosquito HV,
TTP Labtech), as well as both SMARTer and NEBNext
commercially available chemistries (Supp. Fig. 2 and Supp.
Dataset 2). For instance, we detected 3.6-fold more genes per
nucleus with our additional LB2 compared with classic
approaches using SMARTer chemistry (Supp. Fig. 2C, D) and
snRNA-seq2 performed better than other droplet-based
approaches (Supp. Fig. 2E, F).

T-distributed stochastic neighbor embedding (t-SNE) was used
to visualize nuclei FACS-sorted in an unbiased manner (Fig. 1D).
Low-resolution Louvain clustering showed that the nuclei were
clustering into two groups (0, 1), corresponding to hepatocytes
and non-hepatocyte cells (Fig. 1D, left). After higher resolution
clustering and identification of the top differential expressed
genes between clusters, we identified hepatocytes (64.3%),
hepatobiliary cells (10.9%), Kupffer and dendritic cells (APCs,
4%), endothelial cells (5.2%), stellate cells (2.3%), and lympho-
cytes (13.1%) as main cell clusters (Fig. 1D, right and Fig. 1E;
Supp. Fig. 1F, G, Supp. Dataset 1 and Supp. Dataset 2)11,12,52,56.
The expression distribution of key markers characteristic of those
cell types showed that all liver cell populations can be identified
with this methodology (Fig. 1F). Additionally, visualization of key
representative markers such as Cyp27a1, Ppara, and Pck1 for
hepatocytes; Sspn, Cmss1, and Epcam for hepatobiliary cells;
Plekhg1, Stab2, and Ptprb for endothelial cells; Clec4f, Cd5l, and
Slc40a1 for APCs; Bcl2, Skap1, and Gata3 for lymphocytes; and
Reln, Ecm1, and Ldb2 for stellate cell showed that transcriptional
heterogeneity can be captured from frozen liver tissues for each
cell type (Fig. 1G). Higher resolution clustering on non-
hepatocytes identified additional three cell types including
Epcam-positive epithelial cells (0.73%), and different sub-groups
of lymphocytes, including T—(4.00%), Plasma B—(4.61%), and
B-cells (4.49%) (Fig. 1D, right; Supp. Fig. 3, Supp. Dataset 3 and
Supp. Dataset 4).

Further in-depth characterization of liver cell populations
revealed additional features related to their genome content and
respective ploidy levels. Heat map of the top five differentially
expressed genes showed that hepatocytes and hepatobiliary cells
were mainly composed of 2n and 4n nuclei while other cell types
were primarily associated to 2n nuclei (Fig. 2A and Supp. Fig. 4A).
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Consistent with the polyploid nature of hepatocytes39,57, we
found as expected, that the hepatocyte cluster was enriched with a
mixture of 2n and 4n nuclei (Fig. 2A). Nonetheless, few 4n nuclei
were found in the non-hepatocyte clusters. Thus, we investigated
whether cell cycle state could explain the presence of 4n nuclei in
non-hepatocyte clusters (Fig. 2B and Supp. Fig. 4B–D)45,58,59.

Cyclone was used to identify nuclei associated with G1, G2/M,
and S phase of cell cycle59. As expected in the liver tissue, the
majority of nuclei were in G1 phase (Fig. 2B Supp. Fig. 4B–D).
This resulted in 94.5% of the hepatocyte cluster assigned to G1
phase, while 85.5% of nuclei in the non-hepatocyte cluster were in
G1 phase. The number of 4n nuclei in the non-hepatocyte cluster
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was below 7%, which could be explained either by cell cycle stage
(11 nuclei were in division) or technical bias during FACS sorting
(e.g., nuclei tend to clump together). Therefore, FACS sorting of
nuclei according to their DNA content is a robust and accurate
strategy to analyze hepatocytes with different levels of ploidy39.

These results demonstrate that our method is highly sensitive
with regards to the identification of the main cell types and
simultaneous examination of the cellular heterogeneity present in
intact frozen liver tissues.

snRNA-seq2 uncovers transcription factors and rate-limiting
enzymes involved in chronic liver disease. In order to investigate
whether the nuclear transcriptome can be used to address func-
tional responses in the context of health and disease, we studied
the expression levels of key liver-specific transcription factors
(e.g., Hnf4a, Ppara, Mlxpl/ChREBP, and Cebpa), nuclear recep-
tors (e.g., Rxa, Nrfl2/PXR, Nr1i3/CAR, and Nrfh4/FXR) and
coactivators (e.g., Ppargc1a/PGC1A, Crebbp/CBP/p300, and
Ncoa1/SRC-1)1–3,6,60 (Fig. 2C and Supp. Fig. 5A). Our approach
allowed deep characterization of the expression levels of upstream
metabolic regulators in hepatocytes bearing two (2n) and four
(4n) complete genomes. We inspected the gene expression levels
of key transcription factors and downstream effectors between 2n
and 4n nuclei isolated from hepatocytes (Fig. 2D and Supp.
Fig. 5)). For instance, peroxisome proliferator-activated receptor
α (Ppara) is the most abundant isoform expressed in hepatocytes
with key roles in lipid metabolism and displays protective roles
against non-alcoholic fatty liver disease (NAFLD)61–63. Ppara
expression was upregulated in 4n nuclei in comparison to 2n
nuclei (Fig. 2D; Supp. Fig. 5, Supp. Dataset 4 and Supp. Data-
set 5). Similarly, Carbohydrate responsive element binding pro-
tein (ChREBP), encoded by the Mlxipl gene, is a carbohydrate-
signaling transcription factor highly expressed in liver and adi-
pose tissues and regulates the synthesis de novo of fatty
acids64–66.Mlxipl is upregulated in 4n hepatocytes (Fig. 2D, Supp.
Fig. 5, Supp. Dataset 4 and Supp. Dataset 5). The precise interplay
between upstream transcription factors and rate-limiting enzymes
during hepatic lipid and glucose metabolism is likely to determine
the final outcome in NAFLD-induced chronic lipid overload.
Therefore, investigating the functional differences between 2n
and 4n hepatocytes is crucial to understand the development and
progression of complex liver disease.

Recently, changes in the expression patterns of transcriptional
regulators and downstream target genes have been associated with
the development and progression of chronic liver diseases such as
NAFLD67,68, non-alcoholic steatohepatitis (NASH)69, fibrosis15,
and human hepatocellular carcinoma (HCC)52. From those
studies, well-known markers associated with chronic liver disease,
were selected to illustrate that our methodology is highly sensitive
to detect those genes from the nuclear transcriptome (Fig. 2E, F
and Supp. Fig. 5). In particular, dysregulation of Akr1d1 has been

associated with human NAFLD68, and upregulation of Yap1
(paralogue of Wwtr1) in human and murine NASH liver70.
Furthermore, Tead1 has been proposed as a marker of NASH in
murine mouse models71, whereas Vegfa, Lifr, and Nrp1 have been
associated with the intrahepatic ligand-receptor signaling network
involved in the pathogenesis of NASH69 (Fig. 2E, F and Supp.
Fig. 5B). Similarly, downregulation of Bicc1 and Fstl1 has been
associated with advance fibrosis72. More recently, Aizarani et al.52

have shown that the perturbation of gene signatures in individual
cells is associated with HCC, for instance, changes in Serpin1c and
Igfbp1 (Fig. 2E, F; Supp. Fig. 5B).

In summary, we are able to detect marker genes associated with
chronic liver disease identified from bulk and single-cell
transcriptomic analysis. This methodology has the potential to
investigate previously archived frozen murine and human
samples, and interrogate how changes in gene expression
correlate with the development and progression of liver diseases,
taking into account cellular crosstalk and signaling pathways.

snRNA-seq2 reveals differential transcriptional variability
between 2n and 4n nuclei. Although recent single-cell tran-
scriptomic studies have addressed cellular heterogeneity in the
liver with respect to hepatocyte zonation11,12,14,15,52, and the
variability among non-parenchymal cells during chronic liver
disease69,73–76, little is known about the cellular heterogeneity in
hepatocytes with different levels of ploidy57,77–79.

Polyploidy occurs in the liver during normal development80,
and is also associated with pathological conditions such as cancer
and chronic liver disease81,82. Moreover, ploidy increases with
age83–85, as well as in chronic liver conditions86. More
specifically, the presence of tetraploid mononucleated hepatocytes
has been associated with poor prognosis in human hepatocellular
carcinoma (HCC)87,88. Accordingly, we further characterized the
transcriptional profile of individual 2n and 4n nuclei from the
hepatocyte cluster and investigated whether their transcriptomic
profile differs among those two populations.

Across all cell types, the median number of genes detected in
4n nuclei was 1.36-fold higher than in 2n nuclei (Supp. Fig. 6A
and “Methods”). In the hepatocyte cluster, a 1.25-fold increase
was detected in 4n compared to 2n nuclei (Fig. 3A), most likely
due to the increase in cellular volume in 4n which has been
associated with an increase in global transcription in larger
cells89. We saw that 2n and 4n nuclei from the hepatocyte cluster
do not separate in tSNE embedding based on their global gene
expression profile (Fig. 3B and Supp. Fig. 6B); thus, they would be
indistinguishable without a prior knowledge of their ploidy status.
Herein, 2n and 4n nuclei from the hepatocyte cluster will be
named 2n and 4n hepatocytes respectively.

Differential expression analysis showed that 2n and 4n
hepatocytes are globally very similar. We detected 248 genes
upregulated and 64 genes downregulated in 4n (Fig. 3C, Supp.

Fig. 1 snRNA-seq2 on frozen tissue identifies and characterizes all major cell types present in the liver. A Schematic representation of the snRNA-seq2
pipeline. Nuclei are isolated from flash-frozen tissue, sorted by genome content in 384 well-plates, and subjected to the generation of full-length cDNA and
sequencing. B Quality control of sequenced data shows the number of raw counts per genome feature in the nuclear transcriptome. C Violin plots
comparing the high number of genes detected using snRNA-seq2 to publicly available single-cell RNA-seq datasets. Light brown: droplet-based methods
(n= 10,395 nuclei [33]; n= 1,026 cells [51]), blue: plate-based approaches (n= 2,496 nuclei snRNA-seq2; n= 1,736 cells [12]; n= 981 cells [51]; n=
12,622 cells [52]). In the violin plot, boxplots indicate median number of genes per method (white dot). The lower and upper ends of the boxes correspond
to first and third quartiles, respectively, while the whiskers extend to minimum (first quartile minus 1.5 × the inter-quartile range (IQR)), and maximum
(third quartile plus 1.5 × IQR). Data points beyond the whiskers are only represented through their density distribution in the surrounding violin plots. For
clearer visualization, the violins are cut at 0. D t-distributed stochastic neighborhood embedding (tSNE) of the nuclei by low-resolution Louvain clusters
(left), with cell-type annotation for all major cell types (middle), and bar plot showing the percentage of all cell types (right) identified by snRNAseq2.
E Stacked violin plot depicting selected illustrative marker genes per cell type (y-axis: scaled, log-transformed, normalized counts). F Percentage of cells
types identified by snRNA-seq2. G tSNE colored by marker gene expression revealed cellular heterogeneity in all major cell population of the mouse liver.
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Fig. 6C, D and Supp. Dataset 5). Only two of the 248 genes
upregulated in 4n had zero counts in the 2n population
(“Methods” and Supp. Fig. 6D, Supp. Dataset 5).

Subsequently, the transcriptional variability was estimated as
the coefficient of variation using log-transformed data90–92 (Supp.
Information). We confirmed that 4n hepatocytes showed a

significantly lower coefficient of variation compared to 2n
hepatocytes (2n are 1.09-times more variable than 4n,
Mann–Whitney U-test, p-value 2.097e−14) (Fig. 3D and Supp.
Dataset 6). Accordingly, the number of highly variable genes
(HVGs) was higher in the 2n hepatocytes compared to the 4n
hepatocytes (Fig. 3D and Supp. Dataset 6).
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In summary, 2n and 4n hepatocytes showed a similar
transcriptional profile in young mice; however, 312 DEGs were
detected between these two cellular states. These results revealed
the concealed cellular heterogeneity present in hepatocytes with
different levels of ploidy.

Tetraploid nuclei show extensive co-expression of liver stem
cell markers. Polyploid hepatocytes have been associated with
terminal differentiation and senescence41. However, a growing
body of evidence indicates that polyploid hepatocytes retain their
proliferative potential79,93–96. To further analyze the functional
characteristics of 2n and 4n hepatocytes, Gene Ontology (GO)
analysis was first performed on significant DEGs (Supp. Fig. 7A
and Supp. Dataset 5). DEG in 2n hepatocytes were enriched in
one category (i.e., small molecule metabolic process), while DEG
in 4n hepatocytes were enriched in twenty different processes
(Supp. Fig. 7A and Supp. Dataset 5). Secondly, we extended our
GO analysis to the top hundred most differentially expressed

genes (Fig. 4A and Supp. Dataset 5). Comparisons between 2n
and 4n hepatocytes showed that 4n hepatocytes were further
enriched in pathways involved in lipid, cholesterol, and xeno-
biotic metabolism (Fig. 4A and Supp. Dataset 5).

In order to further characterize the basal differences between
2n and 4n hepatocytes, we studied the regenerative and
proliferative properties of these two cellular states. It has been
suggested that diploid hepatocytes, located in proximity to the
central vein of the liver lobule, act as stem cells during
homeostasis and in response to injury97. However, it has recently
been shown using a multicolor reporter allele system that
polyploid hepatocytes proliferate in chronically injured
livers79,93,98. Independent studies by Su et al. using AXIN2
lineage tracing have shown that hepatocytes upregulate Axin2
and Lgr5 after injury throughout the liver lobe79,93,98. To
investigate if there are specific subpopulations of cells with stem
cell properties enriched in 2n or 4n hepatocytes, several stem/
progenitor cell-like marker genes were selected, including Icam1,

Fig. 2 snRNA-seq2 allows deep profiling of single nuclei including key liver-specific transcription factors and downstream target genes involved in
healthy homeostasis and chronic liver disease. A Heatmap showing the gene expression of the top five differentially expressed genes in forty randomly
selected nuclei per cell type (colored by log-transformed, normalized counts). Ploidy analysis shows that 4n nuclei are enriched in the hepatocyte cluster.
B Cell cycle analysis using Cyclone shows that the majority of nuclei are in G1 phase. tSNEs colored by ploidy (top), assigned cell cycle phase (middle), and
G1 score (bottom). Table showing the number of nuclei that are in each assigned phase for diploid and tetraploid nuclei from the hepatocyte cluster. C tSNE
colored by the expression of key liver-specific transcription factors involved in liver homeostasis and hepatic function. D Dot plot shows that the expression
levels (color scale) and the percentage (dot size) of cells expressing key transcription factors can be dissected between 2n and 4n nuclei. E tSNEs colored
by the expression of disease-related marker genes, separated into two main categories of liver disease: non-alcoholic fatty liver disease/non-alcoholic
steatohepatitis (NAFLD/NASH) and fibrosis/hepatocellular carcinoma (HCC), showing cellular heterogeneity in different cell populations. F Dot plot
showing the expression of the disease-related marker genes across cell types in young wild-type mice livers.
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Fig. 3 snRNA-seq2 reveals differences in gene expression between diploid and tetraploid hepatocytes. A Scatterplot showing the higher number of
genes per gene-length normalized counts (TPM) detected in 4n hepatocytes compared with 2n hepatocytes (left). The violin plot showing that the number
of genes in 4n nuclei is 1.25-times higher than in 2n hepatocytes (right). B tSNE embedding of the hepatocyte cluster showing that 2n and 4n nuclei are
clustered together. C MA plot showing average logarithmically transformed mean expression (x-axis) versus the log2 fold change (y-axis) for pairwise
comparison between 2n and 4n hepatocytes; 312 differentially expressed genes (DEGs) are depicted with crosses: 64 genes are upregulated in 2n nuclei
(blue) and 248 genes are upregulated in 4n (orange). D Box plot of the coefficient of variation showing the transcriptional variability between 2n (n= 320)
and 4n (n= 741) (left; two-sided Mann−Whitney U-test, *: p-value= 2.09e−14.). Box plots show the median coefficient of variation per ploidy status. The
lower and upper ends of the boxes correspond to first and third quartiles, respectively, while the whiskers extend to minimum (first quartile minus 1.5 × the
inter-quartile range (IQR)), and maximum (third quartile plus 1.5 × IQR). Data points beyond the whiskers are shown as individual points. Bar plot showing
the higher number of highly variable genes (HVGs) that are not differentially expressed (non-DE) in 2n vs 4n (right).
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Afp, Sox9, Epcam, Axin2, Tbx3, Itga6, Tert, Lgr5, and Notch278

(Fig. 4B and Supp. Fig. 7B). Five of these markers, Notch2, Tbx3,
Itga6, Lgr5, and Tert were expressed in more than 40% of the
nuclei analyzed (Supp. Fig. 7C). While we observed that both 2n
and 4n hepatocytes expressed several stem/progenitor markers,
we did not find an enrichment of those genes in diploid

hepatocytes (Fig. 4B and Supp. Fig. 7C). In order to investigate
whether these markers were co-expressed in the same nuclei, the
Jaccard index was used to measure the probability of those genes
being co-expressed in the same nucleus99,100. In particular, the
Jaccard distance measures dissimilarity between genes, and lower
distance indicates a higher probability of co-expression (Fig. 4C).
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With the Jaccard distance one module was identified for Axin2,
Tbx3, Lgr5, Itga6, Tert, and Notch2 (Fig. 4C and “Methods”). This
module showed higher pair-wise similarity independently of gene
expression levels. Additional genes showed higher distance and
lower probability of co-expression: Afp, Epcam, Sox9, and Icam1
(Fig. 4C and “Methods”). Furthermore, the percentage of nuclei
expressing those gene markers was similar in both 2n and 4n
hepatocytes (Supp. Fig. 4C) indicating that 2n and 4n hepatocytes
have similar stem cell marker gene expression profiles. More than
two stem/progenitor markers were co-expressed in both 2n and
4n hepatocytes (Fig. 4B, and Supp. Fig. 4D; “Methods”), strongly
supporting the notion that polyploid hepatocytes have regen-
erative potential. Immunofluorescence (IF)/RNA-FISH co-
detection analysis was used to simultaneously detect beta-
catenin and Lgr5 mRNA signals in the liver tissue (Supp. Fig. 7E).
A higher percentage of Lgr5 positive hepatocytes surrounding the
central vein (CV) was detected compared to the periportal
hepatocytes. These findings are in agreement with previous
observations by Sun et al.93. Quantification of Lgr5 mRNA copies
per nucleus showed no significant differences in expression levels
between 2n and 4n hepatocytes (Supp. Fig. 7E, right), thus
validating our results generated from our snRNA-seq2 analyses.

In summary, no subpopulation of diploid hepatocytes enriched
in stem/progenitor markers was detected in young healthy livers.
Furthermore, polyploid hepatocytes co-express genes associated
with proliferative and regenerative functions, and therefore have
the potential to contribute to organ regeneration and liver
homeostasis.

Changes in expression pattern distribution in 4n nuclei indi-
cate a high capacity for adaptation and regeneration. A focused
analysis on energy homeostasis also revealed changes in the dis-
tribution pattern of key metabolic genes involved in lipid and
glucose metabolism (Fig. 4D–G, Supp. Fig. 8 and Supp. Data-
set 7). Some liver-specific transcription factors showed no change
in mean expression or distribution pattern between 2n and 4n
hepatocytes, for instance, Hnf4a, Nr5a2 (LRH-1), Nr1h4 (FXR),
and Rxa (Fig. 4D). However, Mlxipl (ChREBP), Nr3c1 (GR),
Nr1i2 (PXR), Nr0b2 (SHP), and Nr2f2 (COUPTF-II), and the
coactivators Ncoa1 (SRCa), Crebbp (CBP), and Ppargc1c (PGC1a)
showed a different distribution pattern between 2n and 4n but no
significant changes in mean expression. In some cases, such as
Nr1i3 (CAR), changes in distribution were associated with
upregulation of its expression levels in 4n hepatocytes (Fig. 4D,
Supp. Dataset 5 and Supp. Dataset 7). We further studied critical
regulators of lipid metabolism and found that Cpt1, Acox1, Apob,
and Apoh showed changes in distribution pattern but no sig-
nificant changes in mean expression. Albeit, in Acaca (ACC) and
Alb, we found that their distribution pattern changed and its
expression was downregulated in 4n hepatocytes, while Acox2
was upregulated in 4n hepatocytes.

For genes involved in glucose metabolism, statistically
significant changes in the distribution pattern of Gck, Gk, Slc2a9
(Glut9), Insig1, Insig2, Scap, and Akr1d1 were found (Fig. 4F,

Supp. Fig. 8 and Dataset 7). We observed considerable changes in
the metabolism of xenobiotics and cytochrome P450 superfamily
(Fig. 4G, Supp. Fig. 8 and Supp. Dataset 5). For instance, Cyp4f14,
Cyp2j5, Cyp2d9, and Cyp3a25 showed changes in gene expression
distribution, while Cyp2c70, Cyp7a1, Cyp1a2, Cyp2c50, Cyp2e1,
and Cyp27a1 were additionally upregulated in 4n hepatocytes
(Fig. 4G).

We further extended our analysis to hepatocytes with high
levels of ploidy (>4n), and octaploid (8n), and decahexaploid
(16n) nuclei were FACS sorted followed by snRNA-seq2 (Supp.
Fig. 9 and Supp. Information). As expected, young mice had a low
percentage of 8n (3%) and 16n (0.008%) hepatocytes in
comparison to 2n (56%) and 4n (36%) hepatocytes (Supp.
Fig. 9A, B). Similarly, we observed genes significantly upregulated
or downregulated with high levels of ploidy, as well as statistically
significant changes in gene expression distribution (Supp. Fig. 9C,
D) again indicating high levels of cellular heterogeneity in the
hepatocyte compartment.

In conclusion, rate-limiting enzymes involved in energy
homeostasis and metabolism of drugs showed a statistically
significant change in expression distribution between 2n and 4n
hepatocytes. Changes in gene expression distribution have been
associated with genetic plasticity and higher adaptation101–104,
which could be important when the liver is faced with a chronic
or overwhelming insult.

Hepatic metabolic zonation determines gene expression levels
independently of the ploidy status. Zonation of hepatocytes and
endothelial cells along the portal-central axis of the liver lobule
has previously been investigated11,12. Recently, 2n and 4n hepa-
tocytes have been localized to specific metabolic zones (periportal
or pericentral) or randomly interspersed throughout the hepatic
lobe97,105,106. We used diffusion pseudotime (dpt), visualized in
diffusion maps, to infer the pseudospatial ordering of nuclei
according to defined markers associated with liver zonation and
their metabolic specialization12,107,108. Louvain clustering on
these zonation markers established three clusters (Fig. Supp. 10A
and Supp. Information). After visual investigation of pericentral
and periportal marker genes on the diffusion map, two clusters
(0 and 2) were assigned to a periportal cluster, and cluster 1 to a
pericentral cluster (Fig. 5A, Supp. Fig. 10A, and Supp. Informa-
tion). Then, the percentage of 2n and 4n hepatocytes in the
pericentral (CV) and periportal (PV) clusters were calculated
respectively (Fig. 5B and Supp. Information)12. We observed a
1.3-fold relative enrichment of 4n hepatocytes in the pericentral
cluster, indicating that they reside close to the central vein. This is
in agreement with recent studies in which polyploid hepatocytes
have been shown by histological analysis to be enriched in the
pericentral zone, and diploid hepatocytes in the periportal zone
using cell-lineage tracing79,109.

We further studied the expression levels of classic markers of
liver zonation such as Cyp2e1, Gsta3, Cyp27a1, andMup17 for the
central vein, and Alb, Cyp2f2, Asl, and Gls2 for the portal vein
(Fig. 5C; Supp. Fig. 10). Non-zonated markers were also selected,

Fig. 4 Functional characterization of 2n and 4n hepatocytes at the single-cell level. A Gene ontology (GO) analysis of the top 100 genes upregulated in
2n hepatocytes in comparison to 4n hepatocytes (left), and vice versa (right). B Heatmap showing co-expression of stem cell markers in hepatocytes
(binary expression: 1-detected, 0-non-detected). Ordering of the cells and genes is based on hierarchical clustering between nuclei (columns), and stem
cell markers (rows), revealing the stem cell markers are co-expressed in 2n and 4n hepatocytes. C Heatmap showing pairwise Jaccard distances between
stem cell markers, reveals one main module of co-expression in hepatocytes. D Violin plots showing changes in gene expression level and distribution in
key liver-specific transcription factors; E regulators of the hepatic lipid metabolism; F regulators of hepatic glucose metabolism and; G representative genes
from the cytochrome P450 family involved in the xenobiotic metabolism of 2n and 4n hepatocytes. (y-axis: scaled, log-transformed, normalized counts; *:
significant changes in gene expression distribution, UP: significant upregulation in 4n, DN: significant downregulation in 4n; Bonferroni-adjusted p-
value<0.05; specific p-values can be found in Supplementary Dataset 4 and 7).
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for instance, Hnf4a whose mRNA expression is non-zonated as
opposed to its protein levels10. Additional non-zonated genes
including Ces3a, Hamp, and Cyp3a25 were also studied (Fig. 5C,
Supp. Fig. 10,). In order to verify the spatial distribution of 4n
hepatocytes, we generated a partition-based graph abstraction
(PAGA) to visualize coordinated changes in expression across the
pseudospace in the hepatic lobule110 (Supp. Information). The
thirty most differentially expressed genes in each of the two
zonation clusters were selected along the diffusion pseudotime,
again showing an enrichment of 4n hepatocytes in the pericentral
cluster and the expected changes of pericentral and periportal
markers, respectively (Fig. 5D, E, Supp. Fig. 11 and Supp.
Dataset 8). Out of 224 zonation markers that were upregulated in
the pericentral cluster, 55 were upregulated only in 4n
hepatocytes. Meanwhile, out of 68 zonation markers that were
upregulated in the periportal cluster 12 were upregulated in 2n
hepatocytes. We binned the vector of diffusion pseudotime into
10 bins and visualized the mean expression of specific zonation
markers along these bins (Fig. 5E, Supp. Fig. 11). This approach is

suitable to visualize simultaneously the decrease and increase in
mean expression of periportal and pericentral genes along these
bins. These results showed that liver zonation can be investigated
by diffusion pseudotime using our snRNA-seq2 approach. In
particular, hepatic metabolic zonation was found in both 2n and
4n hepatocytes indicating that spatial zonation determines gene
expression levels independently of the ploidy status.

In order to validate the spatial relationship shown by changes
in the nuclear transcriptome, a thorough analysis of cell size and
ploidy was done based on nuclear content using ImageStream Mk
II (Supp. Fig. 9E–H). Additional immunofluorescence staining for
Lyve1, a marker of endothelial cells indicated that their nuclei are
smaller in size (3–6 µm diameter) and represent the smaller peak
within the 2n population (Supp. Fig. 9E–H). After analysis of the
nuclei size (µm2) and diameter (µm) of 2n, 4n, and 8n
hepatocytes, DNA-FISH with a custom-designed probe against
Hnf4a gene in chromosome 2 was used to confidently identify
nuclei with 2, 4, and 8 copies of Hnf4a gene locus (Supp.
Fig. 12A–E). Additional immunostainings with DAPI and beta-
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Fig. 5 Pseudospatial ordering of hepatocytes along the liver lobe shows functional crosstalk between ploidy and zonation. A Diffusion map based on
zonation markers, colored by annotated zones (left) and ploidy (right). B Bar plot showing a higher percentage of nuclei in the pericentral cluster in
comparison to the periportal cluster, colored by ploidy. C Diffusion maps colored by the expression of zonation marker genes, for representative non-
zonated genes (Hnf4a, Ces3a, Hamp, and Cyp3a25), pericentral genes (Cyp2e1, Gsta3, Cyp27a1, andMup17), and periportal genes (Alb, Cyp2f2, Asl, and Gls2).
D PAGA path heatmap showing the top 30 differentially expressed genes per zone between the periportal (PV) and pericentral (CV) clusters of nuclei,
where 4n hepatocytes are enriched in the CV zone (colored by log-transformed, normalized counts). E Line plots depicting the mean expression of
representative zonation markers along the diffusion pseudospace vector ordered from CV to PV within a liver lobule. F Representative image of IF/RNA-
FISH co-detection analysis, showing expression levels of Cyp2e1-2 (green) and Cyp2f2 (yellow) mRNA in a liver lobule (n= 3). The fluorescence intensity of
each gene was calculated and normalized against background intensity. The corrected fluorescence intensity is plotted against a linear distance (100 µm)
from CV to PV. G Corrected fluorescence intensity of Cyp2e1-2 and Cyp2f2 signals were categorized according to 2n or 4n mononucleated or binucleated
hepatocytes, determined by b-catenin (magenta) and 4′,6-diamidin-2-phenylindol (DAPI; cyan) staining. No significant changes were detected between
ploidy levels or the number of nuclei from an unpaired t-test analysis (ns not significant). F, G Data points are expressed as mean ± s.d.
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catenin, to annotate nuclei and the cytoplasmic membrane
respectively, allowed tissue mapping and quantification of diploid
(2n), tetraploid mononucleated (4n) and binucleated (2×2n), and
octaploid binucleated (2×4n) cells (Fig. 12F, G). This approach
allowed us to confidently identify diploid and tetraploid cells
(mono- and binucleated), verify the predictions of the diffusion
maps, and validate our findings using snRNA-seq2 in which 4n
nuclei are enriched in the pericentral vein area (Fig. 5B).

Importantly, IF/RNA-FISH co-detection was used to quantify
the number of Cyp2e1 and Cyp2f2mRNA molecules in four zones
within the liver lobule (from central to portal vein) (Fig. 5F, G).
We observed that the mRNA level of Cyp2e1 decreases towards
the periportal area, whereas Cyp2f2 mRNA levels increase
(Fig. 5F). These results in tissue sections validated our findings
using snRNA-seq2 and computational approaches (Fig. 5E). The
combination of RNAscope staining for Cyp2e1 and Cyp2f2
mRNAs with DAPI and beta-catenin allowed accurate assessment
of mRNA levels in polyploid hepatocytes. We found no
significant differences in the mRNA levels between 2n nuclei in
diploid and tetraploid binucleated cells using RNAscope (Fig. 5G),
and those populations cannot be distinguished by snRNA-seq2
(Fig. 3 and Supp. Fig. 6B).

In summary, our results indicate a tight coordination between
gene expression in polyploid hepatocytes and their spatial
location within the liver lobule. Therefore, hepatocytes adjust
their gene expression according to their spatial distribution,
demonstrating a functional crosstalk between liver zonation and
ploidy. We then further demonstrated that zonation is the major
determinant of gene expression levels in polyploid hepatocytes by
using a mouse model of centrilobular injury-induced liver fibrosis
(CCl4-induced liver fibrosis)14,111. We found that the relative
percentages of 2n and 4n hepatocytes changed following chronic
liver injury, with an increased number of 4n hepatocytes in the
pericentral area following pseudotime ordering, an observation
that was supported by FACS analysis (Supp. Fig. 13A–F).
Furthermore, the diffusion maps, PAGA representation, and
histological analysis clearly showed an alteration in the zonation
pattern in the CCl4 treated mice, with profound changes observed
in the pericentral hepatocyte compartment (Supp. Fig. 13A, B,
Supp. Fig. 14A, B, and Supp. Dataset 9). Despite the fact that
zonation was markedly affected by CCl4 treatment, 2n and 4n
hepatocytes coordinate their gene expression levels according to
their spatial distribution in the liver lobule. More precisely, 4n
hepatocytes are enriched in the peri-central vein area, suggesting
that polyploid hepatocytes undergo genetic plasticity and higher
adaptation to deal with iterative liver injury39,43,112.

Taken together, our data demonstrate that hepatocyte ploidy
and zonation are two coordinated but independent processes in
which polyploid hepatocytes adjust their gene expression level
according to their position within the liver lobule.

Discussion
Single-cell genomics allows the unbiased exploration of cell states
and cell types at single-cell resolution, leading to a revolutionary
change in our understanding of liver biology and disease
pathogenesis16. However, single-cell RNA-seq (scRNA-seq) in the
liver is associated with some caveats. First, dissociation protocols
including enzymatic or mechanical dissociation lead to changes in
the cellular transcriptome17–19. Second, dissociation may lead to
the underrepresentation of certain cell types due to cell fragility or
large cell-size, such as hepatocytes113. Third, it relies on the iso-
lation of intact cells from fresh tissues, which hinders its clinical
application on human samples. In this context, single-nucleus
RNA-seq has emerged as a complementary approach that relies
on the unbiased assessment of nuclei from all cells present in a

tissue20,21,37. The analysis of the nuclear transcriptome has pro-
ven to be very powerful in the study of cell-type diversity in the
mouse and human tissues, including brain21,23–27,114, spinal
cord53; breast cancer54, kidney29–32, lung28, heart34,35, and a
variety of human tumor samples37.

We have developed a single-nucleus RNA-seq2 method that
improves the lysis of the nuclear membrane and significantly
increases the number of transcripts detected per nuclei, com-
paring favorably with transcript data derived from whole-cell
scRNAseq (Fig. 1 and Supp. Fig. 1). Our method is highly sen-
sitive, reproducible and it has been specifically designed for fro-
zen, archived liver samples (Fig. 1). The unbiased sorting of
single-nuclei allows the study of all the main cell types within the
liver, and this approach can be used to interrogate cellular
crosstalk and transcription factor networks (Figs. 1 and 2).
Indeed, snRNA-seq2 has the potential for comprehensive analysis
of fresh and archived flash-frozen liver samples from both mice
and humans.

Notably, scRNA-seq has revealed the high degree of functional
specialization of multiple cell types within the liver lobule, for
instance for hepatocytes, endothelial cells9,11,12,52, and
macrophages14,15,73. Additionally, it has been shown how chan-
ges in mRNA correlate closely with changes in protein levels in
the liver10. However, little is known about the functional role of
polyploid hepatocytes at the single-cell level. Recently, Katsuda
et al. have shown in rats how genes associated with hepatic zones
have differential expression patterns in polyploid hepatocytes78.
Here, we present a genome-wide analysis of the nuclear tran-
scriptome of individual 2n and 4n nuclei in mice (Figs. 3–5). Our
study is focused on the analysis of ploidy based on the DNA
content of each nucleus (2n and 4n), and we cannot resolve
whether 2n nuclei belong to either diploid cells or binucleated
tetraploid cells (2nx2)41,82. Moreover, it has been shown that
hepatocyte volume does not depend on the number of nuclei but
rather on their ploidy status, whereas mono-nucleated hepato-
cytes (2n) and bi-nucleated hepatocytes (2nx2) have the same
cellular volume8,115. In young wild-type mice, an incomplete
cytokinesis leads to tetraploid cells (2n×2) that are generally
associated with the fidelity of chromosome transmission41,82.
For these reasons, we have focused our analysis on the 2n and
4n nuclei, for which we do not expect chromosomal
abnormalities116,117.

Additionally, cell size is the major determinant in biochemical
reaction rates118,119 and cell size increases with ploidy. It has been
reported that transcript abundance correlates with cellular
volume at the single-cell level due to an increase in global tran-
scription in larger cells89. During partial hepatectomy, hepato-
cytes increase cell size before proliferation120. In particular, in the
liver-specific Cdk1 knockout mice, larger hepatocytes displayed
alterations in lipid and mitochondrial metabolism121, suggesting
that polyploid hepatocytes could have a more prominent role in
energy homeostasis compared with diploid hepatocytes.

Our transcriptomic analyses revealed that 2n and 4n hepato-
cytes are globally very similar, but 312 genes are found to be
differentially expressed between these two groups (Fig. 3). This
suggests that if polyploid hepatocytes increase during pathological
processes, they could lead to gene expression imbalances of
functionally relevant genes (Figs. 3 and 4). Additionally, the
transcriptional variability in young mice is also lower in 4n
hepatocytes, which has previously been shown using single-
molecule fluorescence in situ hybridization (smFISH) for the
beta-actin (Actb) gene122. Whether transcriptional variability
changes during ageing47 or in chronic liver disease still remains to
be investigated. Interestingly, the presence of mononucleated
tetraploid hepatocytes has been associated with human hepato-
cellular carcinoma (HCC)40,86,87,123. Likewise, the number of

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24543-5

10 NATURE COMMUNICATIONS |         (2021) 12:4264 | https://doi.org/10.1038/s41467-021-24543-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


polyploid hepatocytes also increases in models of NAFLD,
including ob/ob mice and wild-type mice fed with methionine-
choline-deficient diet (MCD) or high-fat diet (HFD)86,124.
Therefore, alterations in the number of 2n and 4n hepatocytes are
observed during NAFLD in both animal models and patients. The
transcriptomic analysis of 2n and 4n hepatocytes in archived,
frozen samples could open an entirely new strategy to understand
disease pathogenesis and search for new therapies to treat liver
disease.

The liver is characterized by its regenerative potential. How-
ever, the cellular origin that triggers liver homeostasis and repair
is still under debate. Recently, complementary studies using dif-
ferent cell lineage-tracing models have shown that all hepatocytes
have comparable self-renewal potential79,93,98. Our tran-
scriptomic analysis also supports the notion that the vast majority
of hepatocytes, regardless of their ploidy level and location within
the hepatic lobule, co-expresses stem/progenitor gene markers
and have the potential to contribute to liver homeostasis after
hepatic injury (Fig. 4B, C).

Furthermore, the broad spatial heterogeneity in the liver shows
that key liver functions are zonated9, and recently it has been
shown that the zonation is perturbed during liver fibrosis14,15. In
this context, the spatial distribution of polyploid hepatocytes and
their functional consequences are still debated8,41,79,87,109. We
used diffusion pseudotime to infer the pseudospatial ordering of
2n and 4n hepatocytes according to defined markers of liver
zonation, and we found that 4n nuclei are distributed throughout
the hepatic lobe with an enrichment in the pericentral zone
(Fig. 5). These results support previous studies in which polyploid
hepatocytes were quantified by lineage-tracing79 or smFISH for
the glutamine synthetase (Glu1) gene109. Additionally, we have
shown that 2n and 4n hepatocytes adjust their gene expression
levels in a coordinated manner depending on their spatial loca-
tion within the liver lobule. In summary, we have found that 4n
hepatocytes are enriched 1.3-fold in the pericentral zone, and that
hepatocyte ploidy and liver zonation are tightly regulated. Alto-
gether, we have discovered that the division of labor in hepato-
cytes is linked to both their spatial distribution and ploidy levels,
and this crosstalk could be affected during ageing and chronic
liver disease.

In summary, our methodology has the potential to investigate
previously archived frozen murine and human samples, and
interrogate how changes in gene expression correlate with the
development and progression of liver disease, taking into account
cellular crosstalk and signaling pathways. Our analysis shows that
hepatocytes in young livers, without injury or selective pressure,
express stem cell markers across the portal-central axis inde-
pendently of their ploidy status. These findings support recent
reports showing that polyploid hepatocytes are proliferative and
contribute to liver regeneration. Moreover, hepatocytes with
different levels of ploidy adjust their gene dosage according to
their position in the liver, showing a functional crosstalk between
liver zonation and ploidy. We anticipate that changes in the
number of 2n and 4n hepatocytes in the overall liver cell com-
position will lead either too protective or deleterious outcomes
during ageing and chronic liver diseases.

Methods
Ethics statement. This investigation was approved by the Animal Welfare and
Ethics Review Board and followed the Cambridge Institute guidelines for the use of
animals in experimental studies under Home Office licences PPL 70/7535 until
February 2018 and PPL P9855D13B from March 2018. All animal experimentation
was carried out in accordance with the Animals (Scientific Procedures) Act 1986
(United Kingdom) and conformed to the Animal Research: Reporting of In Vivo
Experiments (ARRIVE) guidelines developed by the National Center for the
Replacement, Refinement, and Reduction of Animals in research (NC3Rs).

Mice and liver tissue collection. All wild-type C57BL/6 mice were purchased
from Charles River UK Ltd (Margate, United Kingdom) and were maintained
under specific pathogen-free conditions at the University of Cambridge, CRUK—
Cambridge Institute under the auspices of a UK Home Office license. These animal
facilities are approved by and registered with the UK Home Office. All mice were
maintained in a specific pathogen-free environment in Individually Ventilated
Caging units. Mice were kept in a positive pressure system, maintaining a tem-
perature between 19 and 23°, 55% humidity (± 10%), 20 total air changes per hour,
and under a 12 h light/dark cycle. Mice had free access to a standard laboratory diet
(PicoLab Mouse Diet 20, 5R58) and water. All male C57BL/6 animals were
sacrificed by an approved scientist in accordance with Schedule 1 of the Animals
(Scientific Procedures) Act 1986. Young 3-month-old male mice were sacrificed
and individual pieces of the harvested liver were immediately flash-frozen. A small
piece of liver tissue was collected in 4% paraformaldehyde. All young animals for
this study were macroscopically inspected for any signs of pathologies or
abnormalities.

Liver fibrosis model. Carbon tetrachloride (CCl4)-induced liver fibrosis was
induced as described previously111. Mice were injected i.p. with 1 mL/g body
weight CCl4 in a 1:3 ratio with olive oil (0.25 µL/g CCl4) twice weekly for 6 weeks;
livers were harvested 48 h after the final injection14.

Single nuclei isolation/homogenization. For the single nuclei isolation, the
protocol described by Krishnaswami et al.21 was followed with several modifica-
tions. In summary, fresh frozen liver tissues (~3 mm3) were homogenized using a
2 mL Dounce homogenizer (Lab Logistics, #9651632) in 1 mL of ice-cold homo-
genization buffer, HB (250 mM sucrose, 25 mM KCl, 5 mM MgCl2, 10 mM Tris
buffer, 1 μM DTT), 1 x protease inhibitor tablet (Sigma Aldrich Chemie), 0.4 U/μL
RNaseIn (Thermo Fisher Scientific), 0.2 U/μL Superasin (Thermo Fisher Scientific),
0.1% Triton X-100 (v/v) and 10 µg/mL Hoechst 33342 (Thermo Fisher Scientific)
in RNase-free water.

Before the dounce homogenization, the frozen tissue was placed in a pre-chilled
petri dish on ice containing 1 mL of HB and finely cut with a pre-chilled scalpel
blade until all the pieces can be transferred to the homogenizer using a wide orifice
1 mL tip. Throughout the procedure, all pipetting steps of transferring the samples
were made using wide orifice tips (Rainin, #17014297) to minimize shear force.

Always on ice, we performed five very slow strokes with the loose inner
tolerance pestle and ten more strokes using the tight inner tolerance pestle.
Collecting 10 µL of the solution, the nuclei suspension was inspected under a
microscope on a Neubauer chamber with 10 µL of Trypan blue (0,4%). If
aggregates were predominant, up to five more strokes were performed using the
tight pestle. The suspension was passed through a 50 μm sterilized filter (CellTrics,
Symtex, #04-004-2327) into a 5 mL Eppendorf pre-chilled tube washing the
Dounce homogenizer with additional 500 μL of cold homogenization buffer.
Subsequently, the suspension was centrifuged at 1000 × g for 8 min in an
Eppendorf centrifuge at 4 °C (5430R). The pellet was then resuspended in 250 μL of
pre-chilled homogenization buffer. To ensure high quality of single-nuclei
suspensions, we performed a density gradient centrifugation clean-up for 20 min,
using Iodixanol gradient (Optiprep, D1556, Sigma Aldrich Chemie). The final
pellet was resuspended gently in 200 µL of nuclei storage buffer (NSB) (166.5 mM
sucrose, 5 mM MgCl2, 10 mM Tris buffer pH 8.0) containing additional RNase
inhibitors 0.2 U/μL Superasin (Thermo Fisher Scientific, #AM2696) and 0.4 U/μL
Recombinant RNase Inhibitor (Takara Clontech #2313A). A final visual inspection
and counting were performed under a microscope and the single nuclei suspension
was filtered through a 35 μm cell strainer cap into a pre-chilled FACS tube prior
FACS sorting.

Flow cytometry. Hoechst dye (Life technologies, #H3570) was used to stain all
nuclei during nuclei isolation, allowing to distinguish between diploid and tetra-
ploid nuclei using a FACS sorter (BD FACSAria Fusion 1 and/or BD FACSAria 3)
with a 100 μm nozzle. Before sorting, 384-well thin-walled PCR plates (BioRad,
#HSP3901) were freshly prepared with 940nL of reaction buffer (following the
manufacturer’s instructions, only 1 μL of 10X reaction buffer is diluted in 2,75 μl of
water). Herein, this reaction buffer will be termed Lysis Buffer 1—LB1) (Takara kit
SMART-Seq v4 Ultra Low input RNA) using a liquid miniaturization robot
(Mosquito HV, STP Labtech) and kept on ice. Reaction buffer was prepared fol-
lowing the manufacturer’s instruction adding 1 μL of RNAse Inhibitor in 19 μL of
10X Lysis Buffer. The FACS droplet delay and cut-off point were optimized prior to
every sorting, the plate holder was cooled at 4 °C and all settings and calibrations
were done by the FACS operator while samples were processed to avoid additional
delays that could lead to RNA degradation of the samples.

In brief, the gating strategy used FSC-A/SSC-A to select intact nuclei stained by
Hoechst, in which events above 10^4 are considered Hoechst positive.
Subsequently, selection of singlets was performed by FSC-A/FSC-H followed by
exclusion of doublets by FSC-A/FSC-W. Identification of different levels of ploidy
was performed by FSC-A/Hoescht and FSC-A/Modal as previously described39

(Supp. Fig. 13).
The sorting accuracy in the 384 well-plates was assessed using a colorimetric

method with tetramethyl benzidine substrate (TMB, BioLegend, #421501) and
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50 μg/mL of Horseradish Peroxidase (HRP, Life Technologies, #31490)125. Only
when the plate alignment testing results to single events to more than 95% of the
wells, we proceed with the fresh isolated nuclei. The nuclei suspended in NSB was
diluted at ~10 × 104 nuclei per mL and kept on average 200−1000 events
per second as flow rate. In the sorting layout, we sorted diploid (2n) cells in half of
the 384 well plate and tetraploid (4n) in the remaining half for each individual.
After sorting, every plate was sealed (MicroAmp Thermo Seal lid, #AB0558),
shortly vortexed (10 s), centrifuged (prechilled at 4 °C, 2000 x g for 1 min), frozen
on dry ice, and stored at −80 °C, until cDNA synthesis.

snRNAseq-2. For the generation of double-stranded full-length cDNA, we used
the Smart-Seq2 chemistry from a commercial kit (SMART-Seq v4 Ultra Low input
RNA, Takara) and we optimized the lysis of the nuclear membrane by adding a
supplementary lysis buffer (Lysis Buffer 2, LB2). Firstly, using a low volume liquid
handling robot, we miniaturized the volumes reducing the amount four-times and
keeping the same ratios for all the reagents, significantly lowering the experimental
cost. Liquid handling robots allowed to increase pipetting accuracy, maintained a
sterile and temperature-controlled environment, and reduced the user variability
and potential cross-contamination. Our additional Lysis Buffer 2 (LB2) consist in a
mixture of 0.4 % NP-40 (v/v) final concentration (Life Tech, #85124) and 0.1%
Triton-X100 (v/v) final concentration (Fisher, #10671652). Using the Mosquito HV
(Labtech STP), we added 2190nL of our additional snRNAseq-2 lysis mix in each
well together with the first strand synthesis primers and the spike-in controls
(ERCC). Ratios to the final volume (3.125 μL) of the total Lysis Buffer (1 and 2) are
shown in parentheses (NP40 2% (2.5/12.5, Triton-X100 1% (1.25/12.5), ERCC
spike-–in at 1/300.000 dilution (1/12.5) and 3′ SMART-seq CDS Primer II A (2/
12.5) and additional water (2/12.5). Every plate was thawed directly on a −20 °C
chilled holder while LB2 was added by the Mosquito HV robot. Then, the plate was
sealed, vortexed vigorously (20 s in a Mixmate (Eppendorf) 2000 rpm), centrifuged
(30 s in a pre-chilled Eppendorf 5430R at 4 °C, 2000 × g), and placed in a Thermal
cycler (BioRad C1000) for 6 min at 72 °C). We suggest to use the same lot (e.g.,
#00769049) of ERCCs (Life Technologies, #4456740) per project. ERCC spike-ins
were diluted 1 in 10, in water with 0.4 U/μL Recombinant RNase Inhibitor (Takara
Clontech #2313A), aliquoted, and stored at −80 °C. Fresh dilution of 1 in 300 000
and 1 in 100 000 were prepared immediately before the first strand synthesis.

Next, reverse transcription and Pre-PCR amplification steps were followed as
described by the manufacturer. We maintained our four-times reduced volumes for
all steps. As a final modification on the Takara kit protocol, we optimized the PCR
cycles program for the cDNA amplification. We used 21 cycles and a PCR
programs consisting of: 1 min at 95 °C, [20 s at 95 °C, 4 min at 58 °C, 6 min at
68 °C] × 5, [20 s at 95 °C, 30 s at 64 °C, 6 min at 68 °C] × 9, [30 s at 95 °C, 30 s at
64 °C, 7 min at 68 °C] × 7, 10 min at 72 °C.

Internal ERCC spike-ins were used as positive controls and the cDNA yield was
assessed in an Agilent Bioanalyzer with a High Sensitivity DNA kit. In our
protocol, we did not perform a bead clean-up before final library preparation. The
miniaturization details and Mosquito programs used can be found in the
supplementary information. RNA-seq library preparation and sequencing are
described in the supplementary information.

RNA-seq library preparation and sequencing. Sequencing libraries were pre-
pared using the standard Illumina Nextera XT. DNA Sample Preparation kit
(Illumina, #FC-131-1096) and the combination of 384 Combinatorial Dual Indexes
(Illumina- Set A to D, #FC-131-2001 to FC-131-2004). Using the Mosquito liquid
handling robot, the Nextera XT chemistry was miniaturized126,127 (Supp. Data-
set 10–14 and Supp. Information). All the final 384-pooled libraries were
sequenced using Illumina HiSeq4000 NGS sequencer in a paired-end—150 bases
length.

Fluorescence in situ hybridization. Detection of mouse Hnf4α was performed on
FFPE sections. Briefly, sections were cut at 3 µm thick, baked for 1 h at 60 °C before
deparaffinization in xylene and rehydration through graded ethanol. Pretreatments
were carried out using Kreatech Tissue Digestion Kit II reagents (Cat # KBI-60004,
Leica Biosystems) according to manufacturer’s instructions: using 0.2 M HCl for
30 min at room temperature, followed by 3 min wash in milliQ water, 30 min
incubation in Pretreatment solution B at 80 °C, 3 min wash in 2X SSC, 30 min in
pepsin solution at room temperature, 1 min in milliQ water and 5 min wash in 2X
SSC. Slides were dehydrated through graded ethanol. Custom design HNF4 probe
(Cat # HNF4A-20-OR, Empire Genomics) was applied to each slide and coverslips
were sealed with Fixogum rubber cement (Cat # ICNA11FIXO0125, VWR). Slides
were denatured for 5 min at 80 °C before hybridization overnight in a humid
chamber at 37 °C. Coverslips were carefully removed and slides were washed in
Buffer II (Kreatech Tissue Digestion Kit II, KBI6004) at room temperature for
2 min, followed by Buffer I at 72 °C for 2 min and then Buffer II again at room
temperature for 2 min. The slides were dehydrated through graded ethanol prior to
incubation with Sudan Black B (Cat # 199664, Sigma Aldrich, 0.5% in 70% ethanol,
stirred for 2 h in the dark, filtered with 0.22 um filter) for 10 min. The slides were
washed for 5 min each in three changes of PBS prior to mounting with Prolong
Gold Antifade Mountant with DAPI (ThermoFisher Scientific, Cat No. P36931,

1:1000). Additional immunofluorescence and image analysis are described in the
supplementary information.

Multiplexed RNAscope and immunofluorescence co-detection. Simultaneous
detection of mRNA for mouse Cyp2e1-2 and Cyp2f2, or Lgr5 and mouse beta-
catenin protein was performed on FFPE sections using Advanced Cell Diagnostics
(ACD) RNAscope® 2.5 LS Multiplex Reagent Kit (Cat No. 322800), RNAscope® 2.5
LS Probe Mm-Cyp2f2 (Cat No. 451858), RNAscope® 2.5 LS Probe Mm-Cyp2e1-C2
(Cat No. 402788 -C2), or RNAscope® 2.5 LS Probe Mm-Lgr5 (Cat No. 312178) in
combination with ACD Co-Detection Antibody Diluent (Cat No. 323160) (ACD,
Hayward, CA, USA), and a mouse monoclonal beta-catenin antibody from BD
Biosciences (Cat No. 610154). Briefly, sections were cut at 3 µm thickness, baked
for 1 h at 60 °C before loading onto a Bond RX instrument (Leica Biosystems).
Slides were deparaffinized and rehydrated on-board prior to heat pre-treatment
with Epitope Retrieval Solution 2 (Cat No. AR9640, Leica Biosystems) at 95 °C for
30 min. The antibody was diluted to 1:500 using the ACD Co-Detection Antibody
diluent and incubated for 15 min at ambient temperature, before post fixation with
10% neutral buffered formalin (NBF) for 30 min and protein digestion using ACD
Enzyme from the Multiplex Reagent kit at 40 °C for 30 min. Probe hybridization
and signal amplification were performed according to the manufacturer’s
instructions. TSA plus-Cy5 (Akoya Biosciences Cat No. NEL745001KT) detection
at 1:500 dilution of beta-catenin protein, TSA plus-Cy3 (Akoya Biosciences Cat No.
NEL744001KT) detection at 1:500 dilution of Cyp2e1-2 or Lgr5, and TSA plus—
Fluorescein detection at 1:500 dilution of Cyp2f2 (Akoya Biosciences Cat No.
NEL741001KT) were performed on the Bond Rx according to the ACD protocol.
Slides were then removed from the Bond Rx and mounted using Prolong Diamond
(ThermoFisher Cat No P36965). The slides were imaged on the AxioScan (Zeiss) to
create whole slide images. Images were captured at 40× magnification, with a
resolution of 0.25 microns per pixel. Image analyses were performed using the
HALO (Indicalabs) software.

Read alignment and pre-processing. Raw sequencing reads were mapped against
a customized genome containing both mm10 (GRCm38, assembly version 93), and
the ERCC92 sequences128. Mapping was done using STAR-2.7.1a with the fol-
lowing parameters --outFilterMultimapNmax 1 --outSAMtype BAM SortedBy-
Coordinate. Potential PCR-duplicates were identified and removed using
MarkDuplicates from picard tools version 2.20.2 with the option REMOVE_DU-
PLICATES=true. For every single nucleus, reads mapping to individual transcripts
were counted and summed per gene using htseq-count version 0.11.3 with the
following parameters: -m intersection-nonempty -f bam -r pos -s no --nonunique
all -t transcript -i gene_id --additional-attr=gene_name.

The resulting raw count matrix was loaded into python and stored as an
AnnData object, anndata version 0.7.1. The downstream analysis described below
was adapted from Luecken et al.5,5. Unless described otherwise, functions
implemented in scanpy (version 1.4.5.2.dev6+gfa408dc7) were used in
downstream analysis110. Additionally, to the count matrix based on full transcripts,
count matrices for exonic and intronic reads, respectively were built using
featureCounts129.

Quality control and filtering. Starting with a matrix of 2496 single nuclei and 54
329 genes, nuclei were kept if the percentage of mapped reads corresponding to
ERCC spike-in transcripts was higher than 5% but lower than 90%, and if nuclei
had >1000 and <7000 genes detected. Then, genes sequenced in fewer than 25 cells
(about 1% of the population) and with read count below 250 reads were filtered
out. Finally, only the nuclei having less than 7000 genes detected, and a library size
of 10 000 to 300 000 reads were kept. This processing yielded a matrix of
2016 single nuclei times 19 340 genes.

ERCC size factor calculation and normalization. Two different ERCC dilutions
were used (1:100 000 and 1:300 000 respectively). When sequencing to saturation,
the proportional amounts of sequenced endogenous transcripts and synthetic
spike-ins depend on the input number of endogenous transcripts. The first step in
this normalization approach is to calculate ERCC size factors as the sum of ERCC
reads per nucleus divided by the mean ERCC reads across all nuclei within one
dilution. Subsequently, to normalize the expression matrix, the read counts were
first divided by the corresponding gene length in kilobases. Then, the cell coverage
was corrected by the following approach: endogenous counts were summed per
nucleus, and the sum was divided by 10 000 times the ERCC size factor, yielding
the normalization factor per nucleus. Finally, the endogenous reads per nucleus
were divided by this factor. Thereby, reads stemming from nuclei with few
endogenous reads and many ERCC reads are divided by a smaller factor than reads
stemming from nuclei with many endogenous reads and proportionally few ERCC
reads.

x0ij ¼
xij
Lj

∑N
j

xij
Lj

10000�sf i

ð1Þ

where x′ij is the normalized count of gene j in cell i, Lj is the length of gene j and sfi
is the ERCC size factor of cell i.
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After normalization, cells with more than 50 000 gene length-normalized total
counts were removed. Technical replicates SNI-234(R2) and SNI-235(R2) that
contain the same cells as SNI-160 and SNI-116, respectively, were not further
considered (Supp. Dataset 1). This resulted in a final matrix of 1649 nuclei times
19 258 genes. The normalized counts were log-transformed by applying a natural
logarithm to one plus the values in the count matrix. Batch effects were corrected
for using combat with plates as a covariate130. Description of clustering and
visualization are further described in the supplementary information.

Differential expression analysis. In order to find differential expressed genes
between groups of interest, Welch’s t-tests were done as implemented in the scanpy
function rank_genes_groups with the parameters method=”t-test” and
n_genes=19258. First, this was done between cell types, considering 2n and 4n
hepatocytes together as one group, and then, only hepatocytes were taken in order
to compare 2n to 4n. Genes that had a log2 fold change of greater than 0.5 and a
Bonferroni-adjusted p-value below 0.05 were considered significantly upregulated;
genes with a log2 fold change smaller than –0.5 and a Bonferroni-adjusted p-value
below 0.05 were considered significantly downregulated.

To further investigate changes in the distribution of a given gene between 2n
and 4n hepatocytes, a Kolmogorov−Smirnov test was performed. Genes were
called as significantly changing their gene expression distribution between 2n and
4n if they had a p-value below 0.05 and a test statistic of >0.15.

For visualization purposes, 40 nuclei were randomly selected per cell type (for
cell types with <40 nuclei, all nuclei were taken) and their respective top five
differential expressed genes (based on their score calculated by rank_genes_groups)
were taken to create a heatmap (Fig. 2A) using the ComplexHeatmap package in R.
For visualization purposes, genes with a mean expression between 0.1 and 100 were
selected in the MA plot (Fig. 3C).

Co-expression analysis of liver stem cell markers. For this analysis, only
hepatocytes were used. A heatmap of known hepatic stem cell markers showed
expression of these markers not only in diploid but also in tetraploid nuclei. To
investigate whether these markers are expressed in the same nuclei, the matrix was
binarized after log-transformation and stored as an additional layer in the AnnData
object. This binary matrix was a subset to only contain the stem cell markers.
Nuclei not expressing any of the stem cell markers were removed, resulting in a
matrix of 364 nuclei times 11 stem cell markers. Based on this, pairwise Jaccard
distance between the stem cell markers was calculated.

J X;Yð Þ ¼ X \ Yj j
X∪Yj j ð2Þ

where X is the binary expression vector of gene j1 across the nuclei, and Y is the
binary expression vector of gene j2 across the nuclei.

Furthermore, pairwise Jaccard distances between nuclei and genes, respectively,
were used to calculate linkage for hierarchical clustering. By this approach, the
gene’s expression level per nucleus is neglected and only its presence or absence is
counted. Additional downstream analyses are described in the supplementary
information.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All raw sequencing data is deposited and publicly available in ArrayExpress under
accession numbers “E-MTAB-9333”131 and “E-MTAB-10223”132. Additional publicly
available data used for method comparison was obtained from either GEO (Accession
numbers “GSE84498”: GSE84498_umitab.txt.gz12, “GSE124395”:
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