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a b s t r a c t 

Human brain atlases provide spatial reference systems for data characterizing brain organization at different 
levels, coming from different brains. Cytoarchitecture is a basic principle of the microstructural organization 
of the brain, as regional differences in the arrangement and composition of neuronal cells are indicators of 
changes in connectivity and function. Automated scanning procedures and observer-independent methods are 
prerequisites to reliably identify cytoarchitectonic areas, and to achieve reproducible models of brain segregation. 
Time becomes a key factor when moving from the analysis of single regions of interest towards high-throughput 
scanning of large series of whole-brain sections. Here we present a new workflow for mapping cytoarchitectonic 
areas in large series of cell-body stained histological sections of human postmortem brains. It is based on a Deep 
Convolutional Neural Network (CNN), which is trained on a pair of section images with annotations, with a 
large number of un-annotated sections in between. The model learns to create all missing annotations in between 
with high accuracy, and faster than our previous workflow based on observer-independent mapping. The new 

workflow does not require preceding 3D-reconstruction of sections, and is robust against histological artefacts. 
It processes large data sets with sizes in the order of multiple Terabytes efficiently. The workflow was integrated 
into a web interface, to allow access without expertise in deep learning and batch computing. Applying deep 
neural networks for cytoarchitectonic mapping opens new perspectives to enable high-resolution models of brain 
areas, introducing CNNs to identify borders of brain areas. 
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. Introduction 

Human brain atlases provide a spatial framework for localizing in-
ormation retrieved from neuroscientific studies of different brains, ad-
ressing brain organization from different angles and including different
ata modalities. The cerebral cortex of the brain is organized into corti-
al areas, which each have a specific functional role. They can be iden-
ified in cell body stained sections based on cytoarchitecture. Regional
ifferences in the spatial arrangement and composition of the cells co-
ary with changes in connectivity and function Goulas et al. (2018) .
ytoarchitectonic borders can be identified in microscopic scans of his-
ological brain sections, based on the analysis of the arrangement and
istribution of cells, their different morphology and size, as well as
ifferences in the appearance and relative thickness of cortical lay-
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rs. Such criteria have been formulated for the first time more than a
entury ago to map the cerebral cortex, and still serve as guidelines
or cytoarchitectonic analysis Amunts and Zilles (2015) . Different ap-
roaches have been proposed in the past to identify positions of bor-
ers in a reliable manner Annese et al. (2004) ; Schleicher et al. (1999) ;
chmitt and Böhme (2002) . The de-facto standard for identifying bor-
ers of cytoarchitectonic areas in the human cerebral cortex is a method
ased on multivariate statistical image analysis Schleicher et al. (1999) ,
hich has been applied for the identification of more than 200 areas to
ate Amunts et al. (2020) . To map the whole extent of an area in both
emispheres, and to capture its intersubject variability through stud-
es in large samples, however, is extremely time- and labor-intensive:
ytoarchitectonic maps need to aggregate properties across many histo-

ogical sections and multiple brains. To address this challenge, mapping
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1 https://www.bigbrainproject.org 
2 The maps are released in the public domain as part of the multilevel human 
ncludes a subset of histological sections (every 15–60ths section, i.e.
 . 3 mm to 1 . 2 mm distance between sections) of ten human postmortem
rains resulting in analyses of several hundred sections per area, which
orresponds to a workload in the order of one or even several person
ears per area Amunts et al. (2020) . 

Recent high-throughput scanning devices and powerful compute re-
ources enable a much higher degree of automation in digitalization
nd analysis of whole human brain sections at microscopical resolution.
echnological progress has made it possible to 3D-reconstruct a com-
lete postmortem brain at 20 micron spatial resolution with more than
000 sections - the BigBrain Amunts et al. (2013) . This high-resolution
rain model opens the possibility to produce complete maps of cytoar-
hitectonic areas at full microscopic resolution, and to cover large image
tacks with brain areas extending across thousands of sections. Hereby,
ach section image has up to 120,000 × 80,000 pixels image size each.
n order to address these challenges, a method is required, which 

1. automatically classifies brain areas based on cytoarchitectonic crite-
ria, 

2. handles series with thousands of 2D images of histological sections
with data in the Giga- to Terabyte range, 

3. is robust against histological artefacts, which are inevitable in large
section series, 

4. provides stable results independently of the cutting plane, e.g. when
changes in the cutting direction relative to the brain tissue prevents
analysis of the 6-layered structure of the cerebral cortex (in the fol-
lowing referred to as oblique cuts ), and 

5. can be operated and supervised by neuroscience experts without re-
quiring advanced computer science skills. 

Previous experience in cytoarchitectonic mapping has shown that
he identification of brain areas considers multiple parameters. This is
rue for traditional visual inspection using a light microscope, as well
s for automated mapping approaches. It involves complex multi-scale
exture patterns, from the level of neurons up to a level of cortical layers
nd areas. However, several parameters that can be used for identifica-
ion of cortical areas heavily depend on the cutting plane of the histo-
ogical sections with respect to the orientation of cortical columns. The
ighly folded cerebral cortex of the human brain hereby poses particu-
ar challenges, since brain areas may appear in a very different way in
ependence on the cutting angle. Thus, brain mapping needs to operate
n a variable data space, where no restrictions should be made on the
rientation of the cutting plane relative to the course of cortical layers
nd the brain surface. In addition, automated brain mapping needs to
onsider variation in tissue quality and staining, as well as histological
rtefacts. Finally, automated mapping methods must take into account
ariations in cytoarchitecture between different brains and lead to iden-
ical parcellations, even if interindividual differences in cytoarchitecture
re large. 

Previous work on automated cytoarchitectonic area segmenta-
ion ( Spitzer et al., 2017; 2018 ) proposes to use Convolutional Neural
etworkss (CNNss) for automatic segmentation of multiple cytoarchi-

ectonic areas across multiple human brains. This is a remarkably chal-
enging task, as the model needs to be robust against the considerable
nterindividual variability of the human brain, inevitable histological
rtefacts, variations in staining, and oblique cuts, to name only a few of
he constraints. At the same time, it has to be highly sensitive to varia-
ions of cytoarchitecture in different brain areas, which may be subtle.
his may result in a need for large amounts of training data, which is
ifficult to cover. Consequently, such generalized segmentation models
re still subject to active research. 

We here propose a new workflow for cytoarchitectonic mapping of
 target area across large or complete series of histological human brain
ections with a high degree of automation. The workflow is illustrated
n Fig. 1 . Following a “divide & conquer ” approach, the full extent of a
arget brain area 𝑎 is subdivided into intervals of sections, which are en-
losed by annotations created at approximately regular section intervals.
 b

2 
eparate CNNss are then trained for each interval, using the enclosing
nnotations as training data. This results in a set of local segmentation

odels , each specialized to automatically map only the tissue sections
hich fall into the corresponding interval. By training local models for

ach interval of target area 𝑎 , an interactive workflow is obtained that
llows an expert to label cytoarchitectonic areas in full stacks of histo-
ogical sections with minimal manual annotation, aided by Deep Learn-
ng, and at a speed that matches high throughput image acquisition. 

In this work, we 

1. introduce a method to automatically map cytoarchitectonic brain
areas across large series of histological human brain sections
( Section 2 ), 

2. evaluate its precision on 18 cytoarchitectonic areas from the Big-
Brain dataset Amunts et al. (2013) to investigate its applicability to
a wide range of different brain areas, 

3. assess its precision for two areas in three brains with variable stain-
ing protocols Amunts et al. (2013, 2000) ; Ding et al. (2016) to in-
vestigate robustness against interindividual differences and different
staining procedures, and 

4. create highly detailed and complete 3D maps of four areas in the
BigBrain dataset 1 and evaluate their anatomical plausibility. 2 

. Materials and methods 

.1. GLI-based mapping of cytoarchitectonic areas for training and 

alidation 

Our proposed method requires annotations of the target area at
oughly regular intervals in approximately 1% of sections in the stack.
uch annotations consist of localizations of areal borders in the section,
nd are defined using the well-established GLI-based mapping proce-
ure described in Schleicher et al. (1999) . This approach starts by scan-
ing the histological images and by building a Gray Level Index (GLI)
mage Schleicher et al. (1999) . The GLI is a measure of the volume frac-
ion of cell bodies Wree et al. (1982) . In a next step, profiles extending
rom the cortical surface to the white matter border are extracted along
aplacians, which reflect laminar changes in the volume fraction of cell
odies, and thus encode cytoarchitecture. These Laplacians reflect an
mportant feature of cortical cytoarchitecture, i.e. its columnar struc-
ure Schleicher et al. (2000) . The cortical surface and the white mat-
er border are manually identified. Using a sliding window procedure
cross the cortical ribbon, the similarity of blocks of profiles is being es-
imated by the Mahalanobis distance, a multi-variate distance measure,
t each position, that is combined with a Hotelling’s t -test for checking
ignificance. Borders between areas are indicated by significant peaks
n the Mahalanobis distance function. The positions of borders are then
abeled in the image. These borders are then used as a basis for the
etwork training and validation. 

.2. Datasets 

The datasets used in this study comprise image series of histological
ections of three human brains, which have been stained for neuronal
ell bodies Amunts et al. (2020) ; Ding et al. (2016) . The brains vary in
erms of cytoarchitecture and folding pattern, as well as staining proper-
ies, presence of histological artifacts and other features ( Fig. 2 ). Areas
ave been mapped in the past (cf. Section 2.1 ) using at least every 60th
ection of the series. These maps provide the basis to train the neural
etwork models and to perform automatic segmentation in previously
nseen, close by sections. 
rain atlas in the EBRAINS platform https://www.ebrains.eu 

https://www.bigbrainproject.org
https://www.ebrains.eu
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Fig. 1. Setup of our workflow. Images of histological sections are depicted as thin vertical bars, neural network models are depicted as colored boxes. The full extent 
of sections containing a target brain area 𝑎 (sections 𝑚 to 𝑗, bottom row) is subdivided into section intervals, which are defined by annotations at regular intervals 
(blue squares, 𝑚, 𝑛, 𝑘, …). One local segmentation model 𝑓 𝑎 [ 𝑚,𝑛 ] is trained for each interval enclosed by a pair of annotations [ 𝑚, 𝑛 ] . After training, each model is applied 
to automatically map sections falling into the corresponding interval. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 

Fig. 2. Example images of cell body stained histological human brain sections 
taken from datasets B20 (A), B01 (B) and AAHB (C). All sections were sampled 
from a comparable region of the occipital lobe. Differences arise from inter- 
subject variability and variations in staining and histological processing proto- 
cols. Locations of detail views ( 2 mm × 2 mm ) are marked with red squares. For 
B20 and B01 , only the right hemisphere is shown. AAHB only includes a sin- 
gle hemisphere. Cerebellum was removed from B20 and AAHB for visualization. 
Scale bar: 1cm (same for all three sections). (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this 
article.) 
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The first dataset - denoted as B20 - is based on the original his-
ological sections of the publicly available microscopic 3D model
igBrain ( Amunts et al., 2013 ). The dataset consists of images of
404 coronal sections with a thickness of 20 μm. A modified Merker
tain Merker (1983) was used to stain cell bodies. A subset of sec-
ions was scanned at 1 μm resolution using a high-throughput light-
icroscopic scanner (TissueScope HS, Huron Digital Pathology Inc.).
nnotations based on the GLI-based method ( Section 2.1 ) at an interval
f approximately 60 sections ( ≈ 1 . 2 mm ) were obtained for 18 cortical
reas, belonging to different functional systems: 

1. Visual areas ℎ𝑂 𝑐1 , ℎ𝑂 𝑐2 ( Amunts et al., 2000 ),
ℎ𝑂𝑐3 𝑣 ( Rottschy et al., 2007 ) and ℎ𝑂𝑐5 ( Malikovic et al., 2007 ).
Additional annotations at an interval of approximately 30 ( 0 . 6 mm )
sections were created for ℎ𝑂𝑐5 , as well as on a small set of sections
containing ℎ𝑂𝑐3 𝑣 ( Kiwitz et al., 2019a; 2019b; 2020a; 2020b ). 

2. Areas of the frontal operculum 𝑂 𝑝 5 , 𝑂 𝑝 6 and 𝑂𝑝 7 Unger et al.
(2020a, 2020b, 2020c) . 

3. Areas 44 and 45 of Broca’s region ( Amunts et al., 1999; 2004 ) in the
inferior frontal gyrus. 

4. Areas ℎ𝐼 𝑃 5 , ℎ𝐼 𝑃 6 , ℎ𝐼 𝑃 7 and ℎ𝐼 𝑃 8 ( Richter et al., 2019 ) in the in-
traparietal sulcus. 
3 
5. Supplementary motor area 𝑆𝑀𝐴 and pre-supplementary motor area
𝑝𝑟𝑒𝑆𝑀𝐴 Ruan et al. (2018) . 

6. Premotor areas 6 𝑑 1, 6 𝑑 2 and 6 𝑑 3 Sigl (2018) ; Sigl et al. (2019a,
2019b, 2019c) . 

The BigBrain dataset has been fully reconstructed at
0 μm Amunts et al. (2013) and therefore opens the possibility to
nvestigate the 3D consistency of the computed maps after transforma-
ion into the reconstructed space. 

Brain areas differ in cytoarchitecture, as well as in size and in how
uch the morphology of an area changes across a series of consecutive

rain sections. This has implications for the amount of annotations re-
uired to capture the relevant properties of certain areas. For example,
𝑂𝑐1 is large and shows only moderate changes across consecutive sec-
ions. In comparison, ℎ𝑂𝑐5 is considerably smaller, and ℎ𝑂𝑐3 𝑣 changes
onsiderably across consecutive sections (see Fig. 10 , C-F), resulting in
 need for more annotations to capture their structure. 

The second dataset - B01 - has also been used for mapping in the
ast, whereby every 15th section of the whole series of sections was
tained and digitized. This brain was 3D reconstructed with a spatial
esolution of 1 mm isotropic Amunts et al. (2020) . Annotations for vi-
ual areas ℎ𝑂𝑐1 and ℎ𝑂𝑐2 at an interval of approximately every 60th
ection ( Amunts et al., 2000 ) in a subset of sections have been used.
his dataset serves to investigate robustness against intersubject vari-
bility, while the lab protocol is similar to the one used for B20 . 

The third dataset - AAHB -, comes from the Allen Adult Human Brain

tlas Ding et al. (2016) . It includes 106 unevenly spaced, publicly avail-
ble sections. In contrast to the first two series of images, it differs in
hickness (50 μm), and the staining method (Nissl staining). Annota-
ions are provided for cortical and subcortical gray matter according to a
odified Brodmann scheme on one hemisphere (cf. ( Ding et al., 2016 )).
his dataset is used to investigate robustness of the proposed method
gainst variable lab protocols and delineation criteria with respect to
reas ℎ𝑂𝑐1 and ℎ𝑂𝑐2 , which correspond to “primary visual cortex (striate

ortex, area V1/17) ” (identifier 10269) and “parastriate cortex (area V2,

rea 18) ” (identifier 10271), respectively, in the Allen ontology. 

.3. Local segmentation models 

Annotations of cytoarchitectonic areas based on GLI mapping
 Section 2.1 ) were used to train CNNss, which we refer to as local seg-

entation models . Each local segmentation model 𝑓 𝑎 [ 𝑠 1 ,𝑠 2 ] 
was trained on

wo sections 𝑠 1 and 𝑠 2 (the training sections ) with available annotations
or a target area 𝑎 . Trained local segmentation models were then applied
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Fig. 3. Training and test sections from available annotations across stacks of histological sections. Consecutive pairs of training sections (blue squares) induce one 
local segmentation model. For example, model 𝑓 𝐵20− ℎ𝑂𝑐1 

[181 , 301] was trained on sections 181 and 301 of dataset B20 , segments area ℎ𝑂𝑐1 in the full interval [ 182 , 300 ] , 
and was tested on Section 2.1 . 𝑁 𝑚 denotes the number of trained local segmentation models. ∗ marks experiments performed with a smaller training interval. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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o “fill the gaps ”, i.e. to automatically segment the target area in sections
nclosed by the respective training sections 𝑠 1 and 𝑠 2 ( Fig. 1 ). The focus
n a single target area and a spatially restricted stack of consecutive sec-
ions reduces cytoarchitectonic and morphological variations that need
o be captured by the respective models, which we expect to result in
mproved performance compared to training models for multiple areas
r a wider range of sections as proposed in Spitzer et al. (2017) . 

We trained local segmentation models for 18 cytoarchitectonic areas
n B20 and two areas in each of B01 and AAHB . Fig. 3 gives an overview
f sections used for the individual areas. Most local segmentation mod-
ls were trained on two training sections with annotations at ∼ 2 . 4 mm
istance, corresponding to ∼ 120 sections for B20 and B01 and 48 sec-
ions for AAHB . Additional local segmentation models with a reduced
nterval size of 60 sections ( 1 . 2 mm ) were trained for areas ℎ𝑂𝑐3 𝑣 and
𝑂𝑐5 to account for highly variable morphology ( ℎ𝑂𝑐3 𝑣 , see Fig. 10 ,
-F) and small area size ( ℎ𝑂𝑐5 ). For B01 and AAHB , local segmentation
odels were trained only for ranges of sections where annotations were

vailable at the required interval. Segmentations of the outer most parts
f cytoarchitectonic areas which were not enclosed by training sections
i.e. Sections 1 to 181 for ℎ𝑂𝑐1 in B20 ) were processed using the closest
 s

4 
vailable local segmentation model. For example, model 𝑓 𝐵20− ℎ𝑂𝑐1 
[181 , 301] was

lso applied to the section interval [ 1 , 181 ] . 

.4. Neural network architecture 

For local segmentation models, the modified U-Net architec-
ure ( Ronneberger et al., 2015 ) proposed by Spitzer et al. (2017) was
xtended into a multi-scale neural network model ( Fig. 5 , C). U-Nets
ave proven to be very powerful for many applications in biomedical
mage segmentation (e.g. ( Çiçek et al., 2016; Milletari et al., 2016 )).
hey consist of an encoder and decoder branch, which are linked
y skip-connections between layers of corresponding spatial resolu-
ion to allow recovery of fine-grained details during upsampling. Com-
ared to the U-Net ( Ronneberger et al., 2015 ), the modified architec-
ure ( Spitzer et al., 2017 ) employs additional encoder layers and a dif-
erent number of filters to make processing of large image patches com-
utationally tractable. To show the benefit of using a multi-scale variant
f U-Nets, three network variants were used: A high-resolution encoder
etwork ( HR ), a low-resolution network ( LR ), and a combined multi-
cale architecture ( MS ). 
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Fig. 4. Typical input patches for the proposed MS architecture. A high- 
resolution image patch (A, 2 μm per pixel) resolves fine-grained microstructural 
texture, while a lower resolution image patch (B, 16 μm per pixel) provides 
more information on macroanatomical context. The black rectangle indicates 
the position of patch (A) inside patch (B). Expert annotations of area ℎ𝑂𝑐2 are 
overlayed in blue. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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3 https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/ 
JURECA_node.html 
High-resolution encoder architecture ( HR ) 

The architecture proposed in Spitzer et al. (2017) was used as base
rchitecture ( Fig. 5 , A). A high-resolution encoder 𝐸 𝐻𝑅 receives high-
esolution input patches with a size of 2025 × 2025 pixels at 2 μm pixel
esolution ( 4 . 05 × 4 . 05 mm 

2 , Fig. 4 , A) and enables recognition of fine-
rained microstructural textures. It consists of six convolutional blocks,
ith the number of filters set to { 16 , 32 , 64 , 64 , 128 , 128 } respectively. All
ut the last block are followed by a max-pooling operation with pool
ize 2 and stride 2. The first layer of the first block in 𝐸 𝐻𝑅 uses a fil-
er size of 5 and a stride of 4, which increases the receptive field while
eeping memory consumption and computational effort tangible. All re-
aining convolutional layers of 𝐸 𝐻𝑅 use a kernel size of 3 and stride 1.

ollowing ( Spitzer et al., 2018 ), we initialize 𝐸 𝐻𝑅 from a network that
as been pre-trained on a self-supervised task, specifically on predicting
he geodesic distance along the brain surface between image patches
rom the BigBrain dataset. This auxiliary task has been shown to pro-
ote extraction of distinctive cytoarchitectonic features. The decoder

onsists of four convolutional blocks with the number of filters set to
 128 , 64 , 64 , 32 } respectively. Each block is preceded by an upsampling
lock, which consists of a nearest neighbor upsampling with kernel size
 and stride 2, followed by a zero-padded convolutional layer with ker-
el size 2 and stride 1. All convolutional operations in the network are
ollowed by batch normalization Ioffe and Szegedy (2015) and Rectified
inear Unit (ReLU) non-linearity. 

Multi-scale network architecture ( MS ) 
The multi-scale network architecture was obtained by attaching a

ow-resolution encoder 𝐸 𝐿𝑅 as a second branch to HR , which receives
ower resolution image patches with a size of 682 × 682 pixels at 16 μm
ixel resolution ( 10 . 912 × 10 . 912 mm 

2 ), centered at the same location as
 𝐻𝑅 patches ( Fig. 4 ). This branch allows to learn features at the scale
f local cortical folding patterns. Although such macroscopic features
re not generally representative of cytoarchitecture in human brains, as
hey vary largely between individuals ( Amunts and Zilles, 2015 ), they
re appropriate in the present setting due to the locality of the network
odels. 𝐸 𝐿𝑅 is based on 𝐸 𝐻𝑅 , and composed of six convolutional blocks
ith the same number of filters as 𝐸 𝐻𝑅 . All convolutional filters use a
lter size of 3 and a stride of 1. Convolutional layers in the first block
se a dilation rate of 1, while all other convolutional layers within 𝐸 𝐿𝑅 

se a dilation rate of 2 to enlarge the receptive field. 
Low-resolution encoder architecture ( LR ) 

The third architecture is based on HR , but replaces the encoder 𝐸 𝐻𝑅 

ith 𝐸 𝐿𝑅 ( Fig. 5 , B). By design, this model can only recognize macro-
copic tissue features, and no detailed cytoarchitectonic properties at
he level of cell bodies. 
5 
.5. Training strategy 

Stochastic gradient descent with Nesterov momen-
um ( Sutskever et al., 2013 ) was used as optimizer for training
he neural network models. Training was performed for 3000 iter-
tions. The learning rate was initially set to 0.01 and decreased by
 factor of 0.5 after 1000, 1400, 1800, 2200 and 2600 iterations.
omentum was set to 0.9. Categorical cross-entropy with a weight

ecay of 0.0001 was used as loss function. 
Background class labels 

Spitzer et al. (2017) reported convergence problems when training
odels with a single background class that includes both white and gray
atter components, resulting in a mix of tissue parts with very high

nd very low similarity to the target area under the same classification
abel. Thus, the general background class was split into separate labels
or gray matter ( 𝑐𝑜𝑟 ) and white matter ( 𝑤𝑚 ), resulting in a semantic
egmentation problem with the four classes 𝑏𝑔, 𝑤𝑚 , 𝑐𝑜𝑟 , and the target
rea 𝑎 . For splitting the background class into 𝑤𝑚 and 𝑐𝑜𝑟 , different
trategies were used for each dataset: 

1. For B20 , a volumetric tissue classification presented
in Lewis et al. (2014) was projected onto the 2D histolog-
ical sections using transformations provided by the authors
of Amunts et al. (2013) . 

2. For B01 , the gray white matter segmentation described in
Spitzer et al. (2017) was used. 

3. For AAHB , the respective delineations available from the Allen on-
tology Ding et al. (2016) were used. 

Patchwise training 

The full resolution scans of the whole-brain sections are by far too
arge to be used for training. Thus, a patchwise training procedure
s also proposed in Ronneberger et al. (2015) , Spitzer et al. (2017,
018) was employed. However, due to the locality of local segmenta-
ion models, patches were sampled only in the direct proximity of the
arget brain area 𝑎 , to effectively teach the models to distinguish 𝑎 from
ts immediate surroundings. Only pixels with a distance of 5 mm or less
o any pixel annotated as 𝑎 were considered as potential center points
or training patches. 

Data augmentation 

The following data augmentations were employed to simulate most
requently observed variations in the data: Both at test and training time,
mages were rotated by multiples of 90 degrees so that the 𝑦 axis of
oronal sections matches approximately the cranial direction. Random
otation by an angle sampled from a uniform distribution with support
 −45 , 45 ] were applied to account for small differences in rotation angle.
ntensity variations were addressed by random pixel intensity augmen-
ation with the function 𝑓 ( 𝑥 ) = 𝛼𝑥 𝛾 + 𝛽. The same intensity transforma-
ion is applied to all pixels of a training patch. Parameters were chosen
rom uniform distributions with 𝛼 ∼ 𝑈 [ 0 . 9 , 1 . 1 ] , 𝛽 ∼ 𝑈 [ −0 . 2 , +0 . 2 ] and
∼ 𝑈 [ 0 . 8 , 1 . 214 ] . The range of each parameter was empirically chosen

o reflect natural variations occurring in the data. 
Implementation 

Training was performed on the supercomputer JURECA 

3 at
he Jülich Supercomputing Centre at Research Centre Jülich
JSC) Krause and Thörnig (2018) . Each compute node was equipped
ith four NVidia K80 GPUs with 12 Gigabyte of VRAM, 2 Intel Xeon
5-2680 v3 Haswell CPUs (12 2.5 GHz cores with hyperthreading
ach) and 128 Gigabyte of RAM ( Krause and Thörnig, 2018 ). Training
f one model occupied one GPU node, using all 4 GPUs and all 48
hreads. Of the available 48 threads, 4 were assigned to one GPU each
o coordinate the training process, while the remaining 44 threads
ead training patches from disk in a streaming fashion, applied data

https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html
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Fig. 5. Illustration of investigated neural network architectures. A: High-resolution architecture ( HR ) from ( Spitzer et al., 2017 ), which can capture fine-grained 
microstructural textures. B: Low-resolution architecture ( LR ), which can capture macroscopic tissue features. C: Proposed multi-scale architecture ( MS ) to capture 
both fine and coarse grained tissue features. 𝐸 𝐻𝑅 is pre-initialized with weights of the self-supervised network proposed in Spitzer et al. (2018) . Numbers at the top 
of each block denote the number of filters used in the convolutional layers of this block. Numbers at the bottom denote the physical output spacing in μm per pixel 
for layers which change the physical spacing of the features. 
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Fig. 6. Overview of the mapping workflow. The user starts by creating anno- 
tations ( 1 ) of a brain area 𝑎 using the web-based annotation tool microdraw , 
and defines training tasks by specifying which annotations should be used to 
train local segmentation models ( Section 2.5 ). Annotations and task definitions 
are then submitted to a backend web service ( 2 ) which prepares the data for 
ugmentation and sent data to the training threads. Inter-process
ommunication was implemented based on Message Passing Interface
MPI) using mpi4py ( Dalcin et al., 2011 ). Training was implemented
sing TensorFlow ( Abadi et al., 2016 ). Distributed training was per-
ormed using Horovod ( Sergeev and Del Balso, 2018 ) and synchronous
istributed stochastic gradient descent. Batch size was set to 16 image
atches per GPU, resulting in a total effective batch size of 64 patches
er iteration. The linear learning rate scaling rule for distributed
raining proposed in Goyal et al. (2017) was employed, scaling the
earning rate by the number of GPUs. 4 Batch normalization statistics
ere computed independently for each GPU and not averaged during

raining. Software code is publicly available 5 . 

.6. Web-based interactive workflow for efficient cytoarchitectonic 

apping 

The proposed workflow was implemented as an interactive web ap-
lication ( Fig. 6 ) to provide direct user control over the segmentation
orkflow through a web browser. 6 The application allows entering an-
otations in a sparse set of reference sections, controlling the training
orkflow on a remote cluster, and efficiently inspecting predicted seg-
entations in the complete stack of histological sections. It does not re-

uire in-depth expertise in Deep Learning and/or batch computations.
4 Since we use a relatively small number of employed GPUs how- 
ver, we do not apply the initial learning rate warm up phase described 
n Goyal et al. (2017) . 

5 Code available at https://jugit.fz-juelich.de/c.schiffer/atlas 
6 Code available at https://jugit.fz-juelich.de/c.schiffer/atlasui 

training and submits a job to a HPC cluster. Training and subsequent prediction 
are performed on the HPC system ( 3 ). Obtained results can be viewed directly 
in microdraw for quality control ( 4 ). The user may decide to export results of 
sufficient quality for subsequent processing steps (e.g. 3D reconstruction), man- 
ually refine the predictions directly in microdraw , or repeat the workflow with 
additional annotations to improve performance. 

6 

https://jugit.fz-juelich.de/c.schiffer/atlas
https://jugit.fz-juelich.de/c.schiffer/atlasui
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echnically, it is designed as an extension of the web based annotation
ool microdraw 

7 , combined with a novel backend service that controls
ata exchange and job supervision on an ssh-accessible compute clus-
er. We used the workflow on the JURECA supercomputer at the Jülich
upercomputing Center (JSC). It uses common and freely available soft-
are components, and is portable to other sites, potentially requiring

ite-specific adjustments to account for differences in the software stack,
cheduling system and data access. 

The workflow typically iterates through the following steps: 

1. The user enters annotations for a target brain area 𝑎 in two tissue
sections 𝑠 1 and 𝑠 2 , enclosing a local stack interval of ≈ 100 sections
using microdraw , and this way defines a local segmentation model
𝑓 𝑎 [ 𝑠 1 ,𝑠 2 ] 

( Section 2.3 ). 

2. A training task for the local segmentation model is submitted as a
job to a GPU cluster at the push of a button, using default parameters
( Section 2.5 ). It does not require any further configuration. Training
typically takes 70 min on one compute node of the JURECA super-
computer. Multiple jobs can be submitted in parallel, if the cluster
allows. 

3. After training, predictions for all sections in the interval are automat-
ically generated. For a large area like ℎ𝑂𝑐1 , this takes approximately
30 min for 120 sections. Computed segmentations are automatically
displayed in the web frontend once they become available. Data syn-
chronization between the web server and compute nodes is handled
by the backend service. 

4. After inspecting the segmentation quality, the user can choose to
enter additional training data, either reducing the size of the current
interval or initiating the next interval in the stack. 

.7. Validation framework and strategy 

Additional sections with annotations in between the training sections
ere used for validating performance of local segmentation models on

ections that were not seen during training (orange diamonds in Fig. 1 ).
egmentations of these test sections were quantitatively evaluated using
he F1 score (also known as Dice score or Sørensen-Dice index), com-
uted as the harmonic mean of precision of recall. Auxiliary labels added
o ensure convergence ( Section 2.5 ) were excluded from F1 score cal-
ulation, as the focus lies on segmentation performance for target area
 . 

Similar to the proximity sampling strategy employed for training
 Section 2.5 ), segmentations on sections not seen during training were
nly created and evaluated in the approximate region containing 𝑎 on
he respective sections. These approximate regions were determined by
rojection of the closest reference annotations for 𝑎 to the image in ques-
ion using conventional linear image registration based on robust image
eatures as in Dickscheid et al. (2019) . 

The benefit of a multi-scale architecture was investigated by train-
ng separate local segmentation models with neural network architec-
ures HR , LR and MS for all areas in B20 . For HR and MS , the high-
esolution encoder 𝐸 𝐻𝑅 was initialized with the weights of the network
rom Spitzer et al. (2018) . Furthermore, the performance of multiple lo-
al segmentation models, each trained on a local subset of sections as
escribed in Section 2.3 , was compared to the performance of one sin-
le model trained on all annotations available for a target area 𝑎 in the
ollowing way: For each target area in the B20 dataset, one model was
rained using the union of all training sections of the local segmentation
odels (blue squares in Fig. 1 ), using the same training strategy as for

ocal segmentation models. We conducted these experiments using HR ,
R and MS architectures, and denote models trained on the whole stack
s HR (all) , LR (all) and MS (all) , respectively, again pre-initializing
he high-resolution encoder 𝐸 𝐻𝑅 with weights from Spitzer et al. (2018)
7 http://microdraw.pasteur.fr 

t  

m  

v  

7 
The robustness of the proposed method against intersubject variabil-
ty in brain structure and differences in staining protocols was investi-
ated by training local segmentations models (with MS architecture) for
reas ℎ𝑂𝑐1 and ℎ𝑂𝑐2 in datasets B01 and AAHB . To better understand
he roles of the low and high-resolution branches ( 𝐸 𝐿𝑅 and 𝐸 𝐻𝑅 ) in
he MS architecture, an experiment similar to occlusion sensitivity anal-
sis ( Zeiler and Fergus, 2014 ) was performed: Using model 𝑓 ℎ𝑂𝑐2 

[ 901 , 1021 ] 
hich implements the MS architecture, we investigated how predictions

hange when we set the input patch for either 𝐸 𝐿𝑅 or 𝐸 𝐻𝑅 to zero, ef-
ectively preventing information extraction using the respective branch.

.8. Generating high-resolution 3D cytoarchitectonic maps in the BigBrain 

ataset 

Non-linear transformations described in Amunts et al. (2013) ;
midyeganeh et al. (2020) from 2D histological sections

nto 3D reconstructed space available for the BigBrain
ataset Amunts et al. (2013) were used to generate 3D maps for
reas ℎ𝑂 𝑐1 , ℎ𝑂 𝑐2 , ℎ𝑂 𝑐3 𝑣 and ℎ𝑂𝑐5 from 2D segmentations produced
y our method. Segmentations were obtained using the workflow
escribed in Section 2.3 and checked for quality by an expert (e.g.
lausibility and consistency across consecutive sections). For areas
𝑂𝑐3 𝑣 and ℎ𝑂𝑐5 , results of segmentation models trained with a training
nterval size of 1 . 2 mm were used for reconstruction (marked with ∗
n Fig. 3 ). Between 8% ( ℎ𝑂𝑐3 𝑣 ) and 23% ( ℎ𝑂𝑐1 ) of sections contain-
ng the investigated areas were not used for reconstruction due to
istological artifacts (e.g. resulting from long-term storage or staining
nhomogeneities). Segmentations that passed the quality check were
ransformed into the 3D reconstructed space. Excluded sections were
eplaced by interpolations from neighboring sections, using Laplacian
elds as proposed in Schober et al. (2016) . 

Resulting 3D maps were smoothed using a median filter with ker-
el size 11 × 11 × 11 pixel to compensate for small artefacts. The size
f the filter was chosen to match the expected precision of annotations
t boundaries (not higher than 100 μm), translating to 5 voxels at the
arget resolution of 20 μm. Furthermore, connected component analy-
is on the smoothed volume was performed to determine and remove
purious false positive predictions outside the target area, relying on
he assumption that cytoarchitectonic areas are continuous in 3D. Only
omponents with a minimum volume of 27 mm 

3 ( 3 mm × 3 mm × 3 mm )
ere kept. Effects of median filtering and connected component filtering
re illustrated in Fig. 7 . 

To assess the improvement in 3D consistency and anatomical plau-
ibility gained by the proposed workflow, a reference reconstruction of
rea ℎ𝑂𝑐1 was computed, which performs a direct 3D interpolation be-
ween reference annotations obtained by GLI mapping. This reference
econstruction does not use the local segmentation models, and relies
nly on reference annotations and 3D reconstruction. It was computed
y transforming the annotations of the training sections (blue squares in
ig. 3 ) into the 3D reconstructed space, and filling the gaps by Laplacian
eld interpolation ( Schober et al., 2016 ). 

The anatomical consistency of 3D reconstructed maps was further
valuated by computing their volume and surface area, which were then
ompared to reference values from Amunts et al. (2000) . The volume of
ach area was computed by counting the total number of labeled voxels
nd multiplying the result by the physical size of each voxel. 

The surface area was computed by first extracting a closed
urface mesh of each area using the marching cubes algo-
ithm Lewiner et al. (2003) . The subset of mesh vertices lying on
he pial surface was then determined by including all triangles where
he cortical depth Bok (1929) was smaller than 0.25. To obtain
he cortical depth of each mesh vertex, the procedure described
n Leprince et al. (2015) was applied to the cortical ribbon defined by
he gray and white matter segmentation provided with the BigBrain
odel ( Lewis et al., 2014 ). The result was a volumetric dataset with

oxels in the white matter labelled 1, voxels outside the brain labelled

http://microdraw.pasteur.fr
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Fig. 7. Effects of median filtering and connected component filtering using the example of ℎ𝑂𝑐1 . Median filtering smooths the volume and removed small errors 
originating from registration errors or incorrect predictions (blue arrows). Filtering of small connected components removed small clusters of false positives from 

the volume (green arrows). Axes x, y and z correspond to left-to-right, posterior-to-anterior and ventral-to-dorsal directions, respectively. Axis labels are specified in 
mm and correspond to positions in the 3D reconstructed BigBrain space. See Fig. 14 for more images of ℎ𝑂𝑐1 from different viewing angles. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Table 1 

F1 score statistics computed across all ar- 
eas and test sections in the B20 dataset 
obtained by the different network ar- 
chitectures HR , LR and MS (trained on 
local intervals), as well as HR (all) , 
LR (all) and MS (all) (trained on all 
annotated sections per area). Higher 
mean/median values and lower standard 
deviation mean better performance. 

model median mean std 

HR (all) 0.5319 0.5680 0.2075 
LR (all) 0.5648 0.5533 0.1723 
MS (all) 0.5869 0.6020 0.1973 
HR 0.6294 0.6130 0.2105 
LR 0.7439 0.7036 0.1865 
MS 0.7469 0.7200 0.1825 
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, and voxels inside the isocortex labelled with values between 0 and
, representing their cortical depth according to the equivolumetric
odel ( Bok, 1929 ). Cortical depths of mesh vertices were then looked
p in this volume. Finally, the surface area of the pial surface for each
ytoarchitectonic area was computed by summing up the area of all
riangles associated to the pial surface. 

Both volume and surface area measurements were corrected for tis-
ue shrinkage Amunts et al. (2000) . The volume-based shrinkage factor
or B20 has been determined in Amunts et al. (2005) based on the fresh
eight and the volume after histological processing as 𝑓 𝑉 = 1 . 931 . From

his, an area-based (2D) shrinkage factor of 𝑓 𝐴 = 𝑓 
2∕3 
𝑉 

= 1 . 551 was de-
ived. 

. Results 

Differences in performance were observed depending on the network
rchitecture ( HR , LR , MS ), the training setting (global vs. local segmen-
ation models), the considered brain area, as well as the distance be-
ween annotated brain sections. 

All architectures except for LR (all) show comparably good per-
ormance for ℎ𝑂𝑐1 . For most areas however, LR and MS achieved
igher performance than other investigated models. For areas ℎ𝑂𝑐3 𝑣
nd ℎ𝑂𝑐5 , where additional models were trained with reduced distance
etween training sections (indicated by ∗ in Fig. 8 ), performance of
R and MS increased when reducing the distance between training sec-
ions, while only minor improvements were observed for the remaining
rchitectures. 

Representative image patches segmented by the MS architecture for
ach investigated area extracted from test sections of B20 are shown in
ig. 9 . True positive, false positive and false negative predictions are in-
icated in green, red and blue, respectively. A large share of incorrectly
lassified pixels belonged to cortical regions with highly oblique cut-
ing angles ( Fig. 10 B, C). While large rifts tended to be excluded from
he prediction ( Fig. 10 , A), smaller rifts or tissue foldings were correctly
egmented as surrounding area ( Fig. 9 , A, D, E, G, O). 

Scores obtained for areas ℎ𝑂𝑐1 and ℎ𝑂𝑐2 were overall consistent
cross different brain samples ( Fig. 11 ). In all three cases, scores ob-
ained for ℎ𝑂𝑐2 were lower compared to ℎ𝑂𝑐1 . Lowest median F1 score
or ℎ𝑂𝑐2 was obtained for B20 , along with an increased variance. Ex-
mple patches showing the border between ℎ𝑂𝑐1 and ℎ𝑂𝑐2 on test sec-
ions extracted from approximately identical brain regions in the three
atasets are shown in Fig. 12 . 

Models trained on all sections ( HR (all) , LR (all) , MS (all) ) ob-
ained lower mean and median F1 scores than their locally trained coun-
erparts HR , LR , and MS ( Table 1 ). LR (all) and HR (all) showed com-
arable performance, MS (all) performed slightly better. The lowest
8 
coring local model HR performs better than the highest scoring global
odel MS (all) . Both LR and MS resulted in higher mean and median

1 scores than HR , with lower standard deviations. Highest mean and
edian performance was obtained by MS ( Table 1, Fig. 8 ). 

Setting the input patch of either 𝐸 𝐿𝑅 or 𝐸 𝐻𝑅 to zero provides indica-
ion on the influence of different scales in the proposed MS architecture
 Fig. 13 ): Having access to only low-resolution image information, the
odel still identifies the approximate location of area ℎ𝑂𝑐2 , but with
oorly defined borders. Using only high-resolution information, the
odel captures finer details, but has difficulties localizing the area cor-

ectly. When the model has access to both high- and low-resolution in-
ormation, this results in better agreement with the reference annota-
ions. 

Locations, orientations and shapes of reconstructed 3D maps (com-
uted using steps described in Section 2.8 ) were anatomically plausible
nd consistent ( Fig. 14 ). The 3D map of ℎ𝑂𝑐5 showed partially missing
xtremal ends along the posterior anterior axis. Volume and surface esti-
ates from the 3D maps reported in Table 2 corresponded well with the
umbers reported in Amunts et al. (2000) . Surface areas of ℎ𝑂 𝑐1 , ℎ𝑂 𝑐2
nd ℎ𝑂𝑐5 were largely confirmed with the reference values, as well as
he volumes derived from automatic segmentations of areas ℎ𝑂𝑐1 and
𝑂𝑐2 . The reconstructed volume of area ℎ𝑂𝑐5 stood out by being con-
iderably smaller than the reference volume. 

Comparison of corresponding 3D reconstructions of area ℎ𝑂𝑐1
 Fig. 14 E vs. F) showed that the proposed approach provided anatom-
cally more consistent results than direct spatial interpolation of GLI-
ased annotations, while both build on the same annotation effort. 3D
nterpolation produced abrupt transitions in anterior-posterior direction
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Fig. 8. Median F1 scores for HR (all) , LR (all) , MS (all) , HR , LR and MS per investigated brain area in dataset B20 . 𝑁 𝑡 denotes the number of test sections for 
which F1 scores were computed for a particular area. ∗ indicates where training of local segmentation models was performed with reduced distance between training 
sections. Higher values denote better performance. 

Fig. 9. Example image patches and corresponding model predictions extracted from test sections of B20 segmented using the proposed MS architecture. One image 
patch is shown for each investigated cytoarchitectonic area. Colors green, red and blue indicate true positive, false positive and false negative predictions, respectively. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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 Fig. 14 , F, 1) and only captured structures already contained in the
eference annotations, leading to inconsistencies near fine-grained mor-
hological structures (e.g. Fig. 14 F, 2 and 3). The proposed method
ften produced reasonable segmentations for sections outside the train-
ng interval ( Fig. 14 , E, 1), which interpolation cannot provide by
efinition. 
9 
. Discussion 

In this work, we proposed a novel Deep Learning based workflow to
reate segmentations of cytoarchitectonic areas in large series of histo-
ogical human brain sections using only a limited set of manually cre-
ted annotations. We evaluated this approach across different cytoar-
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Fig. 10. Image patches extracted from 

B20 showing common challenges encoun- 
tered during manual and automated cytoar- 
chitectonic mapping. A: Mechanical dam- 
ages resulting from histological process- 
ing. Prediction for ℎ𝑂𝑐1 shown in yellow 

demonstrate handling of larger mechani- 
cal damages. B: Region where the cutting 
angle is highly oblique, leading to partial 
or full occlusion of cortical layer struc- 
ture ( oblique cuts ). C: Mechanically dam- 
aged and obliquely cut tissue. C-F: Exam- 
ple illustrating highly variable morphology 
of area ℎ𝑂𝑐3 𝑣 (highlighted in red) across 
120 histological sections in B20 . (For inter- 
pretation of the references to color in this 
figure legend, the reader is referred to the 
web version of this article.) 

Fig. 11. F1 scores for segmentations of ℎ𝑂 𝑐1 and ℎ𝑂 𝑐2 obtained by the MS architecture on test sections of datasets B20 , B01 and AAHB . 𝑁 𝑡 denotes the number of 
test sections for which F1 scores were computed for a particular area. 

Fig. 12. Example patches and typical segmentation results extracted from test sections in datasets B20 (A), B01 (B) and AAHB (C). All three patches show the 
segmentation of ℎ𝑂𝑐2 obtained by a local segmentation model with MS architecture. Patches were extracted at the border between ℎ𝑂𝑐1 and ℎ𝑂𝑐2 and in comparable 
regions of the respective brain. Colors green, red and blue indicate true positive, false positive and false negative predictions, respectively (see also legend in Fig. 9 ). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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hitectonic areas, brain samples and staining protocols. As a concrete
se case, we then applied it to create high-resolution 3D maps of areas
𝑂 𝑐1 , ℎ𝑂 𝑐2 , ℎ𝑂 𝑐3 𝑣 and ℎ𝑂𝑐5 in the BigBrain Amunts et al. (2013) . 

.1. Quality of derived 3D maps in the BigBrain 

The proposed method produced 3D maps with a high degree of
natomical consistency and identified cytoarchitectonic areas precisely
n the histological brain sections. Partially missing extremal ends re-
10 
ain a challenge, as seen in anterior-posterior direction of ℎ𝑂𝑐5 . Such
arts are often difficult to identify even using manual methods. There-
ore, training data for such extremal ends is difficult to obtain. The seg-
entation of extremal ends could potentially be addressed by providing

dditional GLI-based mappings (at the cost of additional annotation ef-
ort), or by an explicit shape-based inference step on top of the pixel
egmentation. The 3D map of ℎ𝑂𝑐1 created with the proposed method
s superior to the map obtained by direct spatial interpolation between
LI-based annotations. Methods based on 3D interpolation inherit any
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Fig. 13. Reference annotations and predictions of area ℎ𝑂𝑐2 (blue) for an example patch from section 961 of the B20 dataset. Predictions were obtained by using 
both low- and high-resolution information ( LR & HR ), only low-resolution ( LR only ), and only high-resolution information ( HR only ). The input image 
patch for 𝐸 𝐻𝑅 and 𝐸 𝐿𝑅 was set to zero to investigate the role of low- and high-resolution image information, respectively. Predictions were created with model 
𝑓 ℎ𝑂𝑐2 
[ 901 , 1021 ] using the MS architecture. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 14. 3D maps of visual cytoarchitectonic areas ℎ𝑂𝑐1 (yellow), ℎ𝑂𝑐2 (blue), ℎ𝑂𝑐3 𝑣 (red) and ℎ𝑂𝑐5 (green), obtained by transforming the independent 2D 

segmentations generated by the proposed method into the 3D reconstructed space of the B20 dataset. A+B: Spatial embedding of reconstructed areas into the 
3D reconstructed BigBrain volume. C+D: Detailed view of reconstructed cytoarchitectonic areas. E+F: Comparison of ℎ𝑂𝑐1 reconstructed based on our proposed 
method (E) and based on an interpolation between annotations in the reconstructed space, using Laplacian fields as proposed in Schober et al. (2016) (F). Arrows 
in F) mark example locations demonstrating shortcomings of the interpolation based reconstruction. Axes x, y and z correspond to left-to-right, posterior-to-anterior 
and ventral-to-dorsal directions, respectively. Axis labels are specified in mm and correspond to positions in the 3D reconstructed BigBrain space. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 

11 
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Table 2 

Estimated volumes (in mm 

3 ) and surface areas (in mm 

2 ) of brain 
areas derived from the full 3D maps in the 3D reconstructed space 
of the B20 dataset. Reference mean 𝜇 and standard deviation 
𝜎 were computed based on male subjects from ( Amunts et al., 
2000 ). Shrinkage corrected of volumes and surface areas was per- 
formed using correction factors 𝑓 𝑉 = 1 . 931 and 𝑓 𝐴 = 1 . 551 respec- 
tively ( Amunts et al., 2005 ). 

area volume corrected 𝜇 𝜎 z-score 

ℎ𝑂𝑐1 9019.30 17416.27 18042.2 2464.39 − 0.25 
ℎ𝑂𝑐2 6448.60 12452.26 12634.2 2862.84 − 0.06 
ℎ𝑂𝑐3 𝑣 1974.76 3813.26 n.a. n.a. n.a. 
ℎ𝑂𝑐5 304.10 587.21 1144.4 406.53 − 1.37 
area surface corrected 𝜇 𝜎 z-score 
ℎ𝑂𝑐1 6891.03 10685.76 12213.0 2225.55 − 0.69 
ℎ𝑂𝑐2 6749.64 10466.52 10390.4 2925.37 0.03 
ℎ𝑂𝑐3 𝑣 2142.04 3321.62 n.a. n.a. n.a. 
ℎ𝑂𝑐5 319.79 495.89 450.2 135.92 0.34 
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rror in the alignment of consecutive sections, making them inappro-
riate for stacks with only linear or no 3D reconstruction. The proposed
ethod does not assume any prior 3D reconstruction - in fact its outputs
ight be used to guide image registration with landmarks. 

.2. Practical usefulness of the implemented workflow 

The presented method showed good robustness against intersubject
ariability and different histological processing protocols. Thus it largely
vercomes the need for brain or area specific parameter adjustments,
hich makes it well suited to be used as a self-contained tool for neuro-

cientists. Consequently, it was possible to implement it into a web ap-
lication that provides a practical mapping workflow for end users from
ifferent disciplines. The web application is currently used by five neu-
oscientists in our institute for their research projects, without requiring
upport from a computer scientist. The interactive workflow enables effi-
ient mapping of brain areas across full series of histological sections, en
ar with high throughput microscopy. Such efficiency of mapping was
reviously impossible in our experience. To give a concrete example, we
onsider that a trained expert typically needs 30–60 min to identify cy-
oarchitectonic borders for one cortical area on a single tissue section.
sing the established GLI-based mapping approach (see Section 2.1 ),

his would translate to an approximate effort of 150 work days (8 h
er day) to map ℎ𝑂𝑐1 across the whole stack of 2461 sections. In com-
arison, the proposed method required annotation of only 18 sections
o generate precise segmentations of the complete stack, corresponding
o approximately 9 working hours. Altogether, including quality checks
nd computations, the presented workflow allows precise mapping of a
arge brain area in the order of 1–2 weeks - a task that would require
lmost a year of work with previously established methods. 

Although the workflow provides a high degree of automation, we
till recommend final inspection of results by an expert to ensure optimal
uality. The interactive web application presented in Section 2.6 assists
sers with such quality control, by displaying predictions and allowing
mmediate correction of remaining errors with significantly less effort
han annotating images from scratch. Of course, the typical amount of
ecessary manual corrections is an important indicator for the useful-
ess of the tool in practice. In our experience from mapping a whole
ange of different human brain regions, quality control and manual cor-
ections typically take in the order of few hours per brain area, which
ay include several thousand sections. 

Nevertheless, the need for manual supervision could be further re-
uced by investigating into methods for identifying prediction errors.
uch methods could directly inform the user where additional anno-
ations could help to further optimize the results, thereby realizing an
ctive learning ( Settles, 2009 ) scheme. 
12 
.3. Ability to distinguish higher associative areas 

In contrast to primary areas such as the primary visual cortex ℎ𝑂𝑐1 ,
o called higher associative areas have a less distinct cytoarchitecture,
nd less prominently differ from their neighbouring areas. Such obser-
ation lead Bailey and von Bonin to the conclusion that it is almost
mpossible to reliably distinguish such areas from each other, and to
efine borders between them ( Bailey and von Bonin, 1951 ). This view
s not supported any more due to the possibility to identify cytoarchi-
ectonic borders in a reliable and reproducible way (for an overview
ee ( Zilles and Amunts, 2010 )). However, the fact that intersubject dif-
erences between identical areas of different brains may exceed cytoar-
hitectonic differences between two neighboring areas in one and the
ame brain creates challenges for modern brain mapping ( Amunts et al.,
999 ). 

Atzeni et al. (2018) also addressed automated mapping of his-
ology. They segmented brain structures in a serial stack of human
rain sections from the Allen Human Brain Atlas ( Ding et al., 2016 )
dataset AAHB used in our experiments). They used annotations from
ing et al. (2016) on a small set of sections at regular intervals, in or-
er to train a probabilistic model that combines multi-atlas segmenta-
ion with a CNNs to segment the remaining sections. Compared to the
resent work however, their approach is restricted to brain structures
hat can be recognized at a resolution of 250 μm. The authors confirm
n their paper that more subtle classes, in particular subdivisions of the
socortex, introduce excessive noise with their approach. The method
resented here segmented both ℎ𝑂𝑐1 and ℎ𝑂𝑐2 in the same dataset with
igh accuracy by including more fine-grained texture features into the
odels, thus going clearly beyond this restriction. 

.4. Effect of the local segmentation models 

Previous work on automatic cytoarchitectonic brain mapping
sing machine learning emphasized the importance of strategies
or efficient exploitation of available training data and prior in-
ormation. This includes incorporating probabilistic priors from
rain atlases Spitzer et al. (2017) and self-supervised learn-
ng Spitzer et al. (2018) . The key idea of the present paper is to
se multiple local segmentation models, each of which focuses on a
patially restricted subset of sections in one specific brain area. In order
o maximize practical benefit, we make an explicit design decision not
o aim for a general classification model of multiple brain areas and
rains. The benefit of such local segmentations models is confirmed by
ur experiments, which showed significantly improved performance of
R , LR , and MS compared to their globally trained counterparts HR

all) , LR (all) and MS (all) . 
A major advantage of the local segmentation models is the ability

o flexibly adjust the distance between training sections to account for
egions with particularly simple or complex properties. This has been
emonstrated for the challenging areas ℎ𝑂𝑐5 and ℎ𝑂𝑐3 𝑣 , where a re-
uction of the distance between training sections from 120 ( 2 . 4 mm ) to
0 ( 1 . 2 mm ) improved precision to a satisfactory level while keeping the
nnotation effort tractable. 

Distance reduction results in major performance gains when using
ocal segmentation models LR or MS , but only minor gains when using
lobally trained models LR (all) or MS (all) . This suggests that local
egmentation models make more efficient use of the additional training
ata. 

In a similar fashion, larger areas or areas with distinct cytoarchitec-
onic features (e.g. ℎ𝑂𝑐1 ) can be segmented with a coarser set of training
ections, in this case reducing annotation effort. 

The availability of expert annotations limits our ability to evaluate
he effect of reducing distance between annotated sections. The results
f our experiments for areas ℎ𝑂𝑐3 𝑣 and ℎ𝑂𝑐5 suggest, that the optimal
istance between annotated sections depends on the cytoarchitectural
nd morphological complexity of a brain area. The proposed interactive
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orkflow allows users to add annotations incrementally until satisfied
ith the segmentation. 

On the downside of local models, hyperparameter assessment (e.g.
or learning rate or model architecture) is not straightforward when
raining multiple models on different training sets and evaluating them
n individual test sets. Model performance needs to be evaluated across
everal areas, sections and brains, which can be computationally expen-
ive and lead to a slow development process. 

.5. Effect of the multi-scale model architecture 

Macroscopic features of the cerebral cortex (e.g. folding patterns)
ary between individual brains. While the location of gyri and sulci
an provide guidance for localizing brain areas, such coarse landmarks
annot generally be used to precisely predict cytoarchitectonic bor-
ers ( Amunts and Zilles, 2015; Fischl et al., 2008; Im and Grant, 2019;
ebenberg et al., 2018 ). Consequently, established methods for identi-
ying cytoarchitectonic areas rely on high-resolution microscopic infor-
ation Schleicher et al. (1999) ; Spitzer et al. (2017, 2018) . In contrast,

he proposed local segmentation models are able to exploit macroscopic
eatures for improving segmentation performance, thanks to their spe-
ialization on only a part of a specific brain area from one individual
rain. This can be seen from the higher scores produced by the LR and
S architectures for local segmentations models ( Table 1 ), and by the

ack of such an effect for models trained on all sections of a brain area
 HR (all) , LR (all) , MS (all) ). Microscopic resolution features fur-
her contribute to the performance of the local segmentation models,
s verified by a Wilcoxon signed-rank test ( Wilcoxon, 1945 ) ( 𝑝 = . 0011 )
hich confirms that the multi-scale approach of MS further improves the
erformance compared to LR . However, this is a relatively small effect
ompared to the improvement between HR and MS . We can therefore
ssume that macroscopic information is more relevant than microscopic
nformation in the strictly local setting. 

For further understanding the influence of the two scales in the
odel, it is helpful to compare predictions obtained when occluding

i.e. setting to zero) either the microscopic or macroscopic inputs in a
S model: Using only low-resolution inputs, the model is still able to ap-

roximately locate the area, but fails to capture the fine details. On the
ther hand, a model restricted to see only high-resolution inputs strug-
les to correctly locate the area. This confirms our assumption that the
S model mostly uses low-resolution inputs for localization and high-

esolution inputs for local refinement. While the results of this experi-
ent cover only a specific setting (e.g. model, area and input location),

hey give us some confidence that the model works as expected. 

.6. Failure mode analysis 

The predictions produced by the proposed model typically include
ome remaining errors ( Figs. 9, 12 ), which require careful interpreta-
ion. 

Close to brain region boundaries, it must be noted that the GLI-based
eference annotations enforce straight lines to model the border, which
eflects the vertical arrangement of neurons in columns as a major prin-
iple in cortical organization ( Schleicher et al., 2000; 1999 ). This may
ead to discrepancies with the present segmentations, that do not en-
orce such constraints (see for example Fig. 12 ). In fact the location of
he boundary is not determined down to the single pixel, and as a conse-
uence, pixel-level metrics have a somewhat limited significance there.

Many of the remaining classification errors further coincide
ith highly oblique cutting angles of the tissue. As also reported

n ( Schleicher et al., 1999; Spitzer et al., 2017; 2018 ), identification
f cortical areas is almost impossible at such angles, because the lami-
ar composition of the cortex is then almost invisible in the 2D section.
n such cases, experts would consult adjacent sections to identify ar-
as, which the proposed method cannot do. An extension of the method
13 
onsidering multiple adjacent sections for classification might be able
o overcome this issue. 

Whether or not remaining segmentation errors are critical in prac-
ice depends on the availability of postprocessing methods for correcting
hem. In the experiments that we carried out, the precise 3D reconstruc-
ion of the BigBrain dataset could be used for removing spurious errors
 Section 2.8 ). However, if no precise 3D reconstruction is available, the
anual effort for quality control of predictions and any necessary error

orrections increases. For such settings, it would be beneficial to develop
dditional heuristics to identify errors, e.g. for detecting inter-section in-
onsistencies from only approximate section alignments. 

. Conclusion 

A novel method based on Convolutional Neural Networks (CNNss)
as introduced for automated mapping of cytoarchitectonic areas in

arge series of histological human brain sections. Segmentation mod-
ls were trained for segmentation of different cytoarchitectonic areas in
istological stacks obtained from three different brain samples. A key
dea is to train separate local segmentation models based on annota-
ions of one specific target area in only two training sections, to focus
he learning process on microscopic and macroscopic tissue features
lose to the training sections. Local segmentation models enable ex-
loitation of low-resolution macroscopic information and significantly
mprove performance over globally trained models. After training, local
egmentation models were able to accurately segment sections in be-
ween their respective training sections. By concatenating results from
ultiple local segmentation models, segmentations for complete brain

reas can be obtained. The proposed method opens up new possibil-
ties to map complete stacks of histological human brain sections in
 highly automated fashion, and thus provides an important basis for
uilding high-resolution human brain maps for datasets like BigBrain.
o the best of our knowledge, the maps of areas ℎ𝑂 𝑐1 , ℎ𝑂 𝑐2 , ℎ𝑂 𝑐3 𝑣
nd ℎ𝑂𝑐5 computed for the BigBrain model using this method are the
rst high-resolution 3D maps of human cytoarchitectonic areas created

rom full stacks of histological sections at cellular resolution. These maps
nable precise studies of area-specific morphological and columnar fea-
ures at microscopic resolution, and in combination with existing corti-
al layer maps ( Wagstyl et al., 2020 ) an investigation into layer-specific
spects of each region. Dense maps further enable straightforward map-
ing from the volume to the whole brain mesh surface, which in turn
acilitates comparison with other modalities, especially in-vivo imag-
ng. They represent an important contribution for using BigBrain as a
icroscopic resolution reference space, since they provide direct links

o probabilistic cytoarchitectonic reference parcellations at the macro-
copic scale ( Amunts et al., 2020 ) that are widely used in neuroimaging
tudies. As such, our work makes an important contribution to linking
euroscientific findings across spatial scales. 
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