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Abstract: The NADPH oxidase Nox4 is a hydrogen peroxide (H2O2)-producing enzyme, with
the highest expression in the kidney. As the kidney is involved in volume and blood pressure
control through sodium handling, we set out to determine the impact of a low sodium diet on
these parameters in WT and Nox4-/- mice. Nox4 expression in the murine kidney was restricted to
the proximal tubule. Nevertheless, low-sodium-induced weight loss and sodium sparing function
was similar in WT and Nox4-/- mice, disputing an important function of renal Nox4 in sodium
handling. In contrast, a low sodium diet resulted in a reduction in systolic blood pressure in Nox4-/-
as compared to WT mice. This was associated with a selectively lower pressure to heart-rate ratio, as
well as heart to body weight ratio. In general, a low sodium diet leads to activation of sympathetic
tone and the renin angiotensin system, which subsequently increases peripheral resistance. Our
observations suggest that the control by this system is attenuated in Nox4-/- mice, resulting in lower
blood pressure in response to low sodium.
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1. Introduction

Reactive oxygen species (ROS) and oxidative stress have been implicated in kidney
disease [1]. Numerous ROS generator systems are present in the kidney and have been
linked to renal pathologies. An important ROS generator system is the Nox family of
NADPH oxidases (Noxes), which are expressed in the kidney and may contribute to
ROS-dependent pathologies [2–5].

The individual cells of the kidney exhibit a cell-specific expression pattern of the
different Nox homologues, as well as a differential response to Nox enzyme-inducing and
-activating stimuli. In models of angiotensin II infusion and a high salt diet, the renal
expression of Nox2 and its accessory subunits is increased [3] and the hypertension in-
duced in response to these stimuli has been, at least in part, attributed to an increased renal
production of superoxide anions and/or hydrogen peroxide [6–8]. Despite a growing body
of literature, the specific functions of most NADPH oxidases in the kidney are insufficiently
understood. This aspect is particularly true for the NADPH oxidase Nox4. In fact, Nox4
was initially identified in the kidney. At the protein level, the kidney has, by far, the highest
Nox4 expression. Conversely, in all other organs Nox4 is hardly detectable; the kidney
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yields a strong and specific signal for Nox4 by Western blot [9]. Different to all other Nox
enzymes, Nox4 is constitutively active and is only dependent on p22phox [10], not on
cytosolic subunits. Moreover, Nox4, like the Duox-NADPH oxidases, directly produces
H2O2, due to its ability to trap O2

•- in a pocket of its E-loop [11]. H2O2 is a relatively long-
lived ROS, which can exert a signaling function through direct reaction with cysteines [12]
and the metal centers of enzymes [13]. Despite numerous publications [14–16], there is
currently no consensus regarding the role of Nox4 in renal disease, as interpretations vary
according to the loss of function strategy (inhibitor, knockdown, knockout, dominant nega-
tive enzyme) or model system (cell culture, mouse model, rat model) [17–21]. In models of
diabetes and renal fibrosis, knockout of Nox4 did not result in renal protection [9,22]. In
contrast, in hypertension and kidney injury in a Dahl salt-sensitive (SS) rat model, knockout
of Nox4 attenuates blood pressure increase in response to a high salt diet (4%) [23]. Given
that the sodium-sparing function of the kidney is essential to body water conservation
and, thus, blood pressure maintenance through plasma volume control, the function of
Nox4 in this context becomes an important question. We therefore hypothesized that Nox4
contributes to renal sodium handling, and studied this aspect using a low sodium diet in
wild-type (WT) and Nox4-/- mice.

2. Material and Methods
2.1. Knockout Animals and Animal Procedure

Tamoxifen-inducible Nox4-/- mice (Nox4flox/flox-ERT2-Cre+/0 mice) were gener-
ated by crossing Nox4flox/flox mice (backcrossed more than 10 generations into C57/Bl6J)
with CreERT2+/0 mice, as described previously [24]. Knockout was induced by tamoxifen
chow (LasCRdiet CreActive TAM400 (400 mg/kg) for 10 days followed by a wash out time
of 14 days. A low sodium diet (0.01% Na+) was obtained from Altromin (#C1036). Urine
was collected in metabolic cages, and blood was collected in lithium heparin tubes. Plasma
was obtained by 2000× g centrifugation for 5 min at 4 ◦C.

All experiments performed with animals were in accordance with German animal
protection laws and were carried out after approval by the local authorities under the
number FU1089. Animals were housed in groups with free access to chow and water in a
specified pathogen-free facility with a 12/12 h day/night cycle. Given the impact of gender
on ROS production, only male animals older than 8 weeks were used in this study.

2.2. RNAscope® In Situ Hybridization Combined with Immunofluorescence

RNAscope in situ hybridization and protein detection by immunofluorescence were
performed on paraffin embedded renal sections. Adult murine kidneys were fixed in 4%
paraformaldehyde at room temperature overnight, dehydrated, then embedded in paraffin
and cut into 5 µm thick sections. RNAscope was performed according to the manufacturer’s
protocol (Advanced Cell Diagnostics, Hayward, CA, USA). Briefly, tissue sections were
heated for 1 h at 60 ◦C and, subsequently, deparaffinized in xylene (2 × 5 min), isopropanol
(2 × 5 min), ethanol (2 × 5 min) and then air-dried for 5 min. Samples were pretreated
with hydrogen peroxide for 10 min and then with a target retrieval solution followed by
Protease Plus reagent for 30 min at 40 ◦C. After Protease Plus, slides were washed in ddH2O
and incubated with Nox4 probe for 2 h at 40 ◦C. Peptidylprolyl isomerase and B. subtilis
dihydrodipicolinate reductase were used as a positive and negative control, respectively.
Following probe hybridization, the RNAscope 2.0 HD Detection Kit–Brown (for detection
of onlye RNA) or –Red (to combine with immunofluorescence) was applied for visualizing
hybridization signals.

For immunofluorescence staining, slides were washed in PBS after performing RNAscope.
Subsequently, specimens were blocked with a NaN3 solution for 1 h at 37 ◦C. After washing
in PBS, probes were blocked a second time using a milk solution for 20 min at room
temperature, and then incubated with primary antibodies (1:500 diluted in Roti) overnight
at 4 ◦C. The primary antibodies used for immunofluorescence were anti-aquaporin 2 (AQP2)
(C-17; Santa Cruz Biotechnology) and anti-megalin (Meg) (P-20; Santa Cruz Biotechnology).
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The slides were then washed in PBS and sections were incubated with the secondary
antibody for 2 h at room temperature. Secondary antibody (1:500 diluted in Roti) was
Alexa Fluor 488 goat anti-rabbit IgG (A11034; Invitrogen). Slides were washed in PBS then
treated with DAPI (1:500 diluted in PBS) and finally covered using Mounting Medium
(P36931; Thermo Fisher). RNAscope in situ hybridization and immunofluorescence images
were captured on a confocal microscope (LSM800; Carl Zeiss, Germany).

2.3. Amplex Red Measurements from Renal Tissue

The kidneys were freshly isolated, separated into cortex and medulla, and HT buffer
(buffer containing in mmol/L: 137 NaCl, 2.7 KCl, 0.5 MgCl2, 1.8 CaCl2, 5 glucose, 0.36
NaH2PO4, 10 HEPES) was added to 1 mL/mg tissue. The organs were then minced with a
scalpel and H2O2-derived fluorescence was measured in the supernatant of 100 mg tissue in
the presence of Amplex Red (50 µmol/L, Invitrogen) and horseradish peroxidase (2 U/mL).
Fluorescence was determined in the supernatant at 540 nm/580 nm excitation/emission.
H2O2 concentration was estimated from a standard curve.

2.4. Blood Pressure Measurements

Tail cuff measurements were performed with a 6–channel setup (Vistech BP2000).
Measurements over 5 days were averaged per mouse.

2.5. Clinical Chemistry

Electrolytes (Na+, Cl−, K+) in plasma and urine were analyzed with an AU480 clinical
chemistry analyzer (Beckman Coulter Germany, Krefeld, Germany) with the integrated
ion-selective electrodes unit (ISE) and reagent kits provided by Beckman Coulter, according
to previous publications [25]. Creatinine was measured by an enzymatic method using a
kit from Beckman Coulter (#OSR61204).

Clearance was calculated by dividing the excretion rate (concentration in urine multi-
plied by urine flow) by plasma concentration.

2.6. Statistics

Unless otherwise indicated, data are given as means ± standard error of mean (SEM).
Calculations were performed with Prism 5.0 or BiAS.10.12. The latter was also used to
test for normal distribution and similarity of variance. In the case of multiple testing,
Bonferroni correction was applied. For multiple group comparisons, ANOVA variance
testing followed by post hoc testing was performed. Individual statistics of unpaired
samples was performed by a t-test, and if found to be not normal, distributed by the
Mann–Whitney test. A pvalue of <0.05 was considered as significant. Unless otherwise
indicated, n indicates the number of individual experiments or animals.

3. Results
3.1. Nox4 Expression Is Restricted to Proximal Tubule Cells

To begin, we determined which cells of the kidney express Nox4. For this, we used
high-resolution in situ hybridization (RNAscope®) to visualize Nox4 mRNA, which has
been reported to strongly correlate with the protein level of Nox4 [26]. A custom-designed
probe and chromogenic staining (Brown kit) confirmed that Nox4 mRNA expression is
restricted to the renal cortex (Figure 1A). No staining was detected in the kidneys of Nox4-/-
mice. To specifically identify the Nox4 mRNA expressing cell, we combined RNAscope®

with immunofluorescence using megalin and aquaporin-2 as markers for proximal tubule
and collecting duct cells, respectively. Nox4 staining was restricted to megalin-positive
cells (Figure 1B); also in addition, no staining was observed in the glomeruli (visualized by
its distinct morphology). These results demonstrated that Nox4 expression in the kidney is
restricted to the proximal tubule cells.
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Figure 1. Nox4 is expressed in the proximal tubule cells and produces H2O2. A: RNAscope in kid-
ney. Left panel: +CTR: peptidylprolyl isomerase B, −CTR: B. subtilis dihydrodipicolinate reductase. 
Middle: staining of Nox4 in cortex and medulla of WT and Nox4-/- mice. Right panel: higher mag-
nification. Scale bar: 20µm. B: RNAscope combined to IF shows Nox4 expression at the proximal 
tubule and not at the collecting tubule. C: H2O2 measurement from renal tissue using Amplex red. 
* p < 0.05. n = 8 mice for each group. 

3.2. Nox4 Contributes to H2O2 Production of the Renal Cortex 
Next, we measured H2O2 as a readout for an active Nox4 enzyme. For this, we uti-

lized Amplex red® with HRP as a sensitive method for H2O2. 
Freshly dissected kidneys from WT and Nox4-/- mice were separated into cortex and 

medulla and minced in HT (Hepes Tyrode) buffer and incubated with Amplex red®/HRP 
solution. Renal cortex of Nox4-/- showed a significantly lower (16% of WT mice) release 
of H2O2, demonstrating that Nox4 is the source of H2O2 in the murine renal cortex (Figure 
1C). 

Figure 1. Nox4 is expressed in the proximal tubule cells and produces H2O2. (A): RNAscope
in kidney. Left panel: +CTR: peptidylprolyl isomerase (B), −CTR: B. subtilis dihydrodipicolinate
reductase. Middle: staining of Nox4 in cortex and medulla of WT and Nox4-/- mice. Right panel:
higher magnification. Scale bar: 20 µm. B: RNAscope combined to IF shows Nox4 expression at the
proximal tubule and not at the collecting tubule. (C): H2O2 measurement from renal tissue using
Amplex red. * p < 0.05. n = 8 mice for each group.

3.2. Nox4 Contributes to H2O2 Production of the Renal Cortex

Next, we measured H2O2 as a readout for an active Nox4 enzyme. For this, we utilized
Amplex red® with HRP as a sensitive method for H2O2.

Freshly dissected kidneys from WT and Nox4-/- mice were separated into cortex
and medulla and minced in HT (Hepes Tyrode) buffer and incubated with Amplex
red®/HRP solution. Renal cortex of Nox4-/- showed a significantly lower (16% of WT
mice) release of H2O2, demonstrating that Nox4 is the source of H2O2 in the murine renal
cortex (Figure 1C).
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3.3. Knockout of Nox4 Lowers Blood Pressure and Cardiac Mass in Response to Low Sodium Diet

The proximal tubule is the renal site of mass absorption. More than 65% of the water,
a high proportion of bicarbonate and phosphate, and basically all amino acids, glucose, as
well as numerous vitamins and trace elements, are recycled at this site. Almost all transport
processes in the proximal tubule are coupled, directly or indirectly, to sodium reabsorption.
The fine-tuning of sodium excretion occurs in the late distal tubule and collecting duct. A
previous publication on the role of Nox4 in salt-induced hypertension in Dahl rats [27]
suggests that Nox4 has an impact on sodium handling and, thus, total body water content
and plasma volume.

To study this aspect, mice were challenged with a low sodium diet: body weight,
blood pressure and sodium excretion were first studied on regular chow (0.2 g/kg sodium),
and subsequently on a low sodium diet (0.01 g/kg) applied for up to three weeks with
prior tamoxifen-mediated knockout of Nox4 (Figure 2A).
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Figure 2. Experimental setup and cardiovascular parameters. (A): experimental design. (B): systolic
blood pressure. (C): diastolic. (D): heart rate. (E): ratio of systolic blood pressure to heart rate. (F):
ratio of heart to body weight. * p < 0.05, non-parametric test, Mann–Whitney. n ≥ 6.

Under normal chow, the blood pressure and heart rate of WT and Nox4-/- mice were
similar. A reduction in sodium intake slightly lowered systolic blood pressure in both
strains; this effect was more pronounced in Nox4-/- than in WT mice (only significant at
week 1 of low Na+). There was also a trend towards a higher heart rate in Nox4-/- vs. WT
mice (Figure 2B–D). The values do not reach significance at all timepoints, potentially due
to insufficient group size or high variability in tail cuff measurements. The combination
of lower blood pressure and increased heart rate might indicate that peripheral resistance
or plasma volume are different between WT and Nox4-/- mice. Indeed, whereas there
was no difference under normal chow, when exposed to a low sodium diet, the ratio of
systolic blood pressure to heart rate was significantly lower in Nox4-/- compared to WT
mice (Figure 2E). Lower peripheral resistance or volume should attenuate cardiac load
(after and preload, respectively), thus resulting in small hearts. Indeed, at the end of the
3-week diet, the heart to body weight ratio was lower in Nox4-/- as compared to WT mice,
whereas the body weight was similar (Figure 2F).

3.4. Knockout of Nox4 Does Not Alter Body Weight and Water Intake in Response to Low
Sodium Diet

A reduction in food sodium content resulted in a loss of body weight of approx. 1 g
within 2 weeks. Although this weight loss was, on average, slightly greater for Nox4-/-
mice at any timepoint, the difference did not reach the level of significance (Figure 3A). As
determined by metabolic cages performed prior to and 3 days after the initiation of the
low sodium diet, the diet slightly increased water intake, which reached the significant
level for WT mice but not for Nox4-/- mice (paired test, Figure 3B). Urine production was
similar between all groups (Figure 3C). Thus, there are no profound differences in body
water control between WT and Nox4-/- mice.
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Figure 3. Effect of diet on weight, water intake und urine excretion. (A): absolute and relative weight
change during the experiment. The grey box indicates the time mice were kept in metabolic cages.
Vertical dotted line indicates the beginning of a low sodium diet. (B,C): Absolute water intake and
urine production determined in the metabolic cage before and 3 days after the initiation of a low
sodium diet. (36 h collection time) n = 8. * p < 0.05 paired Wilcoxon test, data are mean ± SEM.

3.5. Knockout of Nox4 Does Not Affect Renal Clearance nor Plasma Level of Na+, Cl− and K+

In order to directly determine the role of Nox4 for renal electrolyte handling, plasma
and urine electrolytes were measured and their renal excretion and clearance was deter-
mined (Figure 4). Sodium restriction resulted in the expected sodium and chloride sparing
of the kidney: sodium and chloride excretion, as well as clearance, decreased, whereas the
values for potassium remained unchanged. Importantly, there was no difference regarding
these parameters between WT and Nox4-/- mice under basal conditions, as well as on a
low sodium diet.
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4. Discussion

In this study, we report that a low sodium diet results in an acute reduction in systolic
blood pressure and a prolonged reduction in peripheral resistance in Nox4-/- mice. Despite
the high expression of Nox4 in the kidney, this effect was unrelated to salt and water intake
and renal sodium handling. Sodium restriction resulted in weight loss and renal sodium
sparing, and this effect was similar between WT and Nox4-/- mice. Collectively, these
data support the previous report of Nox4 in renal blood pressure control [27] but exclude a
direct effect on sodium handling as an underlying mechanism.

In the present study, we observe a high expression of Nox4 in the proximal renal
tubule. Our data are in line with the single-cell sequencing atlas of the murine kidney [28],
where Nox4 is expressed in the cluster of proximal tubule cells and a novel cluster that is
also positive for megalin. In addition, in the human kidney, Nox4 appears to localize to the
proximal tubule [18]. Despite these data on expression, very little is known concerning the
function of Nox4 in the kidney. The location in the proximal tubule makes studying the
function of Nox4 difficult, given that the physiological function of these cells depends on
directionality, which is challenging in model systems of isolated cultured cells. Our past
data indicated that Nox4 expression in the kidney is highest under quiescent conditions in
healthy animals, whereas inflammation and diseases such as diabetes decreased Nox4 [9].
The finding that renal disease reduces Nox4 expression has, meanwhile, been recapitulated
by others [18,29] and suggests that Nox4 is a marker for healthy, differentiated, intact
renal tissue. This behavior also has significance for renal cell culture models: the isolation
of proximal tubule cells leads to a rapid loss in Nox4. Therefore, renal proximal tubule
cell lines are alternatives. The opossum kidney OK cell line (from Didelphis virginiana) is
a broadly used model to study ion transport and membrane trafficking mechanisms in
the proximal tubule. Transcriptomics of these cells, compared with mammalian proximal
tubule cells, however, reveal that Nox4 expression is also lost in this cultured cell line [30].
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Therefore, the search for a function of Nox4 has to rely on in vivo data. Given that
the transport processes in the proximal tubule are largely sodium-coupled, studying
sodium handling and its indirect consequence, plasma volume and blood pressure, can
be seen as first approaches to dissect the function of Nox4 in the kidney. The proximal
tubule reabsorbs two-thirds of filtered Na+ [31] and, consequently, is essential in sodium
homeostasis. It is also important to note that, despite this behavior, the contribution of
this renal segment to volume- and blood-pressure-control is, at least, controversial. From
the knowledge available to date, the transport processes in this renal segment are not well
controlled, potentially with the exception of phosphate reabsorption, which is inhibited by
parathormone. Tubular-glomerular feedback (TGF), which controls proximal tubular urine
flux, has a sensor in the distal tubule and affects glomerular filtration rate. To date, TGF has
not been linked to Nox4; comparatively, it is associated with nitric oxide and adenosine [32].
The second system that is relevant in conjunction with low sodium is the renin–angiotensin
system (RAS) because a low sodium diet increases RAS activity by volume depletion and
subsequent sympathetic nerve activation. The combination of increased sympathetic tone
and RAS activation usually compensates for the effect of hypovolemia on blood pressure:
cardiac output, renal water retention and peripheral resistance all increase. The fact that
the blood pressure/heart rate ratio of Nox4 mice on a low sodium diet was significantly
lower than that in wild-type mice, suggests that neither peripheral resistance nor volume
retention can be adequately increased after deletion of Nox4. As body weight and sodium
excretion were similar between WT and Nox4-/- mice, differences in peripheral resistance
should be considered.

Interestingly, cerebral knockdown of Nox4 resulted in attenuated sympathico-excitation
in response to cardiac damage [33]. Whether Nox4 impacts directly on peripheral resis-
tance is unclear. It has been suggested that SERCA is oxidized by Nox4 in the heart and
endothelium [34,35] and also in TRP-channels [36–39], which contribute to the control of
resting calcium, and are targets of Nox4. Moreover, Nox4 has been linked to smooth muscle
cell differentiation and, thus, contractility [40–43]. Collectively, these observations provide
support for a role of Nox4 in vascular tone control. Additional studies will be needed to
substantiate this assumption.

Is there any evidence for a direct function of reactive oxygen species for renal hyper-
tension? Superoxide anions lead to reduced medullary blood flow and increased sodium
retention and, thus, hypertension [7], as shown by in vivo treatment with a superoxide
dismutase mimetic. Moreover, superoxide inhibits proximal tubule fluid reabsorption in
spontaneously hypertensive rats [44]. Renal hemodynamic and excretory functions, such as
urine flow, sodium excretion and glomerular filtration were increased in hypertensive rats
infused with the superoxide scavenger tempol without altering arterial pressure [8]. In con-
trast, infusion of H2O2 directly into the renal medulla increases mean arterial pressure [6].
Nox4 has been linked to renal hypertension and sodium retention in Dahl salt-sensitive
rats, where volume expansion is considered to be the main cause of salt-sensitive hyper-
tension [45]. Our results corroborate the findings in the Dahl salt-sensitive rats; however,
we cannot link the effect of Nox4 to Na+ homeostasis because Na+ excretion and clearance
were similar in WT and Nox4-/- mice. On the other hand, the effects might have been so
subtle and transient that our study was not sensitive enough to detect them.

The current study has several limitations. Blood pressure was measured by tail cuff
technology, which is less accurate than telemetry. Moreover, we only estimated cardiac
output and peripheral resistance from the blood pressure to heart rate ratio. A true
determination of cardiac output and peripheral resistance would have required indicator
injection dilution methodology. Moreover, metabolic cages impose a considerable amount
of stress on mice. Food and fluid intake in the cages is low, which is also documented in
the present study by the substantial weight loss. A possible alternative would have been
clearance measurements using radioactive isotopes, but this technology was not available
to us.
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5. Conclusions

The present study demonstrates that the deletion of Nox4 potentiates lower arterial
blood pressure in response to a low sodium diet in mice. The present data may suggest
that this is a consequence of a change in peripheral resistance, rather than altered renal
sodium handling in Nox4-/- mice.
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