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Abstract  59 

 60 

Existing studies do not sufficiently describe the molecular changes of pancreatic islet beta cells 61 

leading to their deficient insulin secretion in type 2 diabetes (T2D). Here we address this 62 

deficiency with a comprehensive multi-omics analysis of metabolically profiled 63 

pancreatectomized living human donors stratified along the glycemic continuum from 64 

normoglycemia to T2D. Islet pools isolated from surgical samples by laser-capture 65 

microdissection had remarkably heterogeneous transcriptomic and proteomic profiles in 66 

diabetics, but not in non-diabetic controls. Transcriptomics analysis of this unique cohort 67 

revealed islet genes already differentially regulated in prediabetic individuals with impaired 68 

glucose tolerance. Our findings demonstrate a progressive but disharmonic remodeling of 69 

mature beta cells, challenging current hypotheses of linear trajectories toward precursor or 70 

trans-differentiation stages in T2D. Further, integration of islet transcriptomics and pre-operative 71 

blood plasma lipidomics data enabled us to define the relative importance of gene co-72 

expression modules and lipids positively or negatively associated with HbA1c levels, pointing to 73 

potential prognostic markers.  74 
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Abstract 75 

Most research on human pancreatic islets is conducted on samples obtained from 76 

normoglycemic or diseased brain dead donors and thus cannot accurately describe the 77 

molecular changes of pancreatic islet beta cells as they progress towards a state of deficient 78 

insulin secretion in type 2 diabetes (T2D). Here, we conduct a comprehensive multi-omics 79 

analysis of pancreatic islets obtained from metabolically profiled pancreatectomized living 80 

human donors stratified along the glycemic continuum, from normoglycemia to T2D. We find 81 

that islet pools isolated from surgical samples by laser-capture microdissection display 82 

remarkably more heterogeneous transcriptomic and proteomic profiles in patients with diabetes 83 

than in non-diabetic controls. The differential regulation of islet gene expression is already 84 

observed in prediabetic individuals with impaired glucose tolerance. Our findings demonstrate a 85 

progressive, but disharmonic, remodeling of mature beta cells, challenging current hypotheses 86 

of linear trajectories toward precursor or trans-differentiation stages in T2D. Furthermore, 87 

through integration of islet transcriptomics with pre-operative blood plasma lipidomics, we define 88 

the relative importance of gene co-expression modules and lipids that are positively or 89 

negatively associated with HbA1c levels, pointing to potential prognostic markers. 90 

 91 

 92 

 93 

  94 
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 95 

Introduction 96 

 97 

Type 2 diabetes (T2D) mellitus defines a cluster of genetically complex pathological states 98 

characterized by persistent hyperglycemia, often leading to cardiovascular complications, 99 

kidney failure, retinopathy and neuropathies. Affecting more than 450 million people, with rising 100 

incidence rates over the past decades, this syndrome is a major threat for public health and 101 

society globally1. Common determinant and ultimate cause of T2D is the inability of pancreatic 102 

islet beta cells to secrete insulin in adequate amounts relative to insulin sensitivity, in the 103 

absence of evidence for their autoimmune destruction or a monogenetic deficit. Beta cell failure 104 

typically results from a lengthy process spanning many years. Remarkably, however, it can be 105 

rapidly reverted upon bariatric surgery or severe caloric restriction2,3. These observations argue 106 

against the occurrence of major beta cell apoptosis in T2D, especially since adult beta cells 107 

hardly replicate, while robust evidence of beta cell neogenesis after puberty is also lacking. 108 

Hence, the prevailing opinion is that persistent metabolic stress drives mature beta cells to 109 

phenotypically de-differentiate into progenitor cells or trans-differentiate into other islet 110 

endocrine cell types over time4–6. As the pathogenesis of beta cell dysfunction in T2D remains 111 

largely unclear, the diagnosis of this disease relies on accepted, surrogate parameters and 112 

cutoffs that have been primarily developed for clinical practice to optimize therapeutic 113 

interventions7. 114 

 115 

Insight into molecular alterations associated with impaired insulin secretion in T2D has been 116 

largely obtained from pancreatic islets isolated enzymatically from brain-dead or cadaveric 117 

subjects classified according to a categorical division into non-diabetic and diabetic, rather than 118 

on a continuum from euglycemia to steady hyperglycemia. This approach has multiple 119 
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shortcomings8. Briefly, islet researchers do not generally have access to extensive clinical and 120 

laboratory information about the donors prior to their admission to an intensive therapy unit9. 121 

Moreover, the islet state is perturbed by the metabolic stress associated with a terminal 122 

condition and the related pharmacological treatments10,11. Enzymatic isolation of islets and their 123 

in vitro culture can further change their molecular profile12,13. In the attempt to overcome, at least 124 

in part, these limitations, we established a complementary platform for the procurement of islets 125 

which relies on the collection and analysis of pancreatic specimens from metabolically profiled 126 

living donors undergoing pancreatectomy for a variety of disorders8,14. We showed that this 127 

approach is very reproducible and scalable and provides a novel view on transcriptomic and 128 

functional alterations in pancreatic islets of subjects with T2D15–17  129 

 130 

The aim of the present study has been to profile in greater detail gene expression changes 131 

occurring along the progression from euglycemia to long-standing T2D in human islets in situ 132 

and to integrate this knowledge with clinical traits, circulating lipid levels and the islet proteome, 133 

hence enabling inferences about the mechanisms driving islet dysfunction and the identification 134 

of potential biomarkers for it. 135 

Results 136 

Living donors enable islet studies along progression to T2D 137 

 138 
To gain insight into the history of islet cell deterioration along the progression from normal 139 

glycemic regulation to T2D, we collected surgical pancreatic tissue samples from 133 140 

metabolically phenotyped pancreatectomized patients (PPP). Eighteen were non-diabetic (ND), 141 

41 had impaired glucose tolerance (IGT), 35 Type 3c Diabetes (T3cD) and 39 T2D (Fig. 1A and 142 

Fig. 1B). These group assignments were based on glycemic values at fasting and at the 2 h 143 

time point of an oral glucose tolerance test (OGTT) using the thresholds defined in the 144 
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guidelines of the American Diabetes Association7, or, when applicable, on a previously 145 

established diagnosis of T2D. In this cohort, 51.9% were males and the mean age was 146 

65.36±11.54 years, with ND PPP being on average younger than the other three groups (Fig. 147 

1C and Supplementary Table 1). The body mass index (BMI) was significantly lower in ND 148 

compared to IGT, T3cD and T2D PPP. The HbA1c value, as a parameter of longer-term 149 

glycemia, was 5.25±0.3 in ND, 5.75±0.42 in IGT, 6.29±0.95 in T3cD and 7.41±1.29 in T2D 150 

PPP (Fig. 1C and Supplementary Table 1). Moreover, based on histopathology, malignant 151 

tumors occurred in 50%, 60.97%, 74.29% and 69.23% of ND, IGT, T3cD, and T2D PPP, 152 

respectively (Supplementary Table 1). 153 

 154 

Islet gene expression drifts with glycemic deterioration 155 
 156 

Gene expression profiles of islets isolated by laser capture microdissection (LCM) from resected 157 

and snap-frozen pancreas samples of ND, IGT, T3cD and T2D PPP were assessed by RNA 158 

sequencing. After removal of genes with low expression levels, the overall islet transcriptome 159 

encompassed 19,119 genes, of which 14,699±693 were present (raw read counts >0) in ND 160 

PPP, 14,967±455 in IGT PPP, 14,939±493 in T3cD PPP and 14,997±428 in T2D PPP. Genes 161 

with a fold change (FC)>1.5 and a false discovery rate (FDR)≤0.05 were considered to be 162 

differentially expressed (DE) between the groups. Multiple group comparison by linear modeling 163 

was performed (Supplementary Table 2). Subsequent pairwise group comparisons of IGT vs. 164 

ND, T3cD vs. ND and T2D vs. ND revealed an exacerbation of gene dysregulation with 165 

deterioration of glycemic control (Fig. 2A). Notably, no DE islet genes were identified between 166 

IGT vs. ND PPP, while 161 and 650 DE genes were found between T3cD vs. ND PPP and T2D 167 

vs. ND PPP, respectively (Fig. 2A and Supplementary Table 2). 168 

 169 
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Restricting the transcriptomic analysis to libraries in which insulin (INS) was the most expressed 170 

gene resulted in the retention of islet datasets from 15 ND, 35 IGT, 21 T3cD and 24 T2D 171 

subjects, without substantially affecting the overall composition of the cohort in regard to 172 

diabetes status and major descriptive parameters (Supplementary Table 3). Deconvolution 173 

analysis indicated that in 78.3% of retained samples the proportion of beta cells was >50% 174 

(Extended data Fig. S1), supporting the choice of this strategy to discriminate samples 175 

especially enriched in beta cell transcripts. This analysis further pointed to the overall 176 

enrichment in beta cell content of the LCM isolated islets in comparison to another large study 177 

based on islets isolated by enzymatic digestion (median beta cell:non-beta endocrine cell ratio 178 

3.98:1 and 1.4:1)18. This enrichment can conceivably be attributed to the selectivity of the LCM 179 

isolation procedure for beta cell rich areas due to their higher autofluorescence. Despite the 180 

expected reduction in statistical power due to ~ 30% smaller size of this “restricted” cohort (92 181 

samples retained from 133), the number of significantly DE genes increased in the multiple 182 

group comparison, as well as in pairwise comparisons between islets of T2D vs. ND PPP by 183 

51% to 984 (782 up, 202 down), and by 59% to 256 (209 up, 47 down) between islets of T3cD 184 

vs. ND PPP (Fig. 2A, Supplementary Table 4). Seven of the 984 DE genes are among the 185 

putative effectors of GWAS risk loci for T2D (https://t2d.hugeamp.org/), two upregulated 186 

(SGSM2 and BCL2) and five downregulated (RASGRP1, G6PC2, SLC2A2, ZMAT4 and 187 

PLUT)19, while most of the remaining genes have not been previously reported to be altered in 188 

islets of subjects with T2D14,20. 189 

 190 

Among the DE genes in islets of T2D PPP, INF2 and AKR7L were negatively correlated in a 191 

moderate fashion with duration of the disease measured in years (Spearman correlation 192 

coefficient -0.32 and -0.41 respectively), albeit they were both upregulated relative to islets of 193 

ND PPP. Most notably, this filtering step enabled, for the first time, the identification of 185 DE 194 

genes between islets of IGT vs. ND PPP. Most of these DE genes were upregulated (181/185), 195 
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and 98 also differentially regulated with the same directionality (97 up, 1 down) between islets of 196 

T2D vs. ND PPP. Intriguingly, and apparently at variance with previous findings21, the proposed 197 

T2D risk genes ARAP1 and its neighboring gene STARD10 were both upregulated and among 198 

the 77 genes differentially regulated in islets of IGT PPP only. No islet cell type specific genes22 199 

were enriched in any of the differential expression analyses. Furthermore, no shift of islet cell 200 

type proportions with the progression of the disease was observed in the deconvolution analysis 201 

(Extended Data Fig. S1A). 202 

 203 

Concerning samples with the highest transcript other than insulin, these were not noteworthily 204 

different from the other samples in any of the clinical parameters or anatomical part of the 205 

pancreas the tissue originated from. Nine of them had PRSS1 (coding for trypsin) as the most 206 

enriched transcript, pointing to exocrine contamination and one was marked by MALAT1 and 207 

was therefore excluded as suspect for cancerous cell contamination. The remaining samples 208 

were remarkable for expressing a non-beta-cell endocrine gene, specifically 13 samples with 209 

predominant alpha cell (GCG or TTR) and 18 samples with predominant gamma cell (PPY) 210 

characteristic genes. This is partially reflected by the results of the deconvolution analysis 211 

(Extended Data Figure S1). This specific group of 41 samples was not analyzed further since 212 

the number of subjects in each of the four glycemic groups was too small for statistical analysis. 213 

 214 

For both the “restricted” and the full data set, heatmaps of gene expression levels in the four 215 

patient groups were prepared as a visual complement to the statistical analysis (Fig. 2B and 216 

Extended Data Fig. S2A). Despite the marked differences between the findings in the 217 

“restricted” and complete cohort, upregulation prevailed as the direction of gene dysregulation in 218 

both of them (Fig. 2A and Extended Data Fig. S2A). Based on these observations, pancreatic 219 

tissue sections of 5 ND and 5 T2D PPP with the “restricted” cohort were immunostained with 220 

antibodies specific for histone H3 and H4 lysine acetylation – an epigenetic modification 221 
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associated with greater access of transcription factors to promoter sites resulting in increased 222 

gene expression. Notably, qualitative assessment by immunostaining indicated a remarkable 223 

increase of the signals for acetylated H3 and H4 in the islets, and also in the surrounding 224 

exocrine cells of T2D PPP, compared to ND PPP (Fig. 2D). 225 

Gene pathways are progressively perturbed from IGT to T2D 226 

 227 

We further analyzed differentially expressed gene functions by gene set enrichment analysis 228 

using Gene Ontology terms and KEGG pathways (Fig. 2C, Extended Data Fig. S2B and 229 

Supplementary Tables 5 and 6). Results obtained from the different gene set collections cross-230 

validated each other, since similar biological themes emerged. Islets of pre-diabetic and diabetic 231 

subjects displayed upregulation of islet genes that were functionally related to cell-extracellular 232 

matrix interaction, immune response and signaling pathways, while expression of genes related 233 

to RNA processing, protein translation and mitochondrial oxidative phosphorylation were 234 

downregulated. Importantly, the analysis performed on the “restricted” cohort, differently from 235 

the full dataset, also revealed that the strength of the enrichment increased with progression of 236 

the disease (Fig. 2C and Extended Data Fig. S2B). These data suggest that early dysregulation 237 

of gene pathways exacerbates with the decline of beta cell function. 238 

WGCNA identifies islet gene modules correlated with HbA1c 239 

 240 
To globally interpret transcriptomic data and identify sets of genes likely to be functionally 241 

related and co-regulated, we grouped genes based on similarities in their expression profiles 242 

into modules using a network-based approach23. In the cohort of 133 PPP, we identified 36 co-243 

expressed gene modules, which were arbitrarily labeled M1 through M36. The expression 244 

profiles of the genes in each module were summarized by a module eigengene, or first principal 245 

component of the expression matrix. Module eigengenes were used to computationally relate 246 



11 

modules to one another and to genes or clinical variables. Correlation between module 247 

eigengenes and diabetes-related clinical traits revealed modules M9 and M14 as those with the 248 

highest positive and negative correlation with HbA1c, respectively (Fig. 3A and Supplementary 249 

Table 7). The former consisted of a set of genes that showed similar patterns of increased 250 

expression in most PPP with T2D (Fig. 3B), while the latter was mostly composed of genes with 251 

coordinated down-regulation in diseased subject samples (Fig. 3C). 252 

 253 

We next correlated the expression values of each gene contained in a module to the eigengene 254 

of the module. The correlation coefficient from this calculation is denoted as the “module 255 

membership” of the gene and serves as a quantitative measure of how representative a gene is 256 

of the module it belongs to. Strong module memberships point to genes that are highly 257 

connected in the underlying gene-gene similarity network of the WGCNA. This analysis allowed 258 

us to identify highly connected genes or “hub” genes for HbA1c-related modules (Fig. 3D-E). 259 

These included genes that we had previously identified as differentially expressed in subjects 260 

with T2D, and which were correlated with HbA1c either positively, such as module M9 genes 261 

ALDOB (FC=8.45 with adj. p<0.001 in T2D vs. ND in the “restricted” cohort) and FAIM2 262 

(FC=7.11 with adj. p<0.001 in T2D vs. ND in the “restricted” cohort) or negatively, such as 263 

module M14 genes SLC2A2 (FC=-2.77 with adj. p<0.001 in T2D vs. ND in the “restricted” 264 

cohort) and TMEM37 (FC=-1.73 with adj. p<0.001 in T2D vs. ND in the “restricted” cohort). As in 265 

other studies in mouse models of diabetes24, we found ALDOB to be also upregulated in islets 266 

from 13-week-old diabetic db/db mice compared to the heterozygous db/+ littermate (Extended 267 

Data Fig. S3A) as well as in a mouse beta, but not alpha, cell line upon exposure to high 268 

glucose (Extended Data Fig. S3B). However, the overexpression of ALDOB in beta cells of T2D 269 

PPP could not be verified by immunofluorescence on tissue sections due to the cross-reactivity 270 

of the only available “specific” anti-ALDOB antibody with other aldolase isoforms (Extended 271 

Data Fig. S3C). 272 
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 273 

The islet proteome is more heterogeneous in T2D 274 

 275 
To verify and extend the transcriptomic data at the functional level of proteins, we analyzed the 276 

mass spectrometry (MS)-based proteomic profiles of LCM pancreatic islets from five ND and 277 

five T2D PPP (Supplementary Table 8). We chose these samples primarily based on tissue 278 

availability and secondarily based on the levels of ALDOB found in RNA sequencing. Their islet 279 

transcriptomics profiles closely resembled the one of the complete cohort: top regulated genes 280 

in these 10 samples from T2D and ND PPP (Supplementary Table 2 and Extended Data Figure 281 

S4C) were also among the most significantly differentially expressed islet genes in the entire 282 

cohort. Using a very high sensitivity workflow on a novel trapped-ion mobility Time of Flight 283 

mass spectrometer and miniaturized sample preparation25, we identified 2,237±499 islet 284 

proteins for ND PPP and 1,819±412 islet proteins for T2D PPP (Figure 4A). Quantitative 285 

reproducibility between biological replicates was high with Pearson correlations ranging from 286 

0.83 to 0.95 (Extended Data Fig. S4A). Principal component analysis (PCA) clustered the data 287 

into two distinct groups matching the clinical stratification (Fig. 4B, see methods for detailed 288 

data processing steps). Interestingly, islets of ND PPP clustered closely, indicating a very 289 

similar proteome signature, while those of T2D PPP revealed substantial proteome 290 

heterogeneity among each other. Differential expression analysis confirmed that islets of T2D 291 

and ND PPP have very different proteomic profiles. The main differential drivers are well-292 

characterized markers of pancreatic islet cells, including SLC2A226, and many proteins 293 

implicated in mitochondrial structure, translation, energy supply and amino acid or fatty 294 

metabolism such as YMEL1, MRPL12, BA3(C14orf159), ACADS and its paralogue ACADSB, 295 

which were highly depleted in islets of T2D PPP (Fig. 4C). Besides AKR7L, ACADS was the 296 

only other upregulated and differentially expressed gene in islets of both IGT and T2D PPP, 297 

while being also downregulated at the protein level. All differentially expressed mitochondrial 298 
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proteins are encoded by the nuclear genome (Fig. S4B). Intriguingly, the level of the 299 

sulfonylurea receptor ABCC8 subunit27 was also strongly reduced in islets of T2D PPP. This 300 

downregulation might be an effect secondary to pharmacological treatment, as three among 301 

these patients had been treated with anti-diabetic SUR1 antagonists glibenclamide (DP197), 302 

glimepiride (DP118) or mitiglinide (DP087) (Extended Data Fig. S4C). Furthermore, we found 303 

that transcriptome and proteome levels of pancreatic islets from the same donors are very 304 

different (Extended Data Fig. S4D), as shown in another cellular system at single-cell level28. 305 

Nevertheless, we report the glycolytic enzyme ALDOB to be consistently upregulated 306 

(Proteome: 4-fold, Transcriptome: FPKM: 76.16±50.82 in T2D PPP vs. 4.63±0.95 in ND PPP), 307 

and the glucose transporter SLC2A2 to be downregulated (Proteome: 4-fold, Transcriptome: 4-308 

fold) in islets of T2D vs. ND PPP samples on both modalities (Extended Data Fig. S4E, 4C). 309 

This is consistent with our transcriptomic data and that of previous studies14,15 and our current 310 

WGCNA analyses. Other proteins robustly overexpressed in islets of T2D PPP included the 311 

alpha-L-fucosidase FUCA1 and the surface marker for hematopoietic stem cells THY1. 312 

 313 

Next, we employed the proteomic ruler algorithm and annotations of subcellular localization to 314 

compare the protein mass distribution of major cellular compartments29(Fig. 4D). Islets of T2D 315 

PPP lost an estimated protein mass of 6% in the Golgi apparatus, 24% in the endoplasmic 316 

reticulum, and 27% in the mitochondria compared to those of ND PPP, while the cytoskeleton 317 

protein mass was unchanged. Unsupervised hierarchical clustering of all 2,622 detected 318 

proteins, clustered the data according to clinical categories (Fig. 4E). One-dimensional gene 319 

ontology enrichment30 revealed that two distinct clusters whose protein intensity levels 320 

associated with the terms ‘membrane attack complex’ (p<2.18E-04) and ‘Immunoglobulin C-321 

domain’ (p<2.68E-06) were enriched by 2.27-fold and 2.36-fold in islets of T2D vs. ND PPP, 322 

respectively. Proteins with the gene ontology-term ‘differentiation’ (p<3.09E-04) and 323 

‘mitochondrion’ (p<2.19E-08) were expressed 1.65 and 1.78-fold in islets of ND PPP. 324 
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Plasma phospho- and sphingo-lipid trends are opposite in T2D 325 

 326 
Our study encompassed two independently generated lipidomics data sets. First, shotgun 327 

lipidomics was performed on peripheral blood plasma samples of the aforementioned cohort (4 328 

ND, 21 IGT and IFG, 13 T3cD and 17 T2D) (Supplementary Tables 9 and 10). Second, 329 

sphingolipid profiling was performed on peripheral blood samples of subjects within the cohort 330 

subjected to transcriptomic analysis (11 ND, 32 IGT and IFG, 26 T3cD and 32 T2D) 331 

(Supplementary Tables 11 and 12). Prior to data analysis, lipidomics samples from PPP with 332 

very high bilirubin values (>100 μmol/l) were removed to avoid bias in lipidomics profiles. In 333 

each of the two data sets, all available samples from non-diabetic PPP (ND, as previously 334 

defined) and the subset of IGT PPP with HbA1c<6.0 were combined into one group, which is 335 

referred henceforth as ND for readability. The resulting sample sizes used in patient group 336 

comparisons were as follows: 17 ND, 13 T3cD and 17 T2D in the shotgun lipidomics data set; 337 

32 ND, 21 T3cD and 27 T2D in the targeted lipidomics data set. 338 

 339 

Statistical tests included covariates to adjust for age, sex and BMI, similar to the transcriptomics 340 

analysis. Pairwise comparisons of T2D vs ND and T3cD vs ND were performed. In shotgun 341 

lipidomics, 113 lipid species from 11 classes were included in the data analysis. When 342 

comparing T2D and T3cD to ND PPP, the majority of lipid classes displayed a remarkably 343 

homogeneous downward-trend of the individual lipid species they comprised (Fig 5A-B). Most 344 

prominently, plasma concentrations of lipids within the class of ether-linked 345 

phosphatidylcholines (PC O-), a large class with 30 measured species, were lower in T2D 346 

versus ND PPP. Fourteen lipids of this class were significantly decreased (adjusted p<0.05), 347 

with all of them showing at least a 1.4-fold change. A few lipid species from smaller 348 

phospholipid classes (one phosphatidylcholine (PC), one lysophosphatidylcholine (LPC) and 349 

one phosphatidylinositol (PI)), as well as two from the sphingomyelin class (SM), were also 350 
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significantly less abundant in T2D than in ND PPP (PC 18:0;0/18:2;0: FC=-1.43, adj. p=0.040; 351 

LPC 18:0;0: FC=-1.54, adj. p=0.037; PI 18:0;0/18:2;0: FC=-1.36, adj. p=0.045; SM 40:1;2:, FC=-352 

1.33, adj. p=0.037; SM 34:1;2:, FC=-1.24, adj. p=0.04). (Fig. 5A-B and Supplementary Table 353 

13). 354 

 355 

Next, we performed targeted sphingolipidomics on 14 distinct lipid species for accurate plasma 356 

level estimation (ceramides, dihydroceramides and sphingoid bases) (Supplementary Table 16). 357 

Plasma levels of ceramides d18:1/18:0 and d18:1/20:0 were increased in T2D compared to ND 358 

PPP (Cer d18:1/18:0: FC=1.34, p=0.02; Cer d18:1/20:0: FC=1.22, p=0.01, without multiple 359 

testing correction). A similar trend towards elevation in T2D vs ND PPP was also observed in 360 

the two dihydroceramide species having the same chain lengths as these ceramides, although 361 

one of the two falls below the p-value threshold of 0.05 (DH Cer d18:0/18:0: FC=1.44, p=0.09; 362 

DH Cer d18:0/20:0: FC=1.35, p=0.02). Thus, in our data set, plasma concentrations of some 363 

ceramides and their precursor dihydroceramides appear to increase simultaneously in T2D. Cer 364 

d18:1/24:0, but not the corresponding dihydroceramide, was observed to move in the opposite 365 

direction being lower in T2D (FC=-1.28, p=0.017). Notably, ceramides were identified by LC-MS 366 

(see methods) and, independently, by shotgun FT-MS and both profiles matched. Regarding the 367 

LC-MS/MS analysis, the parent ion selected for dihydroceramides identification and 368 

quantification was the protonated ion (without water loss). In FT-MS, we observed no significant 369 

water loss from the ceramide standards. We therefore have reasons to believe that we detected 370 

dihydroceramides, but not deoxyceramides, which are isomeric of the water loss form of the 371 

dihydroceramides.31  372 

Data integration identifies pathways for islet dysfunction 373 

 374 
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To identify a multivariate molecular profile that explains diabetes progression in the PPP cohort, 375 

we performed a large-scale integrative multi-omics analysis combining clinical data with islet 376 

transcriptomics and plasma lipidomics. Integration of transcriptomics and lipidomics data in the 377 

same model enables to weigh the relative importance of lipid and gene expression features in 378 

relationship to a chosen clinical trait. Hence, we explored the relationship between gene co-379 

expression modules and plasma lipids by computing a consensus orthogonal partial least 380 

square (consensus OPLS)32,33 model with HbA1c as the outcome. All three types of biological 381 

data, namely gene co-expression modules, lipids from the shotgun analysis and sphingolipids 382 

from the targeted analysis, contributed to the model (35%, 46.5% and 18.5%, respectively), 383 

suggesting that they help to explain HbA1c levels in a complementary way. Among them, 384 

different lipids and gene modules appear as the most relevant variables in the statistical 385 

modelling of HbA1c levels (Fig. 6A, 6B and Supplementary Table 14). Importantly, the model 386 

explained a large portion of data variance, highlighting a good fit with the experimental data (see 387 

Methods for more details). 388 

 389 

Among all considered biological data, the co-expression modules M1, M4, M8, M9, M30, M35 390 

and M36 were the top predictive variables for high HbA1c levels, along with the two ceramide 391 

species C20 and C18. TAGs were also contributing, although to a lesser extent (Fig 6A, right 392 

hand side). Conversely, low levels of HbA1c were strongly related to the co-expression modules 393 

M12 and M14 (Fig 6A, left hand side). However, the majority of the predominant predictors for 394 

low HbA1c were lipid species, most importantly the PC O- class. This class was also found to 395 

be lower in T2D compared to ND patient groups in differential abundance analysis, as shown in 396 

Fig 5A. A number of SM, PI and PC lipid species were next in the importance ranking related to 397 

low HbA1c, followed by the gene co-expression module M29. These results suggest that the 398 

profile of patients with increased HbA1c is characterized by multiple molecular components, 399 

some of which represent signals that were neither captured by differential abundance analyses 400 
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comparing diabetes status groups nor by correlating gene co-expression modules individually to 401 

HbA1c. Most importantly, consensus OPLS multi-omics analysis pointed towards additional 402 

gene co-expression modules that may play a role in glucose dysregulation.  403 

 404 

Next, we used the results from the integrative data modelling to infer a network of key altered 405 

biological pathways in dysfunctional beta cells. To this end, we pooled gene modules positively 406 

associated with HbA1c levels (M1, M4, M8, M9, M30, M35 and M36) (Fig. 6A) and assessed 407 

their overlap to KEGG pathways by over-representation analysis. We found that the biological 408 

themes underlying these genes were very similar to the pathways upregulated in T2D and IGT 409 

PPP and include cell-matrix interaction, cell signaling and immune response (Fig. 6C and 410 

Supplementary Table 15). The same strategy was used to identify pathways associated with 411 

genes from modules with a negative prediction score for HbA1c (M12, M14 and M29) (Fig. 6A), 412 

revealing an enrichment for metabolic pathways (Fig. 6C and Supplementary Table 15). Of 413 

note, several islet genes differentially regulated in T2D PPP were driving the enrichment of 414 

these pathways. These include, for example, ALDOB, which stood out for its strong correlation 415 

to HbA1c levels (Fig. 3D and Fig. 6C). These genes, or the proteins encoded by them, should 416 

be regarded as putative candidate biomarkers for monitoring disease progression and 417 

therapeutic intervention. 418 

Discussion 419 

 420 
This study provides an extensive analysis on islets in situ and plasma samples from the largest 421 

cohort of in-depth metabolically profiled living donors. Multi-omics data were generated using 422 

state-of-the-art approaches and integrated in a fashion not previously used in studies on islet 423 

dysregulation in relation to hyperglycemia in humans. Our transcriptomic and proteomic data 424 

from islets in situ of ND subjects represent a valuable reference for future investigations. More 425 
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broadly, this dataset would be a worthwhile addition to the growing number of islet resources on 426 

type 1 and type 2 diabetes by different consortia, such as the Network for Pancreatic Organ 427 

Donors with Diabetes (nPOD)34, Human Pancreas Analysis Program (HPAP)35, or the 428 

Translational human pancreatic Islet Genotype tissue - Expression Resource (TIGER) 429 

(https://www.t2dsystems.eu/tiger-database). Furthermore, we could identify for the first time a 430 

set of islet genes altered in their expression already in subjects with impaired glucose tolerance. 431 

This, in turn, enabled us to acquire an unprecedented cross-sectional overview of the 432 

progression of islet gene dysregulation in parallel with the continuous elevation of HbA1c 433 

values, beyond conventional thresholds for clinical classification of patients.  434 

 435 

Pathways involved in RNA biology and especially in mitochondrial function emerged to be most 436 

negatively perturbed - a conclusion which in the case of the latter was strongly corroborated by 437 

the proteomic analysis, which enabled the identification of known and unknown differentially 438 

expressed proteins in islets of T2D PPP. In this context, we emphasize the downregulation of 439 

mitochondrial ACADS and its paralogue ACADSB, which catalyze the beta oxidation of short-440 

chain fatty acids, including sodium butyrate. This finding is intriguing in view of the ability of this 441 

metabolite to broadly upregulate gene expression through inhibition of histone deacetylases. 442 

Unlike in previous studies on isolated islets from brain-dead organ donors14,19, but similar to 443 

previous studies by us in human14 and mouse models of diabetes36 the vast majority of 444 

differentially expressed genes in islets of T2D, but also IGT and T3cD PPP were upregulated. 445 

Among those genes, ALDOB stands out being the one with the strongest correlation with the 446 

islet gene module M9, which in turn has the strongest correlation with elevated HbA1c. Since 447 

ALDOB is a marker of beta cell precursors37, its overexpression could be interpreted as a sign 448 

that in T2D, mature beta cells revert back to an immature stage of differentiation, or that a 449 

compartment equivalent to the lifelong niche of virgin beta cells identified in adult mice expands 450 

as a potential compensatory source of new beta cells37. However, no additional disallowed gene 451 
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of immature beta cells, markers of beta cell precursors or other islet cell types were differentially 452 

regulated, while key determinants of mature beta cells, such as PDX1, MAFA, NKX6.1 or UCN3 453 

were unchanged, at least at the transcriptomic level. Retention of fractions of major islet cell 454 

types (alpha, beta and delta) within the islet in T2D, consistent with recent imaging studies in 455 

samples from pancreatectomized subjects (Cohrs et al)17, was confirmed by deconvolution 456 

analysis. Our global unbiased proteomic analysis, which corroborated the upregulation of 457 

ALDOB, further showed that the expression profile of islet cells in T2D PPP is very divergent, 458 

opposite to its remarkable homogeneity in islet cells of ND subjects. Hence, the regression of 459 

beta cells toward a de-differentiated state following a linear trajectory recapitulating their 460 

developmental path to maturation or their transdifferentiation into other islet cell types seems 461 

less likely than a disharmonic relaxation of constraints on gene expression. Such processes, 462 

although possibly reversible, could perturb the coordinated operation of islet cells, including beta 463 

cells. In line with this, Lawlor et al. reported no evidence of beta cell 464 

dedifferentiation/transdifferentiation and alterations in fractions of islet cells in the context of T2D 465 

upon sequencing of single islet cells from a small cohort of ND and T2D organ donors, although 466 

this conclusion has been more recently challenged38. While we strived to selectively enrich the 467 

beta cell content of our omics data by laser capture microdissection of bulk islets based on the 468 

lipofuscin-associated autofluorescence of beta cells and by subsequent deconvolution of the 469 

data during their analysis, the unavoidable presence of other cell types in the samples 470 

introduces a degree of uncertainty. Thus, for the future it would be important to assess whether 471 

overexpression of ALDOB occurs indeed in beta cells and if it affects their glycolysis and 472 

metabolism, taking into account that its paralogue ALDOA, whose RNA and protein levels were 473 

unchanged, remains by far the predominant islet aldolase species. Attention may also be 474 

directed toward understanding whether impaired oxidative phosphorylation, as a likely outcome 475 

of the massively decreased expression of mitochondrial proteins, and thus energy balance 476 

homeostasis, accounts, at least in part, for the observed less restrained gene expression.  477 
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 478 

The transcriptome and proteome of islets from subjects with T2D displayed the occurrence of an 479 

immune response. At this time, however, we are not aware of factors which might readily 480 

account for the presence of such signals. Specifically, patients with antibodies against known 481 

autoantigens of T1D were excluded from the analysis. As in a previous report15, histological 482 

examination of the specimens did not reveal insulitis or macrophage infiltration. Pancreatitis was 483 

more common among subjects with normoglycemia (22%) than with T2D (15%). The presence 484 

of cancer cells in our islet preparations is also unlikely. Specifically, a qualified pathologist 485 

routinely examined the surgical specimen to minimize the chance of contamination by 486 

neoplastic tissue before it was taken for downstream processing. Histological survey of the 487 

tissue did not reveal the presence of neoplastic cells in the islets. The transcriptomic analysis in 488 

a previous study indicated that exocrine contamination of LCM islets from PPP was comparable 489 

or less than in the case of enzymatically-isolated islets from organ donors (OD)14. Moreover, in 490 

the same study we found no evidence for an enrichment of tumor cell transcripts in LCM islets 491 

of PPP compared to islets of OD. Likewise, an enrichment analysis of pancreatic cancer specific 492 

genes in the differentially expressed islet gene sets reported here using hypergeometric test 493 

showed no enrichment for any of the four described pancreatic cancer subtypes (p = 0.87) as 494 

reported in Bailey et al 201639. Rather, the gene expression clustering was driven by the islet 495 

isolation method and not by the origin of the tissue (OD vs. PPP). We still appreciate that in our 496 

cohort cancer prevalence was higher in the T2D (69%) than in the ND (50%) group. Thus, we 497 

cannot entirely rule out a metabolic pro-inflammatory impact of the cancer on islet gene and 498 

protein expression or function. 499 

 500 

Our lipidomics analyses revealed lowered phospholipid species (14 PC O-, one PC, one LPC, 501 

one PI) and some elevated ceramides and dihydroceramides in T2D PPP. These findings match 502 

observations reported in other recent studies on larger cohorts. Huynh et al (2019)40 presented 503 
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a comprehensive shotgun lipidomics study on the AusDiab cohort, including 640 samples and 504 

636 lipid species. In this work, many PC, PC O-, LPC and PI had a significant negative 505 

association with blood glucose levels either after overnight fasting or at the 2-hour point of an 506 

OGTT, including nine species that were found negatively associated with T2D in our own study 507 

(PC 18:2;0/18:2;0, LPC 18:0;0, PI 18:0;0/18:2;0 and six PC O- species). In the same study, the 508 

ceramide Cer d18:1/18:0 and its precursor DH Cer d18:0/18:0 had both a significant positive 509 

association with fasting glucose, supporting our notion that this lipid pair might be linked to 510 

diabetes status. Furthermore, several prospective case-control studies reported significantly 511 

decreased PC, PC O- and LPC plasma concentrations41 or elevated dihydroceramide levels42,43 512 

in progressors to T2D compared to non-diabetic controls. The congruency of these results 513 

points to these lipids as potential biomarkers of beta cell function in T2D. 514 

 515 

Finally, we use a data fusion method32,33 to generate a model of how different molecular 516 

features (islet gene co-expression, plasma shotgun lipidomics and targeted sphingolipidomics) 517 

contribute to HbA1c levels in a continuum from healthy individuals to those with overt T2D. This 518 

model allowed us to measure the relative importance of different molecular components in 519 

explaining HbA1c variability, providing unique insights into the molecular profiles of individuals 520 

as they lose glycemic control towards development of T2D. The rational for combining plasma 521 

lipidomics with islet gene expression data was that the levels of some plasma lipids may affect 522 

pancreatic islets and/or reflect changes occurring within them and thus be useful as biomarkers 523 

to assess beta cell dysfunction in prediabetes and T2D. To our knowledge this is the first time 524 

such an approach has been used in this field and we suggest that, by modelling multiple levels 525 

of information at the same time in deeply phenotyped populations such as the one presented 526 

here, we can gain a holistic view of the system and draw conclusions regarding key pathways, 527 

targets and biomarkers in metabolic and other diseases. 528 
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Data availability 529 

RNA Sequencing data was deposited in the NCBI Gene Expression Omnibus with GEO 530 

accession number GSE164416. Human genome reference assembly GRCh38 is publicly 531 

available. 532 

The proteomics raw datasets and the MaxQuant output files generated and analyzed throughout 533 

this study were deposited at the ProteomeXchange Consortium via the PRIDE partner 534 

repository with the project accession number PXD022561 (https://www.ebi.ac.uk/pride/archive/). 535 

Lipidomics data was deposited in the Zenodo database (zenodo.org, 536 

doi:10.5281/zenodo.4716063).  537 
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 670 

Figure Legends 671 

Figure 1: Overview of the experimental procedures and cohort characteristics. A) 672 

Experimental procedures overview. Clinical data and peripheral blood were collected 673 

preoperatively, and the snap-frozen surgical pancreatic tissue used for LCM of the islets of 674 

Langerhans. Blood samples were analyzed for lipidomics, while LCM islets for transcriptomics 675 

and proteomics. Omics datasets were individually evaluated in relationship to glycemic status 676 

and further integrated with each other using Consensus Orthogonal Partial Least Squares 677 
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(OPLS) analysis. B) Waffle plot showing the structure of the cohort in terms of 678 

glycemic/diabetes categories based on American Diabetes Association criteria. Absolute 679 

numbers for each category are given in the legend boxes. C) Boxplots of four major clinical 680 

parameters relevant for diabetes diagnosis and management. Statistically significant differences 681 

from ND PPP were determined using the two-sided t-test (*p<0.05; **p<0.01). Boxplot spans 682 

from 25th until 75th percentile, with centerline at median, whiskers extend to the most extreme 683 

data point which is no more than 1.5 times the length of the box away from the box. Number 684 

of observations in each comparison and category: age and BMI - 18 for ND, 41 for IGT(p=0.006 685 

and p=3.792-4), 35 for T3cD (p=0.001 and p=0.003) and 39 for T2D (p=0.003 and p=0.005); 686 

fasting glycemia - 16 for ND, 38 for IGT (p=2.936-6), 34 for T3cD (p=1.249-7) and 33 for T2D 687 

(p=2.692-7); glycemia at 2h point of OGTT: 15 for ND, 38 for IGT (p=1.486-6) and 23 for T3cD 688 

(p=3.111-11).LCM: Laser Capture Microdissection; ND: Non-diabetic; IGT: Impaired Glucose 689 

Tolerance; T3cD: Type 3c Diabetes; T2D: Type 2 Diabetes. 690 

Figure 2: Transcriptional changes between non-diabetic, pre-diabetic and diabetic 691 

patients. A) Number of DE genes identified by comparing glycemic groups of PPP in the entire 692 

(all samples) or “restricted” cohort (INS filtered), using linear model with age, sex and BMI as 693 

covariates. B) Gene expression profile of DE genes in the “restricted” cohort. Columns 694 

represent patients grouped according to their glycemic status and ordered based on increasing 695 

HbA1c levels. Rows, representing DE genes (variance stabilizing transformation normalized 696 

counts), were clustered based on Euclidean distance. The colored side bar indicates in which 697 

comparisons a gene was identified as differentially expressed. C) Gene Set Enrichment 698 

Analysis of DE genes between IGT, T3cD or T2D and ND PPP in the “restricted” cohort. GO 699 

terms and KEGG pathways are colored according to the normalized enrichment score. 700 

Corresponding p-values are also indicated (*p<0.05, **p<0.01). D) Immunofluorescence for 701 

insulin (green), acetylated histones H3 (left) and H4 (right) (magenta) in representative samples 702 
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of formalin fixed paraffin embedded pancreatic tissues from 5 ND and 5 T2D PPP. Scale bars 703 

correspond to 20μm. DE: differentially expressed; ND: Non-diabetic; IGT: Impaired Glucose 704 

Tolerance; T3cD: Type 3c Diabetes; T2D: Type 2 Diabetes. 705 

Figure 3: Identification of co-expressed gene modules related to diabetes traits. A) 706 

Correlation between module eigengenes and clinical traits including age, BMI, HbA1c, fasting 707 

glucose, glucose at 2-hours after OGTT, HOMA2-B and HOMA2-IR. Each cell contains the 708 

corresponding Spearman correlation coefficient and Student p value (in parenthesis). Cells are 709 

colored according to their correlation to clinical traits. Modules are ordered based on their 710 

correlation to HbA1c. B-C) Gene expression profiles of gene modules M9 (B) and M14 (C). 711 

Columns, representing PPP, were grouped according to their glycemic status and ordered 712 

based on increasing HbA1c levels. Rows, representing genes (variance stabilizing 713 

transformation normalized counts), were clustered based on Euclidean distance. D-E) Scatter 714 

plot of module membership vs. gene significance for HbA1c in modules M9 and M14. Genes 715 

with the highest module membership and gene significance (“hub genes”) are labeled. ND: Non-716 

diabetic; IGT: Impaired Glucose Tolerance; T3cD: Type 3c Diabetes; T2D: Type 2 Diabetes. 717 

Figure 4: Proteomics Analysis. A) Number of identified proteins from pooled human 718 

pancreatic islet cells isolated by LCM from PPP classified as non-diabetic (ND, N=5) or with 719 

T2D (N=5). Boxplot spans from 25th until 75th percentile with centerline at median. Whiskers 720 

extend to the most extreme data points in either direction. B) Principal Component Analysis 721 

(PCA) of all grouped pancreatic islet measurements (ND=blue, T2D=orange). C) Volcano plot 722 

comparing p values and log2-fold changes between islets of ND and T2D PPP. Multiple 723 

hypothesis testing is controlled via Benjamini Hochberg correction at 5% False discovery rate. 724 

D) Percentage distribution of total protein islet mass and its contribution per organelle between 725 

ND and T2D PPP. The ND/T2D islet protein mass ratio in different organelles was normalized 726 

by the nucleus protein mass. E) Hierarchical clustering of all islet proteins identified in the T2D 727 
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and ND PPP clusters. Log2-transformed intensity values were normalized by z-scoring before 728 

the clustering followed by one-dimensional gene ontology enrichment for cellular compartment 729 

and keywords for each of the clusters. Distribution of systematically enriched clusters is shown 730 

as the geometric mean at 95% confidence interval for each respective term in non-diabetic (ND, 731 

N = 5) and type 2 diabetics (T2D, N = 5) with centerline at the geometric mean with 95% 732 

confidence interval. 733 

Figure 5: Lipidomics differential analysis. A-B) Shotgun lipidomics covering a variety of lipid 734 

classes: Ceramides (Cer), Diacylglycerols (DAG), Lysophosphatidylcholines (LPC), 735 

Lysophosphatidylethanolamines (LPE), Phosphatidylcholines (PC), Ether-linked 736 

Phosphatidylcholines (PC O-), Phosphatidylethanolamines (PE), Ether-linked 737 

Phosphatidylethanolamines (PE O-), Phosphatidylinositols (PI), Sphingomyelins (SM), 738 

Triacylglyerols (TAG). Volcano plots represent comparisons of plasma lipid levels between ND 739 

and T2D PPP. The X-axis shows direction and magnitude of the change; the Y-axis represents 740 

the statistical significance of the change. Each point is a lipid species, colored by lipid class to 741 

highlight class-specific trends. C) Targeted lipidomics on dihydroceramides (DH Cer), 742 

ceramides (Cer) and Sphingoid bases (SB). Each heatmap column represents the comparisons 743 

of plasma levels between ND and T2D PPP. Heatmap colors represent direction and magnitude 744 

of the change. Log2 Fold Change: ratio of mean lipid concentration in the two groups, log2 745 

transformed. Statistical model used for all panels: linear regression with age, sex and BMI as 746 

covariates (p: p value); adjustment of p values across all lipid species by the Benjamini-747 

Hochberg method (adj. p: adjusted p value). T2D: Type 2 Diabetes; T3cD: Type 3 Diabetes; ND 748 

& PD: non-diabetic and pre-diabetic (with impaired fasting glucose and/or impaired glucose 749 

tolerance) with HbA1c<6.0. 750 

Figure 6: Multiblock data modeling of HbA1c. A) Bar plot showing the variable importance in 751 

the multiblock consensus OPLS model. The Y-axis represents the importance scores for the 752 
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predictors multiplied by the sign of the loadings on the predictive latent variable. Variables with 753 

importance in projection > 1.2 were selected. B) Statistical significance of the model through 754 

permutation test. C) Network representation of functional pathways enriched in modules with 755 

best prediction scores for HbA1c. Pathways are represented as gray nodes. Genes are 756 

represented as nodes sized based on their correlation to HbA1c and colored based on their 757 

differential expression in T2D vs. ND PPP. Only genes with significant differential expression 758 

(adj. p<0.05) in the “restricted” cohort are shown. VIP Variable Importance in Projection, DE: 759 

Differentially expressed; ND: Non-diabetic, T2D: Type 2 Diabetes. 760 

  761 
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Material and methods 762 

Cohort 763 

Our cohort comprised 133 adult patients undergoing pancreatic surgery for a variety of 764 

indications (benign and malignant neoplasms, chronic pancreatitis, pancreatic cysts etc.) from 765 

the University Hospital Carl Gustav Carus Dresden who after informed consent participated in 766 

this study over a period of 5 years. The study was conducted with the ethical approval of the 767 

Ethical Committee of the Technische Universität Dresden. Based on the thresholds set by the 768 

American Diabetes Association4 (ADA) for fasting glucose, HbA1c and 2-hour glycemia of an 769 

oral glucose tolerance test (OGTT) in the days immediately before surgery 18 of these patients 770 

were classified as non-diabetic (ND), 41 with impaired glucose tolerance (IGT), including 3 with 771 

impaired fasting glucose (IFG) only, 35 with Type 3c Diabetes (T3cD) and 39 with Type 2 772 

Diabetes (T2D). A diagnosis of T3cD was made whenever the occurrence of diabetes was not 773 

recognized for longer than 1 year prior to the onset of the symptoms leading to surgery and the 774 

subject was negative for the presence of circulating autoantibodies against pancreatic islets, 775 

which were assessed as previously described11. In all analyses IFG and IGT subjects were 776 

merged in one group hereafter labeled as IGT PPP. Medical and family history and relevant 777 

clinical biochemistry data available from the routine medical processing of the patients were 778 

retrieved from the hospital database and referring physicians. Patients who underwent 779 

neoadjuvant chemotherapy as well as those with endocrine neoplasms of the pancreas were 780 

excluded from this study. 781 

Human pancreatic tissue and peripheral blood processing 782 

Surgical tissue specimens were examined by a certified pathologist immediately after resection 783 

as per regular clinical procedures. Fragments of healthy pancreatic tissue from the resection 784 

margins were excised, snap frozen in liquid nitrogen and stored at -80oC either natively or 785 

embedded in TissueTek OCT compound. Estimated warm and cold ischaemia time was on 786 
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average 2 hours. Peripheral blood samples were stored at -80oC in aliquots of full blood, plasma 787 

and serum. 788 

Transcriptomics 789 

Islet procurement and RNA isolation 790 

Pancreatic tissue was sectioned in a cryostat and mounted on UV pre-treated Zeiss 791 

MembraneSlide 1.0 PEN slides. Laser capture microdissection (LCM) was done with a Zeiss 792 

Palm MicroBeam system using autofluorescence to identify islets, as previously described44. 793 

RNA was isolated from approximately 20x6µm3 of islet tissue using the Arcturus PicoPure RNA 794 

Isolation Kit. Only preparations with RNA Integrity Number ≥5 were used for RNA sequencing. 795 

The entire handling of the tissue samples was done in a strictly RNAse free environment. 796 

Library preparation, RNA Sequencing and alignment 797 

Sequencing libraries were prepared from bulk RNA using the Illumina SmartSeq protocol. Single 798 

ended 76bp sequencing was done with an Illumina HiSeq 2500 or Illumina HiSeq 500 at the 799 

Next Generation Sequencing Core Facility of the CMCB Dresden, with the target depth of 35 800 

million fragments per library. From FASTQ files, purity-filtered reads were trimmed with 801 

Cutadapt to remove adapters and low-quality sequences (v. 1.8)45. Reads matching to 802 

ribosomal RNA sequences were removed with fastq_screen (v. 0.11.1)46. Remaining reads 803 

were further filtered for low complexity with reaper (v. 15-065)47. Reads were aligned against 804 

Homo sapiens GRCh38.92 genome using STAR (v. 2.5.3a)48. The number of read counts per 805 

gene locus was summarized with htseq-count (v. 0.9.1)49 using Homo sapiens GRCh38.92 gene 806 

annotation. Quality of the RNA-seq data alignment was assessed using RSeQC (v. 2.3.7)50. 807 

RNA Sequencing quality control, processing and differential expression analysis 808 

RNA Sequencing datasets were screened for exocrine contamination in an initial quality control 809 

(QC) step. Analysis of the absolute number of detected expressed genes, gene body coverage 810 
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and cumulative gene diversity assessment flagged a number of libraries to be of insufficient 811 

quality for downstream analysis. Libraries were filtered for minimal expression by removal of 812 

genes with less than 5 mean raw reads. Reads were normalized for library size and transformed 813 

for variance stabilizing using tools from the DESeq2 Bioconductor package51. Further analysis 814 

revealed 41 libraries in which transcripts other than insulin (INS) displayed the highest 815 

normalized number of reads. Differential expression analysis across the clinical categories (ND, 816 

IGT, T3cD, T2D) was performed using limma function with voom approach from the limma 817 

Bioconductor package52,53 on both the full dataset of 133 libraries which passed the QC analysis 818 

as well as on the “restricted” dataset of 92 libraries featuring INS as the highest expressed gene 819 

based on the linear model with age, sex and BMI as covariates. All analysis pertaining 820 

transcriptomic data was done on R platform (version 3.6.3). 821 

Gene set enrichment analysis of differentially expressed genes 822 

Functional enrichment analyses of differentially expressed genes in IGT, T2D or T3cD 823 

compared to ND patients were performed by weighted gene set enrichment analysis (GSEA) on 824 

unfiltered gene lists ranked by decreasing differential expression test statistics. Gene Ontology 825 

(GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway collections were 826 

restricted to gene sets with a minimum and maximum sizes of 100 and 500, respectively. The 827 

enrichment scores were normalized by gene set size and their statistical significance was 828 

assessed by permutation tests (n=1,000). GO enrichment analyses were carried out using the 829 

gseGO function from the R package clusterProfiler (version 3.10.1)54. GO terms enriched in at 830 

least one comparison were identified using p value and normalized enrichment score thresholds 831 

< 0.01 and > 2.5, respectively. Redundancy of enriched GO terms was removed using the 832 

clusterProfiler simplify function (selecting the most representative term by p value) and 833 

enrichment maps generated using the emapplot function from the R package enrichplot (version 834 

1.2.0). KEGG pathway enrichment analyses were performed using the clusterProfiler gseKEGG 835 
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function. Results were filtered based on a p value threshold < 0.01 and a normalized enrichment 836 

score threshold > 2. To simplify results visualization and interpretation, redundant KEGG 837 

pathways were also collapsed into fewer biological themes using the enrichment map 838 

visualizations. 839 

Weighted Gene Correlation Network Analysis 840 

Gene Co-expression Network Construction 841 

The gene co-expression network was created following the weighted gene correlation network 842 

analysis (WGCNA) protocol as implemented in the WGCNA package in R (version 1.68)23, as 843 

previously described14. WGCNA was performed on batch-corrected, normalized and variance 844 

stabilizing transformed expression data from the full cohort of 133 subjects. The co-expression 845 

network was constructed by calculating an adjacency matrix using Pearson correlation, pairwise 846 

complete observations and unsigned method. The soft-threshold parameter was optimized with 847 

the function pickSoftThreshold and the best threshold (α = 7) selected by visual inspection. The 848 

adjacency matrix was then computed into a topological overlap matrix (TOM), converted to 849 

distances, and clustered by hierarchical clustering using average linkage clustering. Modules 850 

were identified by dynamic tree cut using the hybrid method and parameters minClusterSize=20 851 

and deepSplit=2. Similar modules were merged using a module eigengene distance of 0.15 as 852 

the threshold. 853 

Identification of co-expressed gene modules 854 

We correlated the module eigengenes to clinical traits using Spearman correlation (pairwise 855 

complete observations) and calculated the corresponding p values using the cor and 856 

corPvalueStudent functions from the WGCNA package, respectively. Module-trait correlations 857 

were represented as heatmap using the labeledHeatmap function from the WGCNA package. 858 

The modules displaying the most positive or negative correlation to HbA1c were further 859 
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analysed. Normalized and variance stabilizing transformed gene counts for selected modules 860 

were plotted as heatmap using the heatmap.2 function from the R gplots package (version 861 

3.0.1.2). Rows (representing genes) were scaled and hierarchically clustered by Euclidean 862 

distances. Columns, representing patients, were custom ordered as described in the legend of 863 

figure 3. Module hub genes, such as highly connected genes within a module that could have a 864 

strong influence on a phenotypic trait, were identified as those with highest correlations with the 865 

particular trait and highest correlations with the module eigengene. 866 

Significance of gene co-expression modules 867 

We tested the significance of the co-expression modules by comparing their intramodular 868 

connectivity (connectivity between nodes within the same module, as computed by the WGCNA 869 

intramodularConnectivity function) to the background as follows. For each selected module of 870 

size N, we calculated a Z-score as in equation 1: 871 

Z=(k-μ)/σ      (1) 872 

where k is the intramodular connectivity and μ and σ are the mean and standard deviation of the 873 

intramodular connectivity from 1,000 randomly sampled modules of size N respectively. 874 

Empirical p values were then calculated as the fraction of random intramodular connectivity 875 

values ≥ to the observed intramodular connectivity. For the modules with the highest variable 876 

importance in projection score in the HbA1c multiblock model, all of the random intramodular 877 

connectivity values were below the observed intramodular connectivity, suggesting that these 878 

modules were more compact than modules assembled by randomly sampling the same number 879 

of genes from the expression data (Supplementary Table 7). 880 

Functional profiles of gene modules most predictive for HbA1c 881 

The clusterProfiler enrichKEGG function was used to test for the over representation of selected 882 

co-expressed gene modules in KEGG pathways using hypergeometric distribution. A p value 883 

threshold < 0.01 was used to identify enriched terms. Enrichment map visualizations were used 884 
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to overcome gene set redundancy. Results were displayed as networks of enriched pathways 885 

and overlapping genes using cytoscape (version 3.5.1). 886 

Deconvolution analysis 887 

In all samples a cell proportions matrix was produced using the R package DeconRNASeq 888 

(v.1.26.0) on RPKM-transformed data. The signature file provided to DeconRNASeq comes 889 

from Xin et al. (2016)22, Supplementary Table S2A, obtained using single-cell data. It was 890 

adapted to the human genome version 38 by excluding 15 obsolete genes. 891 

Lipidomics 892 

 893 
Sample availability and sample overlap with transcriptomics data 894 

Pre-operative plasma lipidomics samples were obtained from a subset of the PPP cohort. 895 

Shotgun lipidomics analysis was performed on plasma from 55 PPP. These included 53 896 

subjects who also had their islet transcriptomics profile included in this study plus two PPP who 897 

were not part of the transcriptomics analysis because the RNA-Seq data failed to pass the 898 

quality control. Moreover, targeted sphingolipid analysis was performed on plasma from 101 899 

PPP. These included 98 PPP whose transcriptomics data was also included in this study plus 900 

three PPP whose RNA-Seq data was excluded for quality reasons. The number of samples in 901 

the two types of lipidomics analysis was smaller than in islet transcriptomic analysis because of 902 

the limited availability of plasma samples. The 55 PPP with shotgun lipidomics data were a 903 

subset of the 101 PPP with targeted sphingolipid data, with the difference in sample numbers 904 

being determined by plasma sample availability as well. 905 

 906 

Shotgun lipidomics measurements 907 
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A streamlined mass-spectrometry (MS) -based platform for shotgun lipidomics developed by 908 

Lipotype GmbH (Dresden, Germany) was used for lipidomic profiling of patient plasma samples. 909 

Lipid extraction, internal standard addition and infusion into the mass spectrometer were 910 

performed as previously described55. The internal standard mixture contained: cholesterol D6 911 

(chol), cholesterol ester 20:0 (CE), ceramide 18:1;2/17:0 (Cer), diacylglycerol 17:0/17:0 (DAG), 912 

phosphatidylcholine 17:0/17:0 (PC), phosphatidylethanolamine 17:0/17:0 (PE), 913 

lysophosphatidylcholine 12:0, (LPC) lysophosphatidylethanolamine 17:1 (LPE), triacylglycerol 914 

17:0/17:0/17:0 (TAG) and sphingomyelin 18:1;2/12:0 (SM).  915 

 916 

Samples were analyzed by direct infusion in a QExactive mass spectrometer (Thermo 917 

Scientific) in a single acquisition. Tandem mass-spectrometry (MS/MS) was triggered by an 918 

inclusion list encompassing corresponding MS mass ranges scanned in 1 Da increments. MS 919 

and MS/MS data were combined to monitor CE, DAG and TAG ions as ammonium adducts; 920 

PC, PC O-, as acetate adducts; and PE, PE O- and PI as deprotonated anions. MS only was 921 

used to monitor LPE as deprotonated anion; Cer, SM and LPC as acetate adducts and 922 

cholesterol as ammonium adduct. 923 

Data post-processing and normalization were performed using an in-house developed data 924 

management system. Only lipid identifications with a signal-to-noise ratio >5 and a signal 925 

intensity 5-fold higher than in corresponding blank samples were considered for further analysis. 926 

The median coefficient of lipid subspecies variation (RSD), as accessed by the repeated 927 

analysis of reference samples, was 7.5%. 928 

Targeted sphingolipid measurements 929 

Ceramides (C16:0 cer, C18:0 cer, C18:1 cer, C20:0 cer, C22:0 cer, C24:0 cer and C24:1 cer), 930 

Dihydroceramides (C16:0 DHcer, C18:0 DHcer, C18:1 DHcer, C20:0 DHcer, C22:0 DHcer, 931 

C24:0 DHcer,C24:1 DHcer) and precursors (Sphingosine, Sphinganine, 1-Deoxysphinganine,1-932 
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Methyldeoxysphinganine, SB) were quantified in plasma by liquid chromatography tandem 933 

mass spectrometry (LC-MS/MS). In addition to samples, seven-point calibration curves and 3 934 

levels of quality controls were made from pure standards in BSA 5%. Finally, reference plasma 935 

spiked with analytes at two different levels were prepared as additional QC samples.  936 

Lipid chromatographic separation was performed on a UPLC I-Class system (Waters) equipped 937 

with an Acquity BEH C18, 100 x 2.1 mm, 1.7 µm column (Waters) heated at 60°C. Mobile phase 938 

were A: 0.1 % (V/V) formic acid in water and B: 0.1 % (V/V) formic acid in acetonitrile/ 939 

isopropanol (60/40). Flow rate was set à 0.5 ml/min and a gradient was applied as follows: 940 

0min: 45% A, 2min: 45% A, 3min: 15% A, 13min: 0% A, 14min: 45% A, 16 min: 45%A Mass. 941 

Mass analysis was performed on an API 6500 system (Sciex) operating with an electrospray 942 

source in positive mode. General parameters were set as follows: curtain gas: N2 (35 PSI), Ion 943 

source gas 1: Air (50 PSI), Ion source gas 2: Air (50 PSI), ion source voltage: 5500 V, 944 

temperature: 300°C, collision gas: N2 (7). Scheduled multiple reaction monitoring (MRM) mode 945 

was used with a target scan time of 0.5s and an MRM detection window of 60s. 946 

 947 

Data was acquired using Analyst 1.6.2 (Sciex) and data processing was performed with 948 

MultiQuant 3.0 (Sciex). Peak area of analyte and internal standard were determined by the 949 

MultiQuant 3.0 (Sciex) integration system. Analyte concentrations were determined using the 950 

internal standard method. The standard curves were generated from the peak area ratios of 951 

analyte/internal standard using linear regression analysis with 1/x2 weighting (except for C24 952 

cer: quadratic regression analysis). Quantifications of analytes were accepted based on quality 953 

control samples. A tolerance of 25% and 30% was applied for accuracy and precision of QC 954 

samples and spiked plasma samples, respectively. All concentrations were reported in ng/mL. 955 

Internal standards used are listed in the Supplementary Table 16. 956 
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Analysis of shotgun lipidomics and targeted sphingolipid data 957 

The statistical analyses of the shotgun lipidomics and targeted sphingolipid data sets were kept 958 

separate. Identical analysis steps were applied to the two data sets. Both sets had missing data 959 

values. Lipid species with ≥25% missing values across all available plasma samples were 960 

removed from the data set. This filtering resulted in 113 lipid species that were kept in the 961 

shotgun data set (523 were removed) and 14 in the targeted data set (4 were removed). For the 962 

lipids that remained in the data sets, missing values were imputed using a random forest 963 

approach, applying the function missForest from the R package missForest, with default 964 

parameters. In a next step, samples were filtered based on subject characteristics: individuals 965 

with bilirubin levels ≥100 µmol/l were removed before all analysis; moreover, individuals 966 

categorized as IGT with an HbA1c≥6% were excluded from the group comparisons in 967 

differential analysis, but they were retained in other analyses involving lipidomics data. In 968 

differential analysis, due to the limited number of available ND samples, the ND and the 969 

included IGT samples were combined into a single group for comparison with other sample 970 

groups, as described in the result section. 971 

 972 

For differential analysis, linear models were applied, using the function lm from the R stats 973 

package. For each comparison between two sample groups, a linear model that included 974 

diabetes status as the main explanatory variable and age, sex and BMI as covariates was fitted 975 

to the data from the two groups. P values for diabetes status were adjusted across all included 976 

lipid species with the Benjamini-Hochberg method, separately for each comparison. In addition, 977 

ANCOVA results from the three groups T2D, T3cD and ND (as defined above) with the same 978 

covariates were computed, with p-value adjustment across all lipid species as well.  979 
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Integrative analysis of transcriptomics and lipidomics 980 

Multiblock modeling 981 

Consensus Orthogonal Partial Least Squares (OPLS) model was computed with the MATLAB 9 982 

environment with combinations of toolboxes and in-house functions that are available at 983 

https://gitlab.unige.ch/Julien.Boccard/consensusopls. Modified RV-coefficients were computed 984 

with the publicly available MATLAB m-file56. KOPLS-DA was assessed with routines 985 

implemented in the KOPLS open source package57. Consensus OPLS modeling was performed 986 

on shotgun lipidomics, targeted sphingolipids and transcriptomics data tables, which were all 987 

autoscaled prior to the analysis. The Consensus OPLS model distinguishes variation of data 988 

that is correlated to Y response and those which is orthogonal to Y response. This eases the 989 

biological interpretation of results and enables the link between variation of variables and 990 

variation of the outcome while removing information coming from other sources of variation. 991 

The model resulted in 3 components: 1 predictive latent variable and 2 orthogonal latent 992 

variables. The quality of the model was assessed by R2 and Q2 values, which define the portion 993 

of data variance explained by the model and the predictive ability of the model, respectively. 994 

The predictive component carried 11% of the total explained variance of global data (R2X) and 995 

explained 51.7% of variation of HbA1c (R2Y). This indicates that the model was able to explain a 996 

large part of variation of the response variable based on the different data matrices. The Q2 997 

value was computed by a K-fold cross validation (K=7), which led to a goodness of prediction of 998 

Q2 = 0.26. 999 

 1000 

To ensure the validity of the model, a series of 1,000 permutation tests were carried out by 1001 

mixing randomly the original Y response (HbA1c patient values). The true model Q2 value was 1002 

clearly distinguished and statistically different from the random models distribution (p<0.001, 1003 

mean=−0.1778, standard deviation (SD)=0.150, n=1,000). The variable relevance to explain the 1004 

HbA1c variation was evaluated using the variable importance in projection (VIP) parameter, 1005 
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which reflects the importance of variables both with respect to the response and to the 1006 

projection quality. The most relevant features were selected using a VIP threshold > 1.2. 1007 

Proteomics 1008 

Sample Preparation 1009 

Pooled pancreatic islet cells with an approximate surface area of 80,000 μm2 were collected via 1010 

Laser Capture Microdissection (LCM) onto adhesive cap tubes. Isolates were reconstituted in a 1011 

20 µl lysis buffer (PreOmics, Germany) and transferred into PCR tubes58. Samples were boiled 1012 

at 95°C for 1min to denature proteins and reduce and alkylate cysteines without shaking in a 1013 

thermocycler (Eppendorf GmbH) followed by sonication at maximum power (Bioruptor, 1014 

Diagenode, Belgium) for 10 cycles of 30sec sonication and 30sec cooldown each. Sample liquid 1015 

was briefly spun down and boiled again for 10min without shaking. 20µl of 100mM TrisHCl pH 1016 

8.5 (1:1 v/v) and 20ng Trypsin/LysC were added to each sample, followed by overnight 1017 

digestion at 30°C without shaking. The next day, 40µl 99% Isopropanol 5% Trifluoroacetic acid 1018 

(TFA) (1:1 v/v) was added to the solution and mixed by sonication. Samples were then 1019 

subjected to stage-tip cleanup via styrenedivinylbenzene reversed-phase sulfonate (SDB-RPS). 1020 

The sample liquid was loaded on one 14-gauge stage-tip plug. Peptides were cleaned up with 1021 

2x200µl 99% Isopropanol 5% TFA and 2x200µl 99% ddH2O 5% TFA in an in-house made 1022 

Stage-tip centrifuge at 2,000xg, followed by elution in 40µl 80% Acetonitrile, 5% Ammonia and 1023 

dried at 45°C in a SpeedVac centrifuge (Eppendorf, Concentrator plus) according to the ‘in-1024 

StageTip’ protocol (PreOmics, Germany). Peptides were resuspended in 0.1% TFA, 2% ACN, 1025 

97.9% ddH2O.  1026 

Liquid chromatography and mass spectrometry (LC-MS)  1027 

LC-MS was performed with an EASY nanoLC 1200 (Thermo Fisher Scientific) coupled online to 1028 

a trapped ion mobility spectrometry quadrupole time-of-flight mass spectrometer (timsTOF Pro, 1029 
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Bruker Daltonik GmbH, Germany) via nano-electrospray ion source (Captive spray, Bruker 1030 

Daltonik GmbH). Peptides were loaded on a 50cm in-house packed HPLC-column (75µm inner 1031 

diameter packed with 1.9µm ReproSil-Pur C18-AQ silica beads, Dr. Maisch GmbH, Germany). 1032 

Sample analytes were separated using a linear 120min gradient from 5-30% buffer B in 95min 1033 

followed by an increase to 60% for 5min, and by a 5min wash at 95% buffer B at 300nl/min 1034 

(Buffer A: 0.1% Formic Acid, 99.9% ddH2O; Buffer B: 0.1% Formic Acid, 80% CAN, 19.9% 1035 

ddH2O). The column temperature was kept at 60°C by an in-house manufactured oven. 1036 

Mass spectrometry analysis was performed in a data-dependent PASEF mode with 1 MS1 1037 

survey TIMS-MS and 10 PASEF MS/MS scans per acquisition cycle. Ion accumulation and 1038 

ramp time in the dual TIMS analyzer was set to 100ms each and we analyzed the ion mobility 1039 

range from 1/K0 = 1.6 Vs cm-2 to 0.6 Vs cm-2. Precursor ions for MS/MS analysis were isolated 1040 

with 2Th windows for m/z<700 and 3Th for m/z>700 in a total m/z range of 100-1,700 by 1041 

synchronizing quadrupole switching events with the precursor elution profile from the TIMS 1042 

device. The collision energy was lowered linearly as a function of increasing mobility starting 1043 

from 59 eV at 1/K0=1.6 VS cm-2 to 20 eV at 1/K0=0.6 Vs cm-2. Singly charged precursor ions 1044 

were excluded with a polygon filter (otof control, Bruker Daltonik GmbH). Precursors for MS/MS 1045 

were picked at an intensity threshold of 2.500 a.u. and resequenced until reaching a ‘target 1046 

value’ of 20,000 a.u taking into account a dynamic exclusion of 40sec elution25. 1047 

Before MS analysis, the LC-MS setup was subjected to a rigorous quality control procedure. 1048 

These criteria included protein- and peptide-identifications as well as general technical 1049 

specifications like chromatography performance. If those thresholds were met (>5.500 protein 1050 

groups, >38.000 peptides from 200 ng tryptic HeLa digest, chromatographic peak FWHM of <=9 1051 

sec and peak base-to-base width <=17 sec on a 120 min liquid chromatography gradient; 1052 

Quantitative reproducibility across two subsequent QC runs with a Pearson correlation of >0.97 1053 

and coefficients of variation of <=10%) the project measurements were initiated. Furthermore, 1054 



44 

we subject our instruments to a rigorous weekly maintenance procedure (Maintenance of the 1055 

Liquid chromatography platform and re-calibration of the mass spectrometer) to ensure highest 1056 

overall performance and reproducibility. 1057 

Proteomics raw file processing 1058 

Raw files were searched against the human Uniprot databases (UP000005640_9606.fa, 1059 

UP000005640_9606_additional.fa) MaxQuant (Version 1.6.7), which extracts features from 1060 

four-dimensional isotope patterns and associated MS/MS spectra59. False-discovery rates were 1061 

controlled at 1% both on peptide spectral match (PSM) and protein level. Peptides with a 1062 

minimum length of seven amino acids were considered for the search including N-terminal 1063 

acetylation and methionine oxidation as variable modifications and cysteine 1064 

carbamidomethylation as fixed modification, while limiting the maximum peptide mass to 4,600 1065 

Da. Enzyme specificity was set to trypsin cleaving c-terminal to arginine and lysine. A maximum 1066 

of two missed cleavages were allowed. Maximum precursor and fragment ion mass tolerance 1067 

were searched as default for TIMS-DDA data, while the main search peptide tolerance was set 1068 

to 20ppm. The median absolute mass deviation for the data was 0.68ppm. Peptide 1069 

identifications by MS/MS were transferred by matching four-dimensional isotope patterns 1070 

between the runs with a 0.7-min retention-time match window and a 0.05 1/K0 ion mobility 1071 

window60. Label-free quantification was performed with the MaxLFQ algorithm and a minimum 1072 

ratio count of 161. 1073 

Bioinformatic analysis 1074 

Bioinformatics analysis was performed in Perseus (version 1.6.7.0 and 1.5.5.0) and GraphPad 1075 

Prism (version 8.2.1)62. Reverse database, contaminant, and only by site modification 1076 

identifications were removed from the dataset. Data were grouped by analytical replicates and 1077 

filtered to at least 70% data completeness in one group. Missing values were imputed from a 1078 
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data table specific normal distribution estimate with a downshift of 1.8 and a width of 0.3 1079 

standard deviations after log2-transformation of the data. To represent the data reproducibility 1080 

and variability, a principal component analysis was performed on the median data of analytical 1081 

replicate measurements of each individual. Clinically classified T2D and ND individuals were 1082 

tested for differences in their mean by a two-sided Student’s t-test with S0=0.1 and a Benjamini-1083 

Hochberg correction for multiple hypothesis testing at an FDR of 0.05 preserving grouping of 1084 

each individuals analytical replicate measurements, and presented as volcano plot. We then 1085 

normalized the data by row-wise z-scoring followed by hierarchical clustering using Euclidean 1086 

as the distance parameter for column- and row-wise clustering. 1D gene ontology enrichments 1087 

of clustered and systematically changed proteins were performed with regards to their cellular 1088 

compartment and keywords assignment30. Log2 transformed LFQ data were used for the 1089 

calculation of intensity shifts of the enriched keyword or cellular compartment term for each of 1090 

the displayed clusters. Total protein copy number estimation of the median LFQ intensities for 1091 

patients clinically classified as non-diabetic and diabetic were calculated using the Perseus 1092 

plugin ‘Proteomic ruler’29. Median LFQ intensity values for all T2D and ND were calculated. We 1093 

annotated protein groups for the leading protein ID with the human Uniprot fasta file 1094 

(UP000005640_9606.fa) and estimated the protein copy number with the following settings: 1095 

Averaging mode. ‘All columns separately’, Molecular masses: ‘Average molecular mass’, 1096 

Detectability correction: ‘Number of theoretical peptides’, Scaling mode: ‘Histone proteomic 1097 

ruler’, Ploidy: ‘2’, Total cellular protein concentration: ‘200g/l’. Proteins were annotated with 1098 

regards to their cellular compartment by gene ontology. We calculated the median protein copy 1099 

number for the samples from T2D and ND PPP separately and multiplied it by its protein mass. 1100 

To calculate the subcellular protein mass contribution, we calculated the protein mass 1101 

proportion for the GOCC terms ‘Nucleus’, ‘Mitochondrion’, ‘Cytoskeleton’, ‘Golgi apparatus’, and 1102 

‘Endoplasmic reticulum’. For calculating the organellar change between T2D and ND PPP, 1103 

protein mass contributions of each organelle were normalized by its respective ‘Nuclear part’ 1104 
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contribution. Chromosomal annotation of significantly changed proteins between T2D and ND 1105 

PPP was identified via Ensembl ID. For transcriptome to proteome correlation, the gene 1106 

intersection of both data sets was scaled to 1E6 units, followed by log10-transformation.  1107 

Antibody validation 1108 

Rabbit polyclonal anti-ALDOB antibody (Proteintech, Cat.No. 18065-1-AP) was tested for 1109 

specificity by western blotting of protein extracts of ALDOB-/- MIN6 cells generated with a 1110 

CRISPR/Cas9 system, as described63. Primary antibodies against ALDOB, ALDOA (Abnova, 1111 

Cat. No. H00000226-M01) and gamma tubulin as loading control (Sigma Aldrich, Cat.No. T-1112 

6557) were diluted in 5% non-fat milk 1:2000, 1:1000 and 1:5000, respectively. The knock-out of 1113 

ALDOB was verified by Sanger sequencing of the target locus. 1114 

Isolated mouse islet and cell line experiments 1115 

Mouse (C57BL/6J, db/db (BKS.Cg-Dock7m +/+ Leprdb/J) and db/+ (Charles River Laboratories), 1116 

3 animals/strain, male, age 13 weeks) islets were cultured for 1 day post isolation. Islet beta 1117 

MIN6c4 (MIN6 clone 4, from Osaka University under Material License Agreement) and alpha 1118 

αTC1-clone 6 (ATCC, CRL-2934) cell lines were harvested for RNA extraction using Qiagen 1119 

RNeasy Mini Kit according to the manufacturer’s instructions. After quality control, RNA samples 1120 

were sequenced using the Illumina HiSeq 2000 platform and processed as previously 1121 

described51,64,65. All animal experiments were done in accordance with the ethical approval of 1122 

the Sanofi-Aventis Animal Welfare Office, Frankfurt/Main, Germany. The animals were housed 1123 

at 20-24°C, by 45-65 % humidity setting in an artificial day / night (12hrs) rhythm. 1124 

Immunofluorescence microscopy 1125 

Immunofluorescence staining was done on formalin-fixed paraffin embedded 5μm thick sections 1126 

of human pancreatic tissue. Acetylated histone H3 and H4 were detected in separate sections 1127 
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using rabbit polyclonal antibodies (Merck Millipore Cat.No. 06-598 and 06-599, respectively, 1128 

dilution 1:100). A mouse monoclonal anti-insulin antibody (Thermo Fisher Scientific Cat.No. 53-1129 

9769-82, dilution 1:200) was used for co-staining, to identify the beta cell areas. Images were 1130 

acquired using a Nikon C2+ confocal microscope with a 60x oil immersion objective, with 1131 

acquisition parameters normalized to a negative control sample. 1132 
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