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Abstract: To explore the etiology of diseases is one of the major goals in 14 

epidemiological study. Meet-in-metabolite analysis reconstitutes biomonitoring-based 15 

adverse outcome (AO) pathways from environmental exposure to a disease, in which 16 

the chemical exposome-related metabolism responses are transmitted to incur the AO-17 

related metabolism phenotypes. However, the ongoing data-dependent acquisition of 18 

non-targeted biomonitoring by high-resolution mass spectrometry (HRMS) is biased 19 

against the low abundance molecules, which forms the major of molecular internal 20 

exposome, i.e., the totality of trace levels of environmental pollutants and/or their 21 

metabolites in human samples. The recent development of data-independent acquisition 22 

protocols for HRMS screening has opened new opportunities to enhance unbiased 23 

measurement of the extremely low abundance molecules, which can encompass a wide 24 

range of analytes and has been applied in metabolomics, DNA, and protein adductomics. 25 

In addition, computational MS for small molecules is urgently required for the top-26 

down exposome databases. Although a holistic analysis of the exposome and 27 

endogenous metabolites is plausible, multiple and flexible strategies, instead of “putting 28 

one thing above all” are proposed. 29 
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 33 

Introduction 34 

Although it is considered a “black box” epidemiology, the traditional 35 

epidemiology founded the identification of disease etiologies (Helzlsouer, 1993), where 36 

an exposure factor is linked to a disease through statistical association. From exposure 37 

to prognostic significance, molecular epidemiology has incorporated a series of 38 

biomarkers; these biomarkers can be scattered and suggest pathways that may lead to 39 

disease initiation or development based on risk factor occurrence. Successful cases are 40 

rare if all the biomarkers are available along the exposure-adverse outcome course. 41 

These biomarkers have been individually investigated, and their assessments focus on 42 

the reliability and validity of statistical models such as receiver operating characteristic- 43 

or sensitive curve-based models. Biological relationships between the upstream and 44 
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downstream biomarkers, also known as biomarker webs, are typically omitted. 45 

Therefore, molecular epidemiology is contingent on how well the data reflect the events 46 

and involve the risk factor that induced the AO pathways (AOPs). One well-known 47 

example in molecular epidemiology is human exposure to benzo[a]pyrene (BP) and the 48 

resulting cancer risk. The glucuronide conjugate of BP-7,8-dihydrodiol in urine can be 49 

measured as the exposure biomarker. The further metabolism of BP-7,8-dihydrodiol-50 

9,10-epoxide combination with DNA bases, repairing mutation initiation, and 51 

accumulation of urinary 8-hydroxy-2-deoxyguanosine can mark an adverse effect and 52 

may cause a cancer diagnosis. However, these biomarkers alone cannot profile a 53 

pathway to determine the extent to which environmental risk leads to disease 54 

development. Systems biology and molecular epidemiology have combined to 55 

introduce the systems epidemiology era. The details of molecular events in response to 56 

both environmental exposure and disease or adverse health outcomes can be profiled. 57 

These molecular events form a biological continuum on the data of genomics, 58 

proteomics, and metabolomics. High-throughput data acquisition has been sufficiently 59 

applied for omic-wide associated studies, including effect-oriented exposome-wide 60 

and/or metabolome-wide studies. Although exposure and outcome molecular 61 

biomarkers have been more recently screened using a holistic view instead of a 62 

reductive one, the pathway reconstitution on systems biology, i.e., uncovering the black 63 

box between the exposure and AO, has not yet been fully considered. In this review, we 64 

firstly profiled the ongoing development of meet-in-metabolite analysis (MIMA) for 65 

the AOPs’ reconstitution on metabolism (Wu et al., 2021), and then discussed the 66 

analytical choke-point of low level molecules in exposomics and metabolomics. 67 

Because the latter would hinder the quality of these multiple omics database in the 68 

MIMA procedure, the advances, techniques, developments and outlooks of the unbiased 69 

traceability of total internal exposome (i.e., chemical pollutants and metabolites) were 70 

majorly reviewed, which are important and forms the foundation of the suggested 71 

systems epidemiological paradigm. 72 

 73 

Metabolism-based pathway reconstitution from exposure to disease 74 

Traditional human biomonitoring only focuses on the environmental pollutant 75 

measurement in populations, which can include parental chemicals and/or their 76 

metabolites. The holistic measurement of endogenous metabolites in humans is 77 

typically considered in the context of metabolomics. Non-targeted measurements have 78 

involved both endogenous and exogenous small molecules in humans. According to the 79 

molecular epidemiology framework, xenobiotic biomonitoring data can relate to 80 

metabolic response data. Similarly, a diagnostic outcome may be a reflection of certain 81 

metabolic phenotypes. Therefore, it is reasonable to merge the two metabolic modules 82 

(endogenous and exogenous) on the metabolome continuum. Pathways linking 83 

exposure and AOs can emerge from the complex metabolic web, i.e., the AOP 84 

reconstitution. Apart from the omic-wide associated studies, a ‘meet-in-the-middle’ 85 

strategy has been applied in univariate mediation analysis (Chadeau-Hyam et al., 2011; 86 

Vineis et al., 2013). MIMA can potentially uncover many hidden molecular events and 87 

link exposure to disease or outcome via the metabolic network (Figure 1) (Huang et al., 88 



2018; Huang et al., 2019; Liu et al., 2020b; Wang et al., 2019b; Wu et al., 2018), where 89 

the pathways embedded in the complex metabolomics can be identified. Given arsenic 90 

exposure is the risk of male infertility on the traditional “black box” epidemiology 91 

(Wang et al., 2016), one of the more recent application of the O2PLS model proposed 92 

in Figure 1 has tried to reconstitute the linkages between exposure biology of arsenic 93 

and pathology of male infertility via non-targeted analysis of urinary metabolome (Wu 94 

et al., 2021). In this case-control study, twelve metabolites each have been defined as 95 

the arsenic exposure biomarkers and infertile pathology biomarkers, respectively. 96 

Seven of them can directly bridge the gap between arsenic and infertility. Interestingly, 97 

the core metabolism correlation network further highlighted that testosterone is the vital 98 

hub to transfer the arsenic effects to infertile risk. The network indicated arsenic 99 

methylation that coupled disruption of one-carbon metabolism and oxidation stress and 100 

the adverse effects extended to fatty acid oxidation and steroidogenesis dysfunction. 101 

 MIMA research can be fundamentally supported by utilizing traditional 102 

epidemiological study designs. However, three aspects are critical to improving these 103 

studies:  104 

1. Holistic analyses of molecular exposomes and endogenous metabolites.  105 

2. Reconstructing the global endogenous metabolism network and recognizing the 106 

metabolism modules and hub nodes that respond to environmental factor exposure and 107 

reflect the AO, respectively. Additionally, profiling the pathways and assessing the 108 

biomarkers (with sound sensitivity and specificity).  109 

3. Conduct causative inferences for biomarkers using mediation or moderation 110 

analysis. The identified biomarkers then return from holism to reductionism because 111 

they are deduced from a global view with fully mechanical information.  112 

 113 

 114 

Figure 1: Meet-in-metabolite analysis model: O2PLS application to bridge the 115 

gap between environmental risk factors and adverse outcome. 116 



Note:  Biomonitoring and metabolomics can be integrated into top-down 117 

measurements under the MIMA framework and non-targeted analysis in holism is 118 

technical foundation of systems epidemiology. Quantitatively and qualitatively 119 

annotating endogenous and exogenous analytes and biologically reconstituting system 120 

dynamics concerning AOPs or networks are the major goals of AOP-oriented molecular 121 

epidemiology in MIMA. ERF = Environmental risk factor; AO = Adverse outcome; 122 

AOPs = Adverse Outcome Pathways; O2PLS = Two-way Orthogonal Partial Least-123 

Square; Joint variance are the intersection of metabolite sets that represent both ERF-124 

related and AO-related metabolites, i.e., Y-predictive and X-predictive, respectively. 125 

While Y-unique represent the metabolites are independent to AO and X-unique 126 

represent the metabolites are independent to ERF, respectively. Y-residual and X-127 

residual are the unexplained parts of the total variations in the model.  128 

 129 

Genomic-wide associated disease and human exposomics 130 

Genome-wide association studies have revealed many genetic associations and 131 

mapped certain networks to improve our understanding of the nature of disease; 132 

however, these mappings only account for a small fraction of the disease risks and most 133 

parts can be the environment-wide associated (Rappaport and Smith, 2010). Utilizing 134 

exposomics to assess all individual exposures in a lifetime and how they relate to 135 

disease idealizes exposure measurements in epidemiology (Wild, 2005), emphasizing 136 

both systematic and accurate analysis characteristics. The National Institute of 137 

Environmental Health Sciences has defined the set of environmental exposures that 138 

shifts the human body condition from healthy by chemical exposures, diet, physical 139 

activity, stress, pre-existing disease, and the use of addictive substances. Considering 140 

human exposure biomonitoring, ethically available biological samples such as blood 141 

and urine from the investigated population contain a wide variety of global metabolome 142 

information including that of exposures. Based on metabolism, the related exposure 143 

responses and health outcomes or disease in cohorts can also be compared (Rappaport 144 

et al., 2014; Shen et al., 2014). Mathematically, human body is a cohesive 145 

conglomeration of interdependent components that are delineated via both spatial and 146 

temporal boundaries. Therefore, metabolomics that encompasses complete internal 147 

exposure molecular information and associates a disease can be modeled via MIMA.   148 

 149 

Profiling exposure-oriented disease or adverse outcome on metabolism 150 

Given the limited number of pathways for responding to exposure to various 151 

pollutants, exposure biology can be applied to address toxicologically related 152 

metabolites; along with the pathological metabolite analysis (Compton et al., 2019), 153 

how environmental factors initiate the toxic hazards and transformed into AO can be  154 

highlighted, which is vital for environmental disease prevention and medicine. For 155 

example, regarding arsenic effects (Zhang et al., 2014c) and male infertility (Huang et 156 

al., 2019; Shen et al., 2013; Wang et al., 2016; Zhang et al., 2014a; Zhang et al., 2014b), 157 

the pathways of arsenic methylation coupling one-carbon metabolism disruption 158 

together with oxidation stress can propagate to the fatty acid oxidation and 159 

steroidogenesis dysfunction indicated by testosterone has been recently profiled (Wu et 160 



al., 2021). Although the change of testosterone, a key molecular event for male fertility, 161 

is not so sensitive and specific to both arsenic-related and male infertility-related 162 

metabolites (Wu et al., 2021; Zhang et al., 2014c), MIMA procedure by O2PLS dose 163 

has centralized its role in-between arsenic exposure and male infertility. Due to the 164 

nonlinear dynamics of biological systems, it is no surprise that not all molecular events 165 

are sensitive or specific enough to respond to exposure and/or AOs, which may 166 

typically be omitted in the traditional omic-wide associated biomarker investigations. 167 

Apart from arsenic, the exposure-oriented metabolism of phthalates, 168 

perfluorinated compounds, air pollution of PM2.5 have been profiled on human 169 

monitoring data of urine, blood or meconium samples, in which male infertility, 170 

gestational diabetes mellitus (GDM), chronic obstructive pulmonary disease (COPD) 171 

or alteration of cardiorespiratory function have been linked via AO-oriented 172 

metabolism (Huang et al., 2018; Huang et al., 2019; Liu et al., 2020b; Peng et al., 2015; 173 

Wang et al., 2017; Wang et al., 2019b; Wu et al., 2018). Interestingly, the 174 

cardiorespiratory effects of a very low ozone exposure (8.7 ± 6.6 ppb) that associated 175 

with changes in metabolic profiles among the vulnerable children can be observed, in 176 

which ozone below the current indoor standards was associated with the deteriorated 177 

cardiovascular function by disturbing bile acid and endogenous nitric oxide-related 178 

oxidation and inflammation, and associated with the exacerbated airway inflammation 179 

by reducing GPx-related anti-oxidation (Liu et al., 2021). The result implied that MIMA 180 

is comprehensive and powerful for tracing the molecular changes from exposure to 181 

outcome. 182 

Although metabolome has encompassed all biological aspects of exposure, 183 

toxicology and pathology, the analytical aspects are still challenged by the holistic 184 

measurement of exogenous and/or endogenous metabolome, it is believed that totality 185 

but solitary of the risk factors are decisive in environment related disease pathology. 186 

Metabolomics usually can be conducted through high-resolution mass spectrometry 187 

(HRMS) with high throughput by non-targeted strategy. However, molecular events that 188 

are important for reconstituting the entire pathway from exposure to health outcome 189 

may be missed due to the concentration biased metabolome detection. Therefore a 190 

systematic analysis without bias towards any metabolite and/or pollutant is required. 191 

Additional flexible strategies must be adopted when all small molecules are intended to 192 

be monitored in viewpoint of metabolomics. Especially some analytical aspects in 193 

exposomics are challenging (Dennis et al., 2017), such as the missing of low level 194 

xenobiotics in non-targeted analysis, the identification of unknown small molecules 195 

without database, and the metabolomic heterogeneity in different human samples. 196 

 197 

Systematic analysis of human exposure to environmental chemicals 198 

We routinely face a man-made chemical world. Over 145,000 chemicals are 199 

registered by the European Union Registration, Evaluation, Authorization and 200 

Restriction of Chemical Substances regulation 201 

(https://echa.europa.eu/web/guest/information-on-chemicals/pre-registered-202 

substances). A recently released update of the Toxic Substances Control Act (TSCA) 203 

inventory list for chemicals that are actively being manufactured by the U.S. 204 



Environmental Protection Agency (EPA) as of February 19, 2019, demonstrated that 205 

less than half of the total number of chemicals on the current TSCA inventory list, i.e., 206 

40,655 of the 86,228 (47%) chemicals, are currently being sold. Except for a few 207 

persistent organic chemicals (POPs), most of the high production volume (Nikfar et al., 208 

2014) chemicals can be considered pseudo-persistent chemicals because of their 209 

continuous emission to the environment, even if their half-lives are short (Bergman et 210 

al., 2012; Daughton, 2003). These chemicals plus POPs can be a great source of concern 211 

if vulnerable subpopulations are exposed to amounts that result in adverse effects 212 

(Nicholson et al., 2004). The National Health and Nutrition Examination Survey, a well-213 

known targeted biomonitoring study, includes a few hundred preselected chemicals for 214 

the survey. Therefore, it is an enormous gap between the ongoing biomonitoring and 215 

the current human exposure to environmental chemicals, which has hindered the 216 

exposure risk assessment for evaluating environmental health risks.  217 

The EPA Non-Targeted Analysis Collaborative Trial (ENTACT) has used 218 

suspected screening for approximately 1,200 chemical substances from the EPA 219 

ToxCast library in house dust, silicone wristbands, and human serum (Ulrich et al., 2019) 220 

to systematically assess human exposure to environmental chemical pollutants. 221 

Approximately 40,153 to 114,100 small molecules are populated in human body 222 

(Wishart et al., 2018), with only 5,835 reconstructed by the endogenous human 223 

metabolism (Angione, 2019). It has been estimated that the four major small-molecule 224 

categories, namely endogenous chemicals, food chemicals, pollutants, and 225 

pharmaceuticals in blood, exhibit concentrations that cover a 107-fold range. One of the 226 

greatest challenges to screening and identifying unknown pollutants in human samples 227 

is their minuscule concentrations, which are typically thousand times lower (median of 228 

2.4x10-4 μM) than those of endogenous chemicals (0.94 μM), food chemicals (1.00 μM), 229 

and pharmaceuticals (0.30 μM). Given that untargeted HRMS can detect >30,000 small 230 

molecule features in human serum (Ivanisevic et al., 2013), a platform bias results in 231 

measurement uncertainties for small molecules less than approximately 0.1 μM in 50-232 

L of serum, where approximately 90% of pollutants and 30% of endogenous and food 233 

chemicals have been missed regarding the data-dependent acquisition of fragment ions 234 

(MS2). This is because only the top 10 most intense precursor ions (MS1) are subjected 235 

to MS2 (Wang et al., 2019a; Yan and Yan, 2015). When an expected system 236 

biomonitoring model (such as that of a top-down exposome (Rappaport, 2011) is 237 

applied, more flexible strategies should be applied to overcome the challenges in the 238 

nowadays non-targeted holistic analysis (Figure 2), such as data-dependent acquisition 239 

(DDA) approach. 240 

Because of there is a huge concentration differences among the much lower 241 

pollutants and the relatively high endogenous chemicals, food chemicals, and drugs, 242 

respectively (Ivanisevic et al., 2013; Rappaport, 2014), results in many challenges to 243 

apply the holistic measurement to molecular exposome. DDA approaches can only 244 

select a few fractions of the most-intense (such as the top 10) mass spectra (MS) of 245 

precursor ions (MS1)  subject to fragmentation (MS2) (Yan and Yan, 2015), which is 246 

the substantial bias for searching  less abundant but biological important molecules in 247 

metabolomics. In addition to the commonly used DDA, the data-independent 248 



acquisition (DIA) can theoretically address all molecules with MS/MS features, 249 

however, MS1 and MS2 ions might co-elute and difficult to identify the parent-daughter 250 

linkages for small molecules when compared to for proteins. As a result DIA of MS2 251 

covers a broad range of precursor ion fragments and the link between MS1 and MS2 252 

might get often lost. With the recent development of DIA protocols such as scanning 253 

sequential window acquisition of all theoretical spectra (SWATH) (Raetz et al., 2020), 254 

a novel DIA method SONAR (Juvvadi et al., 2018), and ion mobility MS/MS (IM-255 

MS/MS) (Zheng et al., 2017; Zhou et al., 2018), MS1 selectivity have been greatly 256 

increased. The extra dimension for mass separation in the new DIA protocols of 257 

scanning SWATH, SONAR and IM–MS/MS can help to reconstitute MS1/MS2 parent-258 

daughter linkages; then the enhanced unbiased measurement for particularly low 259 

abundance metabolites in non-targeted analysis can be readily obtained (Figure 2).  260 

The challenge still remains to identify non-targeted small molecules. With only 261 

MS/MS features, many pollutants cannot be identified due to the database searching 262 

limitations. Currently, over 114,100 metabolites have been listed in the Human 263 

Metabolome Database (version 4.0) (Angione, 2019), but few are metabolites from 264 

xenobiotics. For example, meconium metabolites of methylepicatechin, 265 

methylxanthine, dimethyluric acid and vanilloylglycine are exogenous and are 266 

commonly present in green teas, red wine, cocoa products, and many fruits, which have 267 

been associated with GDM risk (Peng et al., 2015). Computational MS (Feunang et al., 268 

2016) for small molecules should be further developed in combination with their 269 

biological transformations, such as the in-molecule glucuronide feature (Tsugawa et al., 270 

2019; Walmsley et al., 2019). These kinds of features are commonly occurring for the 271 

metabolites of xenobiotics for assisting their excretion via urine and/or bile pathways 272 

but then computational-based exogenous metabolite molecular structure reconstruction 273 

(Scheubert et al., 2013) can become rational and will be applied to molecular exposome 274 

analysis. Considering sample preparation methods, sub-grouping strategies can be used 275 

to improve the non-targeted analysis of human exposome in the model of metabolome 276 

because after extraction, enrichment and purification different xenobiotics can be 277 

classified and collected by their properties such as lipophilicity, hydrophilicity or 278 

formation of adducts to other biomolecules (Figure 2). 279 

 280 



 281 

Figure 2. Suggested perspectives for a holistic non-targeted analysis of human 282 

molecular exposome. 283 

Note: Various levels of small molecules of xenobiotics can be hidden in human 284 

metabolome and requires an integral strategy from initial sample preparation to final 285 

analytical method selection, which improves systems thinking of the aspects of 286 

analytical challenges in molecular exposomics. 287 

 288 

Heterogeneity of environmental chemicals and exposure biomarkers in humans 289 

Monitoring human exposure to suspected environmental chemicals using internal 290 

biomarkers has been accepted as the most accurate exposure assessment approach (Barr 291 

et al., 2005; Smolders et al., 2009). Internal chemicals and/or their metabolites should 292 

constitute the most abundant fractions and predominately represent the external 293 

exposure to be considered suitable biomarkers, where the measured analytes exhibit the 294 

sound specificity and sensitivity is also required to respond to their exposure. After 295 

entering the human body, xenobiotics are metabolized via the pronounced phase-I and 296 

phase-II reactions in the liver and kidney (or by gut microbiota when exposure via diet). 297 

In addition, certain exogenous chemicals can be transformed into the activated 298 

derivatives of protein and DNA adducts, and some adducts may initiate the immune 299 

system response, in which the xenobiotic-protein adducts can form antigen-antibody 300 

complexes (Pallardy and Bechara, 2017). Chemical pollutants have been categorized as 301 

POPs, non-persistent organic chemicals, bioaccumulative metals, non-bioaccumulative 302 

metals, and others (Smolders et al., 2009). Analyte can either surrogate the chronic 303 

exposure when a chemical is persistent or accumulated, or they can represent the acute 304 

exposure when it is reactive or non-bioaccumulative. Reactive chemical metabolic 305 

fractions excreted via urine may indicate acute exposure, or they may be classified as 306 

chronic exposure biomarkers when combined with proteins. Although few cases have 307 

been compared for environmental chemicals, the use of fasting plasma glucose (free 308 

blood glucose level) as acute biomarker and the hemoglobin A1c adduct (HbA1c) as 309 

chronic one have been well-documented (Association, 2017). Finally, the relative 310 



abundance and time-dependent variation for the reactive chemicals as antigen-antibody 311 

complexes have not yet been addressed for biomonitoring. 312 

Exposure biomarker selection is also subject to monitoring and molecular 313 

exposure life stages (Dennis et al., 2017). This is because the toxicokinectics (Liu et al., 314 

2020a) and ethical convenience of sampling are development-specific. Various human 315 

sample types have been used as biomonitoring matrices (Smolders et al., 2009; Pallardy 316 

and Bechara, 2017). Placenta, cord blood, and meconium (Huang et al., 2019) samples 317 

are utilized to assess perinatal exposure, which may cover all chemical types. For 318 

example, meconium is formed by the fetus as early as the 12th week of gestation and 319 

accumulates until birth; it is a repository of endogenous and exogenous agonists and 320 

metabolites, is capable of capturing disease-relevant metabolic profile changes and 321 

identifying novel biomarkers (Peng et al., 2015). However, the use of meconium must 322 

be further explored because the extraction for many organic pollutants in this matrix 323 

exhibits more difficulties than in placenta and cord blood. Sampling from newborns and 324 

infants is more difficult than sample collection from other developmental stages; 325 

therefore, the diaper urine and blood spots must be deeply mined for biomonitoring. 326 

For the two most convenient types of samples, blood and urine, persistent or 327 

bioaccumulative chemicals are likely found in the blood, while the reactive and non-328 

bioaccumulative ones are likely to be concentrated in urine in their free forms as 329 

parental or their metabolites.  330 

Subject to the chemical type, POP biomonitoring has been well-documented for 331 

targeted analytical strategies; the related biomarkers are typically the parental chemicals 332 

in serum samples (Smolders et al., 2009; Pallardy and Bechara, 2017). Certain 333 

persistent organohalogen compounds (OHCs) may be natural chemicals (Agarwal et al., 334 

2014; Teuten et al., 2005). However, most of them are man-made, and a systematic 335 

analysis of these trace levels of POPs in humans can be conducted using both target and 336 

non-target approaches, such as gas chromatography (GC)-HRMS for semi-volatile and 337 

lipophilic POPs (Alonso et al., 2017; Goto et al., 2020; Yang et al., 2019) and liquid 338 

chromatography-HRMS for hydrophilic POPs such as perfluoroalkyl and 339 

polyfluoroalkyl substances (PFASs) (Concha-Grana et al., 2018; Ruan and Jiang, 2017).  340 

The exposure biomarker selection for reactive pollutants is more challenging to 341 

acquire than that for persistent ones. Reactive chemicals and their metabolites may 342 

occur in free forms in metabolites through derivatization via functional groups such as 343 

-OH, -SH, -NH2, and -COOH, and/or by conjugation with glucuronic acid, sulfate, 344 

glutathione, or acetyl. Free metabolites and small molecular conjugates are typically 345 

concentrated in urine and are ready for excretion. Therefore, they are typically selected 346 

as biomarkers to assess acute exposure to reactive pollutants. The electrophilic activated 347 

chemicals can also covalently adduct to nucleophilic sites in proteins (such as the 348 

sulfhydryl group of cysteine, ε-amino group of lysine, and imidazole group of histidine 349 

in proteins (Shibata and Uchida, 2019) in hemoglobin and albumin) and DNA (Cooke 350 

et al., 2018; Guo and Turesky, 2019). When measuring these derivatives in adductomics 351 

(Rappaport et al., 2012), hemoglobin adducts and human serum albumin (HSA) are 352 

preferable to those of DNA and glutathione for characterizing chronic exposure because 353 

of their greater abundance and longer residence times in human blood (Needham and 354 



Sexton, 2000). Consequently, these circulating protein adducts can be used as chronic 355 

exposure biomarkers for reactive chemicals. In addition to free protein adducts, 356 

circulating antigen-antibody complexes (Aguirre-Gamboa et al., 2016; Sharma et al., 357 

2017) may pool the pro-/pre- or haptenic xenobiotics for immunity-oriented assessment. 358 

Metal biomarkers are comparable to organic chemicals, including elements or their 359 

metabolic species in urine and blood samples. The common approach to address metal 360 

speciation in biosciences is called metallomics, and various metals and species can be 361 

sensitively measured by LC-inductively coupled plasma (ICP)-MS. Urinary and serum 362 

samples are typically digested and measured by ICP-MS or ICP-optical emission 363 

spectroscopy, where the elements can be applied as biomarkers to indicate their total 364 

exposure status (Medda et al., 2016; Troisi et al., 2019). Certain metal or metalloid 365 

species, such as methylated arsenic and mercury, can be measured in urine and blood 366 

samples by LC-ICP-MS. Many small (oxalate, citrate, tartrate, amino acids, and 367 

oligopeptides) and large (nucleic acids, polysaccharides, and proteins) biomolecules 368 

can bind to metals, generating various chemical species (Lopez-Barea and Gomez-369 

Ariza, 2006). Similar to organic chemicals, metals can occur in free forms, small 370 

metabolic species, or metalloproteomic forms with proteins (Coverdale et al., 2019). 371 

For example, serum albumin is a highly abundant plasma protein associated with the 372 

transport of metal ions (Curry et al., 1998); therefore, HSA can be used in the exposome 373 

proteomic forms to metals (Curry et al., 1998; Varshney et al., 2010). The inducible 374 

metallothioneins are Cys-rich metal-binding proteins, and they can be used as both 375 

exposure and stress biomarkers for metal exposomics (Coverdale et al., 2019). 376 

 377 

Screening strategies for parental chemicals and their free form metabolites 378 

Monitoring pre-selected target chemical pollutants (including their demarcated 379 

metabolites) in various human samples and their applications throughout the life stages 380 

has been sufficiently performed (Smolders et al., 2009). In clinical and forensic 381 

toxicological fields, the parental chemicals or their defined metabolites can be screened 382 

in the pre-selected list as suspected unknowns in human samples. The typical strategy 383 

is the chemical parental structure-dependent screening. For the suspected unknown 384 

OHC screening, sample preparation procedures and GC-MS analysis have determined 385 

chemicals of neutral, lipophilic, and semi-volatile properties, which exhibit well-386 

demarcated chemical subclasses and can match a holistic screening. With the assistance 387 

of sample clean-up and target concentration, non-target OHC screening was performed 388 

using a full-scan screening on the GC×GC-HRToFMS (resolution power >5000 with 389 

mass error ±10 ppm) and qualitative analysis by GC-magnetic-sector HRMS 390 

(resolution power 8000-12000 with mass error <10 ppm) (Goto et al., 2020), and over 391 

300 OHCs were identified in marine dolphins (Alonso et al., 2017). Over 4,000 PFASs 392 

have been suspected to enter the environment (Ritscher et al., 2018). PFASs contain at 393 

least one perfluoroalkyl moiety (CnF2n), this common feature is useful for screening 394 

their human exposure. The systematic measurement of PFASs (Shibata and Uchida, 395 

2019) is urgent and can be acquired using LC-time-of-flight or Orbitrap HRMS, which 396 

is equipped with electrospray ionization for ionic PFASs and atmospheric pressure 397 

photoionization for neutral PFASs. The proportions of unidentified organofluorines 398 



rose from approximately 20% to 50% in German plasma samples collected during 399 

2000-2009, indicating human exposure to various unknown PFASs (Yeung and Mabury, 400 

2016). Holistic screening can be performed on the perfluoroalkyl moiety -CnF2n- 401 

through a combination of criteria such as mass balance (Shibata and Uchida, 2019). 402 

Regarding the in-molecule diagnostic features of [C2F5]- (m/z 118.992) and [C3F7]- 403 

(m/z 168.988), low levels of unknown C5-C17 poly- and perfluoroalkyl substances 404 

have been identified in water (Liu et al., 2015). The data requirements include both 405 

DDA and DIA modes in PFAS HRMS target and non-target analyses. These strategies 406 

can also be used for other chemicals. 407 

The pre-selected suspected unknown screening for free reactive chemicals and 408 

their metabolites can be made available when the molecular structures of the biomarkers 409 

in blood or urine have been documented, in which the unknown screening procedures 410 

(Plassmann et al., 2015) can be referenced with additional sample preparation 411 

procedures. For example, the quick, easy, cheap, rugged, and safe preparation method 412 

can be used to extract compounds covering a broad domain for GC or LC–MS analysis 413 

(Perestrelo et al., 2019). To extend the suspected unknown list, the ENTACT has 414 

attempted to advance xenobiotic chemical analysis in environmental and biological 415 

media by using the ToxCast library of chemical substances, DSSTox database, and 416 

CompTox Chemicals Dashboard (Ulrich et al., 2019). However, free reactive chemicals 417 

and their metabolites may only account for the small fractions of these pollutants, and 418 

most of them should have been biologically transformed. Thus, the pollutant dependent 419 

screening may only be suitable for the small subclasses of POPs. 420 

 421 

Screening strategies for biologically transformed environmental chemicals 422 

For reactive chemical pollutants, the metabolism biological basis involves 423 

converting lipid-soluble, non-polar, and non-excretive forms to water-soluble and polar 424 

forms that are excretive in bile and urine. Their metabolites may exist in free forms (by 425 

exposing or adding functional groups) or in conjugated forms (to large water-soluble 426 

and charged endogenous molecules), all of which are ready for excretion via urine, and 427 

their urinary concentration can indicate acute exposure. Certain fractions may also form 428 

adducts with DNA and proteins and exist in the blood circulation; their half-lives 429 

communicate the related macromolecule degradation and can therefore indicate certain 430 

chronic exposure types. The identification of a reactive chemical that 431 

adducts/conjugates to an endogenous biomolecule can be assisted by using in-molecule 432 

diagnostic features (i.e., the endogenous sub-structures) (Plassmann et al., 2015).  433 

Urinary sub-exposome of conjugates: Xenobiotic reactions primarily occur in the 434 

liver (hepatocytes) and occur less frequently in the kidney (proximal tubular cells), 435 

lungs (Clara cells and alveolar cells), intestines (mucosa lining cells), skin (epithelial 436 

cells), and testes (seminiferous tubules and Sertolis cells). Molecular sub-exposome of 437 

urinary metabolites of the four major phase II metabolism conjugations (glucuronic acid, 438 

sulfate, glutathione, and acetyl) can be separately profiled, where the sulfates, 439 

glucuronide, acetyl, and mercapturic acids (Frigerio et al., 2020; Yao et al., 2016) may 440 

be used as in-molecule flagging features for the systemic unknown screening, 441 

respectively. In addition, the human metabolome (Walker et al., 2019) and related 442 



databases can be used to aid the screening process. Because of the mass spectral 443 

acquisition in parallel modes cycles back and forth, where the MS1 of the full scan with 444 

ultrahigh resolving power (such as RP = 120,000, mass accuracy ≤3 ppm) and the MS2 445 

with in-source fragmentation flagging scans to flag the suspected target retention times 446 

using diagnostic fragments, the lower xenobiotic concentrations can be theoretically 447 

addressed. However, challenges remain for computation-based chemical identification 448 

(Bocker and Duhrkop, 2016; Dührkop et al., 2013; Hufsky et al., 2014; Ruttkies et al., 449 

2016; Scheubert et al., 2013). 450 

Sub-exposome of adducts: When the reacted xenobiotic species are trapped by 451 

macromolecules in the targeting tissue or circulation system, reactions can occur at the 452 

genome or proteome scale. To improve the analytical efficiency, protein and DNA 453 

sample preparation and purification can be applied before their digestion. Similar 454 

platforms in metabolome analysis can then be used for adducts. LC−MSn-based DNA 455 

adductomic investigations can utilize a common structural feature of 456 

deoxyribonucleosides, in which a deoxyribose moiety bound to the nucleobase through 457 

a glycosidic bond (Balbo et al., 2014). The DIA wide selective ion monitoring/MS2 458 

methodology (Guo et al., 2017) with HRMS can detect many DNA adducts through 459 

non-targeted screening and computational data analysis. Reactive organic pollutants 460 

most often bind covalently through their electrophilic properties to react with proteins 461 

when they are trapped by circulating proteins (Li et al., 2011b), in which the 462 

nucleophilic protein sites added to electrophilic toxicants. Many reactions can be 463 

observed in hemoglobin and HSA or toxic-targeting DNA (Kanaly et al., 2006). An 464 

adductomic strategy can then be directly applied for the suspected xenobiotic 465 

biomonitoring. For proteins and nucleic acids that are biologically degraded, the 466 

embedding xenobiotics may be measured as metabolites along with metabolome scale 467 

reactive chemicals (Li et al., 2011a; Ma and Subramanian, 2006).  468 

Circulating antigene-antibody complexes may serve as another sub-exposome 469 

protein pool for reactive chemicals. The innate and adaptive immune systems have been 470 

developed by living organisms to protect them from “outside” viruses, bacteria, and 471 

parasites. Thus, “outside” chemicals can be translated into innate immune system 472 

activation, which may be the consequence of different key steps that allow dendritic 473 

cells (DCs) to initiate immune system adaptation (Association, 2017). The human 474 

immune system is highly reactive to the environment, and 80% of the measured 475 

immunological parameters are affected by the environment (≥50% variance) (Brodin et 476 

al., 2015). Many environmental chemicals, acting as haptens, can bind to HSA and 477 

cause the immune system to misidentify self-tissue as an invader and launch an immune 478 

response against it (autoimmunity) (Vojdani et al., 2015). Apart from the liver and other 479 

metabolic organs, innate immune cells such as monocytes, macrophages, dendritic cells, 480 

and polymorphonuclear cells play a fundamental role in xenobiotic metabolism. 481 

Xenobiotic metabolic conversion was observed in dermal Langerhans cells (immature 482 

DCs), containing cytochrome P4501A (CYP1A) enzymes. After conversion by the 483 

CYP1A enzyme, xenobiotics form a complex with self-proteins, which are processed 484 

and presented as major histocompatibility complex class I and class II molecules. The 485 

xenobiotic–protein complex presented by antigen-presenting cells is subsequently 486 



recognized by T cells, which help B cells with antibody production. The conjugation of 487 

xenobiotics to self-proteins makes them highly immunogenic and therefore elicits the 488 

production of anti-xenobiotic antibodies, which play a physiological role in clearing 489 

xenobiotics from the body (Association, 2017; Sajid and Agrewala, 2019).  490 

Many heavy metal pollutants such as mercury, nickel, and cobalt can react with 491 

oxidized proteins to form protein metal chelate complexes (Sajid and Agrewala, 2019). 492 

These xenobiotics may be indirectly measured via antigen-antibody complexes, which 493 

are multi-molecular complexes that are typically stabilized via the reversible interaction 494 

of static electricity, hydrogen bonds, or the van der Waals force. These small pollutants 495 

directly bind to self-proteins or bind indirectly after hepatic or extrahepatic conversion 496 

from prohaptens to haptens, generating hapten-protein adducts (Sajid and Agrewala, 497 

2019). When comparing free HSA, circulating antigen-antibody complexes (Sharma et 498 

al., 2017; Medda et al., 2016), such as the aflatoxin-HSA adduct, which can elevate IgG 499 

and/or IgM (Vojdani et al., 2003), may be concentrated, and xenobiotic pooling should 500 

be investigated through immunoprecipitation using HRMS. For example, MS methods 501 

revealed that an extreme sensitizer 2,4-dinitro-1-chlorobenzene, and 502 

methylchloroisothiazolinone modified a greater number of nucleophilic HSA sites than 503 

the moderate sensitizer cinnamaldehyde. However, the weak/non-sensitizer 6-methyl 504 

coumarin was restricted to a single nucleophilic residue within HAS (Esser and Martin, 505 

2017). 506 

 507 

In summary, the metabolome encompasses all exposure burden information and 508 

exhibits greater potential to generate data to enhance exposure assessment regarding 509 

exposomics than that of any other omics research. In addition, lifetime dimensional 510 

information can be obtained by repeatedly measuring ethically available life-staged 511 

blood and urine. From the human bio-monitoring perspective, these biological samples 512 

have convened all possible global postnatal information on the investigated population, 513 

including chemical exposure, biological response, and the potential linkage to a defined 514 

health outcome. Regarding maternal blood and urine during pregnancy, partly attributed 515 

‘prenatal’ exposure cord blood, placenta, and meconium may ethically be available to 516 

characterize fetal prenatal conditions. Finally, the metabolome is useful for conducting 517 

biology-based estimates of individual and public health risks.  518 
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