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a b s t r a c t 

Humans are highly attuned to patterns in the environment. This ability to detect environmental patterns, referred 

to as statistical learning, plays a key role in many diverse aspects of cognition. However, the spatiotemporal neural 

mechanisms underlying implicit statistical learning, and how these mechanisms may relate or give rise to explicit 

learning, remain poorly understood. In the present study, we investigated these different aspects of statistical 

learning by using an auditory nonlinguistic statistical learning paradigm combined with magnetoencephalog- 

raphy. Twenty-four healthy volunteers were exposed to structured and random tone sequences, and statistical 

learning was quantified by neural entrainment. Already early during exposure, participants showed strong en- 

trainment to the embedded tone patterns. A significant increase in entrainment over exposure was detected only 

in the structured condition, reflecting the trajectory of learning. While source reconstruction revealed a wide 

range of brain areas involved in this process, entrainment in areas around the left pre-central gyrus as well as 

right temporo-frontal areas significantly predicted behavioral performance. Sensor level results confirmed this 

relationship between neural entrainment and subsequent explicit knowledge. These results give insights into the 

dynamic relation between neural entrainment and explicit learning of triplet structures, suggesting that these two 

aspects are systematically related yet dissociable. Neural entrainment reflects robust, implicit learning of under- 

lying patterns, whereas the emergence of explicit knowledge, likely built on the implicit encoding of structure, 

varies across individuals and may depend on factors such as sufficient exposure time and attention. 
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. Introduction 

Living in a dynamically changing environment, humans and other

nimals are highly attuned to structure in their surroundings. They are

ble to extract relevant patterns from their surroundings using a pro-

ess called statistical learning ( Saffran et al., 1996a ). Statistical learn-

ng is defined as the ability to extract the statistical properties of sen-

ory input across time or space, and occurs automatically, incidentally

nd through mere passive exposure to the input (e.g. Frost et al., 2015 ;

chapiro and Turk-Browne, 2015 ; Siegelman et al., 2018a ). The first ex-

eriment on statistical learning demonstrated that infants were able to
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xtract embedded patterns from a continuous stream of speech by be-

oming sensitive to the transitional probabilities between neighboring

yllables ( Saffran et al., 1996a ). This finding suggested that statistical

earning plays an important role in language acquisition, and spurred a

arge body of additional work in this area, not only in developmental

opulations (e.g. Benitez et al., 2020 ; Fló et al., 2019 ; Pelucchi et al.,

009 ), but also in adults (e.g. Batterink and Paller, 2017 ; Cunillera et al.,

009 ; Saffran et al., 1996b ). Importantly, many subsequent studies have

hown that statistical learning is not restricted to language, but also oc-

urs to nonlinguistic auditory (e.g. Gebhart et al., 2009 ; Saffran et al.,

999 ), visual (e.g. Bulf et al., 2011 ; Turk-Browne et al., 2005 ) and cross-

odal stimuli (e.g. Cunillera et al., 2010 ; Paraskevopoulos et al., 2018 ).
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One key benefit of using nonlinguistic stimuli to investigate statis-

ical learning in the auditory domain is that it can be assumed that

earners are “blank slates, ” with learning not heavily influenced by prior

nowledge. In a recent study, Siegelman and colleagues (2018b ) demon-

trated that statistical learning to linguistic stimuli (i.e., syllables) is

trongly shaped by learners’ existing phonotactic knowledge and ex-

ectations about the input. To demonstrate this, they measured inter-

al item consistency on one linguistic and two nonlinguistic (auditory

nd visual) statistical learning tasks. Results for items in the nonlin-

uistic tasks were highly correlated, while the linguistic task had a

ow internal item consistency ( Siegelman et al., 2018b ). Additionally,

heir experiments showed a strong within-subject correlation in perfor-

ance in the two nonlinguistic tasks. This correlation across modali-

ies was not present for a visual and a linguistic statistical learning task

 Siegelman and Frost, 2015 ). These results suggest that basic, domain-

eneral, statistical learning computations may be tested most reliably

sing stimuli that do not strongly invoke prior knowledge. 

Statistical learning has many similarities to implicit learning , which is

efined as “the capacity to learn without awareness of the products of

earning ” ( Frensch and Rünger, 2003 , p. 14). According to this view,

mplicit learning produces implicit knowledge – knowledge that can

e expressed via a change in task performance, without requiring con-

cious retrieval. In contrast, explicit knowledge is accompanied by the

wareness of memory retrieval, as assessed via recall and recognition

asks ( Gabrieli, 1998 ; Schacter, 1987 ; Squire, 1987 ). Statistical learn-

ng can occur entirely implicitly. For example, even when learners fail

o demonstrate explicit knowledge of the learned regularities, learning

an be expressed on a performance-based task, as revealed by faster

eaction times to more predictable elements ( Batterink et al., 2015b ).

imilarly, using neuroimaging methods such as fMRI and MEG, neural

vidence of learning has been observed even in the absence of above-

hance recognition of the embedded regularities ( Paraskevopoulos et al.,

012 ; Turk-Browne et al., 2009 ). Nonetheless, at least in adult learn-

rs, statistical learning is usually accompanied by explicit knowledge;

hat is, implicit and explicit knowledge may be accrued in parallel

 Batterink et al., 2015a ). In fact, the classic approach to studying statis-

ical learning fundamentally relies on participants’ ability to explicitly

ecognize embedded regularities (e.g. Gebhart et al., 2009 ; Saffran et al.,

997 ; Saffran et al., 1996b ). In this typical approach, participants are

xposed to a stream of structured stimuli, and then complete a two alter-

ative forced choice (2AFC) task, discriminating items from the stream

nd random items. Above-chance performance on this task is taken as

vidence that statistical learning has occurred. 

However, while behavioral discrimination measures provide a one-

ime snapshot of learners’ knowledge after the learning process, they

eglect the temporal dynamics of learning that is, the same level of

erformance on these tasks can originate from completely different

earning trajectories ( Siegelman et al., 2018a ). In contrast, methods

hat involve monitoring during the learning period have been argued

o provide a more complete picture of statistical learning. At the behav-

oral level, reaction time approaches can be used for such monitoring

 Siegelman et al., 2018a ). The use of neuroimaging methods to capture

tatistical learning is a possibly even more advantageous approach as

uch methods can track learning processes without the requirement of

n overt behavioral task, and can also shed light on the neural mecha-

isms and neural structures involved in learning. 

Both Electroencephalography (EEG) and Magnetoencephalography

MEG) have been used to track statistical learning during the learn-

ng period. A common neural marker in this context is the event-

elated N400 component, which shows an increase in amplitude dur-

ng exposure to an artificial language compared to a random sylla-

le stream ( Cunillera et al., 2009 ; 2006 ). Another example is the

ismatch negativity, which is elicited by stimuli with a low prob-

bility of occurrence, even when presented outside the focus of at-

ention (e.g. Koelsch et al., 2016 ; Tsogli et al., 2019 ). Using MEG,

araskevopoulos et al. (2012) demonstrated a mismatch response to
2 
art-triplets compared to triplets during exposure to a statistically reg-

lar stream, as early as 50ms after stimulus onset, even though par-

icipants’ post-exposure recognition was at chance level. This finding

uggests that neural measures can be more sensitive indices of learning

han post-exposure behavioral measures (see also Turk-Browne et al.,

009 ). 

Another effective approach, which has a high signal-to-noise ratio

nd is especially well-suited to capturing the neural response to a con-

inuous sensory stream, involves the measurement of neural entrainment .

eural entrainment refers to a property of the electromagnetic activity

f the brain to resonate at the same frequency as an ongoing rhythmic

timulus. This neural response can be quantified by either investigating

hanges in the power (e.g. Buiatti et al., 2009 ; Farthouat et al., 2017 )

r inter-trial-phase coherence (ITC; e.g. Batterink and Paller, 2017 ) at

he frequency of the stimulus and of larger embedded patterns in a sta-

istical learning stream. Studies using this approach have demonstrated

hat neural entrainment to hidden patterns increases over the exposure

eriod ( Batterink and Paller, 2019 ; 2017 ) and also predicts performance

n post-exposure behavioral tests ( Batterink and Paller, 2019 ; 2017 ;

uiatti et al., 2009 ; Choi et al., 2020 ). Taken together, these results sug-

est that neural entrainment reflects the successful perceptual grouping

f raw stimulus elements into cohesive units, which occurs as a conse-

uence of statistical learning (e.g., syllables into words). Importantly,

uch methods allow for the quantification of statistical learning during

he acquisition process, independent of participants’ later behavioral re-

ponses. 

In addition to shedding light on the time course of learning

 Batterink and Paller, 2019 ; 2017 ), neuroimaging studies have also re-

ealed which areas in the brain are active during statistical learning

asks. Previous studies using functional magnetic resonance imaging

fMRI) and functional near infrared spectroscopy (fNIRS) have yielded

ixed results. While most authors agree on the importance of the

uperior temporal cortex in statistical learning, other findings impli-

ate the premotor cortex ( Cunillera et al., 2009 ), the inferior frontal

ortex ( Abla and Okanoya, 2008 ; Karuza et al., 2013 ), or the supra-

arginal gyrus ( McNealy et al., 2006 ). However, because fMRI and

NIRS rely on indirect measurement of neural activity (through blood

xygenation levels), these methods cannot directly capture the time-

ocking of neural activity to patterns in a sensory stream, as reflected

y neural entrainment. To gain both temporal and spatial information,

arthouat et al. (2017) used MEG to assess nonlinguistic auditory statis-

ical learning, presenting embedded tone triplets in a continuous stream.

hey detected an increase of power at the frequency of tone triplets from

he third minute of exposure on, and were able to reconstruct this in-

rease to the left posterior temporal sulcus and supplementary motor

rea. Nevertheless, participants’ behavioral responses in a 2AFC task

ere at chance level, precluding a direct link between neural responses

nd behavioral measures of learning ( Farthouat et al., 2017 ). 

These results, which include traditional recognition as well as neu-

oimaging measures, collectively highlight two important components

f statistical learning: (1) the dynamic learning trajectory, which may

ccur even in the absence of explicit knowledge, and which can be re-

ealed through sensitive neural measures and (2) explicit knowledge

f the learned regularities, which seems to be present in some studies

or some participants) but not in others. Insight into how these two

omponents are related is key to gaining a deeper understanding of the

nderlying dynamics and neural mechanisms of statistical learning. To

his end, some previous studies have attempted to link neural responses

ith subsequent explicit knowledge. For example, in a linguistic statis-

ical learning task, Karuza et al. (2013) showed that neural activation

n the left inferior frontal gyrus was related to participants’ explicit rat-

ngs of words versus part-words. Similarly, Abla et al. (2008) reported

hat N400 amplitudes elicited by the first tone of a tone-triplet were

ighest within the first ~7 min of exposure in participants classified

s high learners based on 2AFC performance, compared to middle and

ow learners. In addition, as mentioned previously, several studies have
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Fig. 1. Summary of the experimental protocol. A) Auditory stimulation and hy- 

pothesized neural entrainment effects, as measured by MEG. The notes represent 

the different tones, the black sine waves show the frequency of tone presenta- 

tion and the grey sine wave shows the frequency of triplets. If statistical learning 

of the underlying triplets occurs in the structured condition, stronger neural en- 

trainment at the triplet frequency (grey dotted line) is expected relative to the 

random condition. B) Rating task performed after the exposure phase in the 

structured condition. Four triplets, four part-triplets and four non-triplets were 

rated on a scale from 1 (very unfamiliar) to 4 (very familiar). C) Target detection 

task performed after the rating task. Participants were presented with a target 

tone, which occurred four times within a stream of 16 triplets. Detection was 

indicated by a button press, and reaction time was measured. 
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ound a positive association between neural entrainment during learn-

ng and subsequent performance on behavioral statistical learning tests

 Batterink and Paller, 2019 ; 2017 ; Buiatti et al., 2009 ; Choi et al., 2020 ).

In the current study, we combined the strengths of multiple ap-

roaches in order to investigate statistical learning over time and space,

nd its reflection in behavior. We used a nonlinguistic task that is less

ikely to be influenced by learners’ prior knowledge. During exposure,

e used MEG to monitor participants’ statistical learning to embedded

riplet sequences, which provides sufficient temporal resolution to mea-

ure neural entrainment, and additionally allows us to examine the neu-

al sources that are most relevant for this entrainment. Neural entrain-

ent was quantified via the comparison of ITC at the triplet and tone fre-

uencies between two stimulation conditions, in which tones were orga-

ized in repeating triplets, or in pseudorandomized order ( Batterink and

aller, 2019 ; 2017 ). If statistical learning is present, we expect ITC

t the triplet frequency to be higher in the structured condition com-

ared to the random condition, reflecting stronger neural phase-locking

o the embedded triplets in the structured condition. In addition, this

hase-locking value at the triplet frequency is expected to increase over

he course of the exposure period, reflecting the progression of learn-

ng ( Batterink and Paller, 2019 ). Furthermore, we aimed to elucidate

he neural sources of the neural entrainment, providing further insight

nto the core substrates of statistical learning. We expected the supe-

ior temporal cortex to be the major hub ( Abla and Okanoya, 2008 ;

unillera et al., 2009 ; McNealy et al., 2006 ). 

After exposure, we tested participants’ learning of the tone triplets

t the behavioral level by using a familiarity rating task, which is sen-

itive to explicit knowledge, and a speeded response time task, which

ssesses reaction times to individual tones presented in different posi-

ions within the triplets and captures implicit knowledge of the learned

egularities ( Batterink et al., 2015a ). We expected triplets to be rated as

ost familiar and reaction times to tones that occurred in later triplet

ositions to be faster as a result of increased predictability ( Batterink and

aller, 2017 ), providing behavioral evidence of statistical learning. 

Lastly, we explored relations between performance in the behavioral

asks and neural entrainment. We incorporated results at both the sensor

nd source level across different phases of exposure to gain insight into

he relationship between neural entrainment, the progression of learn-

ng, and explicit knowledge. We hypothesized that stronger neural en-

rainment to tone triplets should predict better behavioral performance

n the post-learning tests. 

. Material and methods 

.1. Participants 

Participants were 24 healthy volunteers (12 male) between 20 and

7 years old (mean age 27.54 years, SD = 9.96). All participants were

ight handed and had normal hearing abilities. Ten out of the 24 partic-

pants had no formal musical education (outside of lessons in school).

ourteen participants reported formal musical education, ranging from

-16 years (M = 8; SD = 3.9). They received 10 € per hour for their

articipation. The local ethics committee of the Medical Faculty of the

niversity of Tübingen approved the study (No. 231/2018BO1). 

.2. Materials and design 

Auditory stimulation consisted of 12 pure sinusoidal tones between

61.63 and 932.33Hz. The 12 tones corresponded to notes C, D,

, F#, G# and A# from the 4th and 5th octave of a standard pi-

no (261.63Hz, 293.66Hz, 329.63Hz, 369.99Hz, 415.3Hz, 466.16Hz,

23.25Hz, 587.33Hz, 659.26Hz, 739.99Hz, 830.61Hz, 932.33Hz).The

ones were organized into two different types of sequences, one so-

alled “structured ” condition and one “random ” condition ( Figure 1 ).

n both conditions, the 12 tones were grouped into triplets composed

f three tones that never spanned more than one octave, allowing for
3 
etter perceptibility. The structured condition consisted of only four

riplets, which repeated over the course of exposure. In contrast, in the

andom condition, composition of the individual triplets changed con-

tantly throughout the exposure block, resulting in a pseudo-random

tream of tones. The random condition was composed of ever-changing

riplets in order to better equate acoustic similarity in both the struc-

ured and random conditions. In both conditions, the triplets were pre-

ented in pseudorandom order, with the constraint that neither the same

one, nor the same triplet, could repeat consecutively. Within the struc-

ured condition, to control for a possible effect of the position of each

ndividual tone within a triplet, three different structured sequences

ere created and presented counterbalanced across participants. Across

he three counterbalanced sequences, tones within the triplets were the

ame but each tone occurred in a different triplet position (first, second

r third; e.g. C-F#-E, E-F#-C and F#-C-E). In both conditions, each tone

ccurred an equal number of times. Each sequence consisted of 2400

ones. Tones had a duration of 300 ms and were presented every 333

s (i.e., with an inter-tone interval of 33 ms), yielding a total duration

f 13.32 minutes per stimulation block. 

Following the exposure phase, participants performed two behav-

oral tasks, designed to measure explicit and implicit aspects of statisti-

al learning of the structured sequence (cf. Batterink and Paller, 2017 ).

n the explicit rating task, participants were asked to rate 12 items for

amiliarity on a scale from 1 (very unfamiliar) to 4 (very familiar). Four

f the items were triplets that were previously presented in the struc-

ured condition, four were part-triplets that consisted of a pair of tones

rom one of the triplets and a third tone that did not belong to the triplet,

nd four were non-triplets that were never presented in the structured

lock. In the implicit target detection task, participants were asked to

etect target tones that occurred within short tone sequences that fol-

owed the same triplet structure as the original structured stimulation

lock. For each trial, participants were presented with a target tone,

ollowed by a short stream of tones. Each stream consisted of four repe-

itions of the four tone triplets from the structured condition (presented

ith a slightly longer inter-tone interval of 66 ms to facilitate the task),

ielding a total of four targets per stream. A total of 36 streams were

resented, with each tone serving as the target three times (48 tones per
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riplet position). Target detection was indicated by a button press, with

oth speed and accuracy emphasized in the instructions. 

.3. Procedure 

Data were recorded using a 275-sensor, whole-head MEG system

VSM Medtech, Port Coquitlam, Canada) installed in a magnetically

hielded room (Vakuumschmelze, Hanau, Germany). Auditory stimu-

ation was produced by a loudspeaker outside of the shielded room and

onducted through tubes into the shielded room. Tones were presented

hrough earplugs connected to the tubes at an intensity of 70dB. 

After arrival at the MEG laboratory, participants were fully informed

bout the experimental procedure and signed a consent form to con-

rm their voluntary participation. They filled out a short questionnaire,

nd completed a short hearing assessment with a screening audiometer

Hortmann Neuro-Otometrie Selector 20 K) to confirm normal hearing.

articipants then changed into metal-free clothes. They were seated in

 height-adjustable chair and instructed to fixate on a cross displayed

n front of them during the whole recording. Participants were told that

hey would hear sounds through their earplugs, but that they had no

articular task to perform related to those sounds. The MEG signal was

ecorded continuously, with a sampling rate of 585.94Hz. 

During the exposure phase, participants listened to the random con-

ition first, followed by the structured condition. We made the decision

o consistently present the random condition first because we did not

ant participants to transfer or apply knowledge and expectations ac-

rued during the structured block to the random block. The selected

rder thus avoids the possibility that participants may superimpose a

riplet parsing scheme or otherwise explicitly search for patterns in the

andom condition. Two short breaks were included within each expo-

ure block. After both exposure blocks, participants performed the rat-

ng task, followed by the target detection task. The target detection task

as preceded by a short practice trial, with syllables rather than tones,

o familiarize participants with the task. Both behavioral tasks were per-

ormed in the MEG chair to keep the environment consistent, but MEG

as not recorded during these tasks. Finally, after both tasks were com-

leted, participants were asked whether they heard any difference be-

ween the two exposure blocks. 

.4. Data analysis 

For analysis of the MEG data, MATLAB version 2016b (The Math-

orks, Natick, MA) and the MATLAB-based open-source software pack-

ge Fieldtrip ( Oostenveld et al., 2011 ) were used. 

.4.1. Preprocessing 

MEG data were band-pass filtered between 0.1-30Hz. Channels con-

aining a high level of noise (overall root mean square (RMS) > 1 pT or

o signal (overall RMS of 0.01 aT) were removed. For the main analysis

f neural entrainment across the exposure period, data were time-locked

o the onset of each triplet and extracted into nonoverlapping epochs

ontaining 12 triplets (12000 ms; cf. Batterink and Paller, 2017 ). This

rocess led to a total of 64 epochs for evaluation (800 triplets formed

y the 2400 stimuli, resulting in 67 epochs with 12 triplets, excluding 1

partial ” epoch near the end of each part of a stimulation block to ensure

n equal epoch length of 12000 ms). Epochs were corrected for a 32 ms

ound output delay, and epochs containing artifacts with an amplitude

ver 4 pT were removed. This led to an average of 58.77 remaining

pochs (SD = 7.89). For the more fine-grained analysis of entrainment

ver time, data were extracted into epochs overlapping for 11/12 of

heir length in order to increase temporal resolution (cf. Batterink and

aller, 2017 ). This process led to a total of 766 epochs for evaluation

800 triplets formed by the 2400 stimuli, resulting in 799 overlapping

pochs, excluding 11 epochs per block near the end of each part of a

timulation block to ensure an equal epoch length of 12000 ms). After

rtifact rejection, an average of 703.19 epochs remained (SD = 94.83). 
4 
.4.2. Computation of inter-trial phase coherence (ITC) 

We quantified overall neural entrainment across frequencies and

cross the exposure period by computing ITC across the nonoverlap-

ing epochs. ITC is a measure of event-related phase-locking, with ITC

alues ranging from 1, reflecting completely phase-locked activity, to

, indicating activity that is completely phase random with respect to

he event of interest. Higher ITC values indicate more consistency in

he phase of the signal across individual trials (in our case, epochs time-

ocked to triplet onsets). To the extent that statistical learning occurs,

e expected to observe higher phase-locking at the triplet frequency,

eflecting greater neural entrainment to the underlying triplet structure

 Fig. 1 ). ITC was computed using a fast Fourier transform with Hanning

indows. 

To analyze the temporal trajectory of neural entrainment in a fine-

rained way, as a neural index of learning over time, we computed ITC

alues on “bundles ” of 12 consecutive overlapping epochs (e.g., overlap-

ing epochs 1-12, 13-24, 25-36, …755-766). As ITC values show greater

uctuation when computed over fewer trials, the resulting time course

as smoothed over 5 bundles and the first and last bundle were omit-

ed. This resulted in 61 bundles that represent the time course of ITC

ver the whole recording. For some participants, epochs were removed

uring artifact rejection reducing the total number of bundles. In this

ase, the participant’s remaining bundles were classified according to

he closest temporal bundle position relative to the group average. Note

hat the use of overlapping epochs for this bundle analysis artificially

ncreases the ITC values at the frequency of the overlap (in this case, at

he triplet frequency), because the same data at this frequency occurs

eriodically and is considered repeatedly in calculations. Although this

rtifactual increase at the overlap frequency can complicate interpreta-

ion when computing ITC across frequencies, our time course analysis

onsiders changes in ITC across time within a given frequency. Because

his inflation is equally present across all bundles, the artifact does not

ffect the interpretation of ITC trajectories over time. We thus use over-

apping epochs, rather than nonoverlapping epochs, for this analysis in

rder to increase the resolution of our temporal sampling, allowing for

 more fine-grained analysis of the trajectory of learning over time. 

.4.3. Source localization 

To examine neural entrainment effects at the source level, we used

he Dynamic Imaging of Coherent Sources (DICS) approach ( Gross et al.,

001 ). In this approach, we created a surrogate signal, consisting of the

ombination of a 3Hz (tone frequency) and 1Hz (triplet frequency) si-

usoidal and added it as an extra channel to the data. This allowed us

o calculate coherence of the MEG signal with the tone and the triplet

requencies at the source level. A fast Fourier transform was calculated

o obtain data in the frequency domain, which was then used as in-

ut for the DICS source analysis model. A common spatial filter for

he structured and random conditions was calculated on the appended

ata to make conditions comparable. To project the source data, we

sed the ‘fsaverage’ brain, which is an average brain mesh provided by

reesurfer ( Dale et al., 2012 ; Fischl et al., 1999 ), as a template brain and

sed SUMA ( Saad and Reynolds, 2012 ) processing to obtain a decimated

tandard white/gray matter boundary mesh from which we could cal-

ulate a volume conduction head model with the ‘single shell’ method

 Nolte, 2003 ). The MEG data were coregistered to the template head via

he three fiducial points (nasion, left and right preauricular points). We

btained 2004 cortical surface vertices that were further used as MEG

ources (cf. Li Hegner et al., 2018 ). For naming detected brain areas, we

sed the Destrieux et al. (2010) atlas. 

.4.4. Statistical testing 

Statistical tests were performed using R (R Core Team, 2019 ) and

PSS (IBM, 2017). 

For the rating task, familiarity ratings were analyzed using a

epeated-measures ANOVA with category (Triplet, Part-Triplet, Non-

riplet) as a within-participant factor. A linear contrast was used to
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est whether familiarity ratings decreased linearly across the three cat-

gories. Following previous studies ( Batterink and Paller, 2019 ; 2017 ),

 “rating score ” was calculated for each participant, by subtracting the

verage score given for part-triplets and non-triplets from the average

core given for triplets. 

For the target detection task, for each participant, mean reaction

imes to detected targets were calculated within each triplet position

first, second, and third). Responses that did not occur within 0-1200 ms

f a target were considered to be false alarms. The number of correctly

etected tones and false alarms was quantified within each participant

o get an estimate of task performance. To examine the hypothesis that

eaction times should decrease linearly as a function of triplet position,

eaction times were analyzed using a repeated-measures ANOVA with

riplet position (initial, medial, final) as a within-participants factor, us-

ng a linear contrast. In an exploratory step, number of misses were

ompared in the same fashion. 

At the sensor level, the interaction between condition (structured,

andom) and frequency (tone, triplet) was modeled with a mixed model

n R (lme4; Bates et al., 2015 ), with ITC value as dependent variable

nd the two aforementioned predictors (condition, frequency). Partic-

pant was modeled as random intercept and the model was tested for

ignificance with a type II ANOVA (lmerTest; Kuznetsova et al., 2017 ).

ollow up analysis on ITC differences between conditions (structured

ersus random) at the triplet and tone frequencies were tested with a

wo-sided student t-test. Development of ITC over time was tested in an

nitial mixed effects model using ITC values within each bundle as the

ependent variable. Predictors included condition (structured, random),

ensor location (frontal, central, parietal, occipital, right temporal, left

emporal), bundle number (as continuous predictor) and the full facto-

ial interactions between these factors. Participant intercept was mod-

lled as a random effect. Upon significant interactions with condition,

ost-hoc follow up analyses were conducted within each condition and

actor of interest to characterize the time course of ITC over time. At the

ource level, statistical tests were performed in MATLAB with a cluster

ased permutation test ( Maris and Oostenveld, 2007 ). 

At the sensor level, relations between ITC and the rating score were

xplored with a stepwise multiple linear regression model, with the

our key ITC variables (triplet frequency-structured, triplet frequency-

andom, tone frequency-structured, tone frequency-random) as predic-

ors and rating score as the dependent measure. This analysis indicates

hich ITC variable(s) best predict the rating score, while removing vari-

bles that do not significantly contribute to the model. In the case of

 significant model, we further explored the separate contribution of

ach ITC variable by calculating the Pearson’s correlation between each

TC variable and the rating score. At the source level, relations between

riplet coherence and rating score were explored using the same type of

odel, with rating score and brain region (cluster) as predictors. Sim-

le relations between triplet coherence in individual clusters and rating

core were explored using Pearson correlations. To test whether the re-

ation between the rating score and ITC differences between conditions

trengthened or weakened over time, we computed the correlation val-

es between the rating score and the ITC difference value (structured-

andom) at the triplet and tone frequency within each bundle. This pro-

uced an array of correlation values across time for each frequency (tone

nd triplet). A linear model with the correlation values as the dependent

easure and time, frequency and their interaction as predictor variables

as used to characterize the development of correlation values across

ime. As a follow-up, we also tested whether these values across time

within each frequency) showed a significant linear increase or decrease

y using Pearson correlations. 

Significance values were set to p < 0.05. To account for the risk of

alse positives due to multiple comparisons, the source level analysis

sed a cluster-based correction with a cluster threshold at 𝛼= 0.025, as

he test was two-sided. For the bundle-by-bundle analysis of differences

etween conditions and the follow-up analyses regarding the relations

etween neural entrainment and behavior, significance values were ad-
5 
usted with the Benjamini-Hochberg false discovery rate (FDR) proce-

ure. 

. Results 

.1. Behavioral results 

In a subjective report after the experiment, 7 out of 24 participants

eported that they did not hear any difference between the two condi-

ions. 

In the rating task, participants rated triplets (M = 3.07, standard

rror (SE) = 0.13) as more familiar compared to part-triplets (M = 2.91,

E = 0.12) and scrambled non-triplets (M = 2.79, SE = 0.12), as reflected

y a significant linear effect (F(1,23) = 4.64, p = 0.042, 𝜂p 
2 = 0.17). The

est for a category effect was only marginal (F(2,46) = 2.79, p = 0.075,

p 
2 = 0.11), showing that the effect of category on familiarity is small in

agnitude for non-linguistic stimuli. The rating score was significantly

bove zero, providing evidence of above-chance learning (M = 0.23,

E = 0.10, 95% CI = 0.0089 – 0.44, t(23) = 2.15, p = 0.042). 

In the target detection task, no significant effect of triplet position

n reaction times was found (Triplet Position Effect: F(2,46) = 0.78,

 = 0.44 𝜂p 
2 = 0.033; linear contrast: F(1,23) = 0.64, p = 0.43,

p 
2 = 0.027). There was a significant effect of triplet position on ac-

uracy, such that the number of misses (out of 48) increased with later

riplet positions (Position Effect: F(2,46) = 16.2, p < 0.001, 𝜂p 
2 = 0.041;

inear effect: F(1,23) = 36.7, p < 0.001, 𝜂p 
2 = 0.062). However, this ef-

ect was unexpected and in the opposite-to-predicted direction. Overall,

articipants performed poorly on the task, detecting only 63% of tones,

ompared to the syllable version of the task where 83-89% accuracy

as been reported ( Batterink & Paller, 2017 , 2019 ). In addition, par-

icipants made an average of 102.5 false alarms (std = 49.4), which is

uch higher than in the linguistic version (~12-19 false alarms, using

he same total number of targets). Based on these results, we conclude

hat this version of target detection task, as implemented with tones

ather than syllables, was too difficult to reveal significant learning ef-

ects. In the subsequent correlation analyses with MEG neural entrain-

ent effects, only the rating score was used as a behavioral measure of

earning. 

.2. Neural entrainment at the sensor level 

Across the exposure period and averaged across all MEG chan-

els, ITC values showed a highly significant interaction between fre-

uency (tone versus triplet) and condition (structured versus random;

(1,69) = 7.05, p = 0.010, ŋ p 
2 = 0.09). Critically, follow-up analyses

howed that ITC at the triplet frequency was significantly higher in the

tructured compared to random condition (t(23) = 3.61, p FDR = 0.003,

 = 0.74; Fig. 2 A). ITC at the tone frequency did not differ significantly

etween conditions (t(23) = -1.68, p FDR = 0.106, d = -0.34). 

A fine-grained, bundle-by-bundle analysis of ITC at the triplet fre-

uency indicated that the time course of ITC differed significantly as

 function of condition, with ITC in the structured condition showing

 greater increase over time compared to the random condition (Con-

ition x Time: F(1, 2657) = 14.5, p < 0.001, fixed effect estimate of

nteraction term = 0. 000428, SE = 0. 000112). Within the structured

ondition, a significant overall increase in triplet-ITC was revealed as

he exposure period progressed (F(1,1332) = 4.69, p = 0.031; parame-

er estimate = 0.000164, SE = .000076). In contrast, within the random

ondition, a significant overall decrease in triplet-ITC was found as the

xposure period progressed (F(1,1303) = 13.6, p < 0.001, parameter

stimate = -0.000287, SE = 0.000078; Fig. 2 B). 

Next, we investigated whether these effects varied as a function of

ensor regions. The three-way interaction between time, region, and

ondition was not significant (F(5,15896) = 1.12, p = 0.35), suggest-

ng that the relative increase over time in the structured condition com-

ared to the random condition was similar across sensors. However, ITC
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Fig. 2. ITC differences between structured and random condition A) Inter-trial-coherence (ITC) at the whole brain level over the whole recording. Triplet frequency: 

1Hz, Tone frequency: 3Hz. A significant difference was found between the structured and random conditions at the triplet frequency ( ∗ p < 0.05). No difference was 

found at the tone frequency. B) Time course of ITC at the triplet frequency in the structured and random conditions, calculated in bundles over exposure time in 

minutes. Shaded areas represents 95% confidence interval of linear model; Black bars indicate time points at which the conditions significantly differed (34 out of 

61 time points; p < 0.05, FDR corrected). 
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howed significant differences in condition effects as a function of sensor

egion (Condition x Region: F(5,15896) = 2.25, p = 0.047), suggesting

hat overall condition effects were larger in some regions than others. 

A follow-up Time x Region analysis of the structured condition alone

eplicated the overall effect of time across all sensors (F(1, 8001) = 15.5,

 = 0.001, parameter estimate = 0.000166, SE = 0.000042). This in-

rease over time did not differ significantly across the sensor regions

Time x Region: F(5,8001) = 1.58, p = 0.16). Similarly, in the random

ondition, a significant overall decrease in triplet-ITC was found as the

xposure period progressed (F(1,7874) = 33.9, p < 0.001, parameter es-

imate = -0.000260, SE = 0.000045), which again did not differ across

ensor regions (F(7872) = 1.57, p = 0.17). In addition, when compared

irectly to the random condition, ITC in the structured condition showed

reater increases over time in each individual sensor region (all p val-

es < 0.001). In sum, the increase in ITC over time is specific to the

tructured condition, suggesting this increase reflects statistical learn-

ng, rather than any nonspecific effects of stimulation over time. 

To follow up on the significant Condition x Time interaction effect at

he triplet frequency (reported above, p < 0.001), we further explored

hen during exposure a significant condition effect emerged. The goal

f this analysis was to provide insight into the amount of exposure nec-

ssary for statistical learning to occur. For each of the 61 bundles, we

ested a mixed effects model that included condition (structured, ran-

om) as a predictor, with participant intercept modelled as a random

ffect. As shown in Fig. 2 B, a total of 34 out of 61 bundles showed sig-

ificantly greater ITC values in the structured condition relative to the

andom condition (p FDR < 0.05). Interestingly, significant condition dif-

erences were already apparent in the earliest bundles (bundles 2-4),

orresponding to the first ~1 min of exposure. This finding indicates

hat neural entrainment to the embedded triplets emerges very rapidly,

ossibly after just a few exposures to the regularities. 

.3. Neural entrainment at the source level 

Clusters showing significant differences between the structured and

andom conditions in coherence with the surrogate signal at the triplet

requency ( “triplet coherence ”) are shown in Fig. 3 . The largest cluster

pans over right temporo-frontal areas, including part of the superior

emporal gyrus, the supramarginal and subcentral gyrus as well as part

f the inferior frontal gyrus (cluster 1). On the left side, this homolo-

ous cluster is smaller, consisting of the superior temporal gyrus and

art of the supramarginal and subcentral gyrus (cluster 2). Addition-

lly, we found significant coherence differences between conditions in

he left precentral gyrus together with parts of the middle and superior
6 
rontal gyri, spanning towards the back to parts of the postcentral gyrus

nd superior parietal lobe (cluster 3) and in the right superior parietal

obe (cluster 4). Structured and random conditions did not show any sig-

ificant differences in coherence with the surrogate signal at the tone

requency ( “tone coherence ”). 

.4. Relationship between neural entrainment and behavior 

.4.1. Neural entrainment at the sensor level 

A stepwise regression model indicated that when all 4 key ITC vari-

bles were entered in the model, only triplet-ITC in the structured condi-

ion significantly predicted the rating score (F(1,22) = 11.25, p = 0.003,

 = 0.58; Fig. 4 A). When each of the 4 variables was considered in isola-

ion, tone-ITC in the structured condition as well as tone-ITC and triplet-

TC in the random condition showed a positive but non-significant re-

ation with the rating score (r(22) = 0.38, p FDR = 0.131; r(22) = 0.33,

 FDR = 0.160; r(22) = 0.12, p FDR = 0.573). 

To investigate how this relationship develops over time, for each

undle, we computed the correlation between rating score and the

TC difference between the structured and random condition at the

1) triplet frequency and (2) tone frequency. The development of

hese correlations over time significantly interacted with the frequency

F(1,118) = 4.41, p = 0.038, ŋ p 
2 = 0.04). At the triplet frequency, the

orrelation between rating score and ITC difference scores (structured

random) showed a tendency of increasing in strength (r(59) = 0.25,

 FDR = 0.101), whereas at the tone frequency this correlation seemed

o decease in strength (r(59) = -0.12, p FDR = 0.347; Fig. 4 B). However,

ollowing the significant interaction neither of these correlations did

eached significance. 

.4.2. Neural entrainment at the source level 

At the source level, the difference in triplet coherence between the

tructured and random conditions across all significant clusters (see

ection 3.3 ) strongly correlated with the rating score (r(22) = 0.56,

 = 0.004). A stepwise regression with all individual clusters entered

s predictors revealed that cluster 3 (left precentral and parietal re-

ions) mainly contributed to this correlation (F(1,22) = 2.14, p = 0.002,

 = 0.60). Follow-up tests of individual clusters revealed another sig-

ificant correlation in the right temporo-frontal cluster (r(22) = 0.53,

 FDR = 0.014; cluster 1), while the left temporal cluster showed a

arginally significant relationship with the rating score (r(22) = 0.39,

 FDR = 0.079; cluster 2) and the right superior parietal cluster had no

redictive value (r(22) = 0.24, p FDR = 0.260; cluster 4). 
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Fig. 3. Areas where triplet coherence signifi- 

cantly (cluster threshold 𝛼= 0.025) differed be- 

tween structured and random conditions. Color 

gradient represents difference between triplet 

coherence in structured-random condition. For 

naming detected brain areas, we used the 

Destrieux et al. (2010) atlas. 1) right hemi- 

sphere: part of the superior temporal gyrus, 

supramarginal and subcentral gyrus, part of the 

inferior frontal gyrus; 2) left hemisphere: parts 

of the superior temporal, supramarginal and 

subcentral gyrus; 3) left hemisphere: precentral 

gyrus with parts of middle and superior frontal 

gyri, towards the back part of the postcentral gyrus and superior parietal lobe; 4) right superior parietal lobe. 

Fig. 4. Relation between ITC and rating score. 

A) Relation between rating score and ITC at 

the tone frequency (left) and triplet frequency 

(right) in the structured and random con- 

ditions. Triplet ITC in the structured condi- 

tion significantly correlated with rating score. 

B) Correlation between ITC difference value 

(structured-random) and rating score within 

each bundle over exposure time for triplet and 

tone frequency. Values showed a significant 

time x frequency interaction (p < 0.05); Shaded 

areas represents 95% confidence interval of lin- 

ear model. 
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. Discussion 

The present study showed that participants were able to learn non-

inguistic statistical regularities simply through exposure to the stimulus

tream, in the absence of explicit instructions to detect the patterns. Par-

icipants demonstrated learning at both the behavioral and neural lev-

ls. At the behavioral level, participants rated triplets from the stimulus

tream as significantly more familiar than non-triplets, revealing explicit

nowledge of the learned regularities. At the neural level, learning was

videnced by robust neural entrainment to the embedded triplets across

ll sensors. This triplet entrainment was significantly greater in the

tructured condition compared to the random condition and emerged

arly on during exposure. In addition, triplet entrainment significantly

ncreased over the course of exposure, reflecting the online trajectory of

earning. Concerning the neural sources of these entrainment effects, a

road range of regions spanning temporal, frontal, and parietal cortices

howed sensitivity to the hidden structure, which is generally in line

ith previous literature. Neural entrainment in these identified clusters

lso robustly predicted subsequent behavioral performance on the rat-

ng task. These results suggest that successful neural entrainment forms

 basis for subsequent expression of explicit forms of knowledge. 

.1. Behavioral results 

As a group, participants showed significant behavioral evidence of

earning as measured on the rating task, even though 7 out of 24 par-

icipants claimed that they did not observe any difference between ran-

om and structured blocks. Participants’ ratings distinguished among

riplets, part-triplets, and non-triplets, although the differences in rat-

ngs were small and variable across participants. Linguistic statistical

earning studies using a similar rating task have shown stronger learning

ffects (e.g. Batterink and Paller, 2017 ), which may be related to facilita-

ion of learning enabled by verbal encoding strategies ( Siegelman et al.,

018b ). In contrast, nonlinguistic auditory statistical learning studies
7 
ave reported both stronger ( Abla et al., 2008 ; Abla and Okanoya, 2008 ;

ebhart et al., 2009 ; Saffran et al., 1999 ) and weaker, chance-level be-

avioral learning effects ( Farthouat et al., 2017 ; Paraskevopoulos et al.,

012 ). These previous studies used a 2AFC task to test participants’

earning abilities, testing the contrast between triplets and either non-

riplets ( Abla et al., 2008 ; Abla and Okanoya, 2008 ) or part-triplets

 Farthouat et al., 2017 ; Gebhart et al., 2009 ; Paraskevopoulos et al.,

012 ). Additionally, exposure time to the structured stream varied from

0 min ( Farthouat et al., 2017 ) to 40 min ( Gebhart et al., 2009 ). These

ariable results across studies emphasize that task difficulty (differenti-

ting triplets from part-triplets or non-triplets) as well as exposure time

ikely play a crucial role in the recognition of tone structures. There-

ore, even if a neural signature is visible, the ability to explicitly express

nowledge acquired during statistical learning is not present automati-

ally. 

Effects in the target detection task were counterintuitive, showing a

ower number of misses for the first tone in a triplet. Based on previous

tudies using the same task with language stimuli (e.g. Batterink et al.,

015b ; Batterink et al., 2015a ; Batterink and Paller, 2019 , 2017 ) and

bstract shapes ( Kim et al., 2009 ; Turk-Browne et al., 2005 ), we had

xpected a facilitation for the third tone of a triplet, as it is most pre-

ictable. However, the low task accuracy, as well as subjective reports

rom participants, suggest that the task was too difficult to reveal ex-

ected learning effects. Moreover, memory for the specific tones may

ave been too weak to drive expectations for the third stimulus and sup-

ort faster responding, as occurred in prior statistical learning studies

ith more complex stimuli. We speculate that the higher accuracy for

he first tone of a triplet could have been caused by improved memory or

mproved perceptual separation for these less predictable tones, which

ould have in turn facilitated recognition. As the positions of individual

ones in the structured condition were counterbalanced across partici-

ants, better accuracy for first tones cannot be due to stimulus-specific

roperties of certain tones. 
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.2. Neural entrainment 

Neural entrainment to triplets was significantly enhanced in the

tructured compared to random tone streams. This condition difference

as visible at the whole brain level with a relatively large effect size

d = 0.74). 

In the structured stream, ITC at the triplet frequency increased

ver the exposure period. In contrast, ITC in the random condition de-

reased over time, indicating that the observed increase in the struc-

ured condition is likely indicative of statistical learning, and cannot be

ttributed to nonspecific effects of auditory stimulation over time. The

bserved increase fits with previous neural entrainment results on lin-

uistic statistical learning, where an increasing trajectory was reported

ver centro-frontal midline EEG electrodes ( Batterink and Paller, 2019 ,

017 ). Across studies, this increase in neural entrainment to the un-

erlying triplets may reflect a shift in perception and encoding from

ndividual stimulus units to more integrated items, which occurs grad-

ally over the course of exposure. We also found that significant differ-

nces in triplet-ITC between structured and random conditions occurred

ery early during exposure (e.g., within the first 2-4 bundle included in

he analysis, corresponding to approximately the first 35-70 seconds of

xposure). This finding suggests that neural entrainment effects may

merge after just a few exposures to a given regularity. Similarly, a pre-

ious study by Barascud et al. (2016) who used repeating tone sequences

f varying length (5-20 tones) demonstrated that participants were able

o detect regularities after approximately one and a half repetitions of a

iven sequence. These effects may at least partially reflect a short-lived

emory trace in auditory sensory memory, causing a change in the neu-

al response to a recently encountered stimulus, similar to mechanisms

hat underlie the mismatch negativity ( Näätänen et al., 2007 ). 

An advantage over previous EEG-based neural entrainment studies of

tatistical learning (e.g., Batterink and Paller, 2017 , 2019 ; Buiatti et al.,

009 ) is our use of MEG, which allowed us to localize specific corti-

al regions involved in learning. Overall, results are in line with pre-

ious statistical learning studies, while also revealing additional brain

reas that have not been previously discussed in this context. Our lo-

alization analyses revealed a network of regions spanning the supe-

ior temporal, supramarginal, subcentral and inferior frontal cortex that

howed robust differences in triplet coherence between the two condi-

ions ( Fig. 3 ; clusters 1 and 2). These regions fit well with previous liter-

ture ( Abla and Okanoya, 2008 ; Cunillera et al., 2009 ; Farthouat et al.,

017 ; McNealy et al., 2006 ). In both hemispheres, the clusters that span

he superior temporal towards the inferior frontal cortex reflect the audi-

ory processing hierarchy, and include Heschl’s gyrus, which is known to

e important in pitch and melody perception (e.g. Patterson et al., 2002 ;

chneider et al., 2005 ). This most likely reflects a domain-specific com-

onent of auditory statistical learning, and suggests that even regions

nvolved in early sensory processing may be sensitive to statistical regu-

arities. The importance of the auditory cortex and inferior frontal gyrus

or the early detection of auditory regularities has also been previously

ighlighted by Auksztulewicz et al. (2017) , who used a dynamic causal

odel to explain the mechanism behind the early detection of repeti-

ions described by Barascud et al. (2016) . 

The cluster spanning the precentral gyrus towards the su-

erior frontal gyrus (cluster 3) is in line with findings by

unillera et al. (2009) and Farthouat et al. (2017) , who found the

remotor cortex to be important for statistical learning. Based on

hese results, the authors argued for an audio-motor interface the-

ry of speech learning, in which audio input is linked with motor

epresentations of speech, thereby facilitating novel word learning

 Cunillera et al., 2009 ). Converging evidence for this idea comes from

 recent study by Assaneo and colleagues (2019) , in which it was

emonstrated that about half of participants spontaneously align their

wn speech output with a rhythmic syllable sequence. Remarkably,

articipants classified as high synchronizers not only showed higher

rain-to-stimulus MEG synchrony over frontal areas, but also a better
8 
erformance in a statistical language learning task compared to their

ow-synchronizing peers. Our results, as well as those of Farthouat and

olleagues (2017) , suggest that this audio-motor framework may

lso be applied to learning of nonlinguistic auditory sequences. In

ddition to memory for words, memory for tone patterns could also be

ediated by the phonological working memory loop ( Baddeley et al.,

998 ). Notably, the left lateralization of this precentral cluster, which

unillera et al. (2009) connected to speech production, also holds for

ur nonlinguistic study as well as that of Farthouat and colleagues,

uggesting that this left-lateralization is not strictly specific to linguistic

rocessing. 

Interestingly, the role of left fronto-motor areas has also been dis-

ussed in the context of prediction of upcoming speech. Using causal

onnectivity analysis, Park et al. (2020 ; 2015 ) demonstrated that delta

ange (1-4Hz) oscillations from left motor and frontal areas have a top-

own modulatory influence on auditory cortices during natural speech

rocessing. A further analysis examining coupling between brain beta

requency activity and speech delta phase showed a progression of

peech prediction from higher order frontal areas to the auditory cor-

ices ( Park et al., 2020 ). Although we did not examine causal connectiv-

ty, similar predictive mechanisms may also be involved in the current

tudy. Given the alignment in neural regions across Parks et al.’s studies

nd the current study, stronger neural entrainment in the left frontal

otor regions may reflect prediction of upcoming predictable tones and

ould have a top-down impact on processing in auditory regions. 

The clusters that we detected in the superior parietal cortex (clus-

ers 4 and part of cluster 3) have not been reported in prior statistical

earning literature. The superior parietal gyrus has been implicated in

ttention shifting ( Vandenberghe et al., 2001 ). As clusters reflect differ-

nces in triplet coherence between structured and random conditions, a

ossible explanation for the involvement of the superior parietal gyrus

ould be an increase in attention to the triplets, once participants de-

ected the regularity in the structured condition. The lack of regularity

n the random condition could lead to decreased attention. 

We observed bilateral clusters along the auditory process-

ng stream, whereas some previous statistical learning studies

ound left hemispheric lateralization in these regions ( Abla and

kanoya, 2008 ; Karuza et al., 2013 ; McNealy et al., 2006 ). However,

oth McNealy et al. (2006) and Karuza et al. (2013) used linguistic

timuli, which may be expected to result in greater left-lateralization

ompared to our nonlinguistic paradigm. Regarding lateralization for

on-linguistic stimuli, previous results are inconsistent. Abla and

kanoya (2008) used a similar tone paradigm in an fNIRS study and

eported a left-lateralization. In contrast, Farthouat et al. (2017) did not

nd a clear lateralization of statistical learning effects using MEG, and

anacsek et al. (2018) even emphasized the role of the right hemisphere,

pplying transcranial direct current stimulation during statistical learn-

ng. In sum, results of our study together with previous literature do not

upport the assumption of a lateralization of statistical learning per se.

t is more likely that lateralization is a result of earlier sensory process-

ng, influenced by acoustic features (e.g., high temporal resolution of

peech and high spectral resolution of musical tones) as described by

atorre and colleagues (2002) . 

.3. Relationship between neural entrainment and behavior 

Interestingly and as predicted, participants’ neural entrainment to

he triplets in the structured condition was related to their behavioral

earning outcomes, as measured by performance on the rating task. In

he language domain, Ding et al. (2016) previously showed that neu-

al tracking of phrases and sentences in speech depends on language

omprehension, appearing only in participants who have knowledge of

 given language (e.g., Mandarin). This finding demonstrates that neu-

al entrainment is closely connected to high-level abstract knowledge

nd behavior. Further, as mentioned in the Introduction, a number of

inguistic statistical learning studies have also a positive association be-
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ween neural entrainment during learning and subsequent performance

n behavioral tests of knowledge ( Batterink and Paller, 2019 ; 2017 ;

uiatti et al., 2009 ; Choi et al., 2020 ). Along the same lines, our findings

uggests that neural entrainment for tone-triplets is at least partially re-

ated to the emergence of explicit knowledge, with successful neural en-

rainment predicting the subsequent ability to explicitly recognize tone

riplets. This brain-behavior correlation was observed at both the sen-

or and source level – that is, for triplet-ITC across all electrodes and

or triplet coherence in the brain areas depicted in Fig. 3 . At the source

evel, this relationship was most pronounced in precentral/parietal ar-

as in the left hemisphere (cluster3) followed by temporo-frontal areas

n the right hemisphere (cluster1). The correlation with entrainment in

emporal regions implicates domain-specific mechanisms, and suggests

hat areas involved in auditory processing also play a role in the forma-

ion of consciously available representations. The correlation with pre-

entral regions points towards a possible role of the previously described

udio-motor interface and/or top-down prediction processes, not only

n neural entrainment to statistical regularities, but also in the formation

f explicit knowledge from this implicitly available information. 

While our ITC results indicate that neural entrainment happens very

ast, the results cannot pinpoint exactly when learning at the neural level

s transformed into explicit, consciously accessible knowledge. How-

ver, as pointed out in the discussion of our behavioral results, prior

ndings suggest that the length of exposure may critically influence

hether participants are eventually able to explicitly recognize the tone

equences. Altogether, these results point to rapid sensitivity of specific

ortical brain regions to hidden statistical structure, which may then be

ollowed by the gradual emergence of knowledge that can be expressed

xplicitly, occurring in a majority of participants but not all. 

.4. Limitations and future directions 

The current study used a rather short exposure time, and it is not

lear whether a longer exposure time would allow all participants to

chieve explicit knowledge of the underlying structure. In addition, we

id not control for the attentional level of the participants, so we are not

ble to determine the influence of attentional control on the process. To

est the role of exposure time and attention on statistical learning, future

tudies that systematically manipulate these variables – like the study

y Batterink and Paller (2019) , who compared statistical learning un-

er conditions of full and divided attention – will be necessary. Gaining

urther insights into the dynamic transition from an implicit, neural rep-

esentation of structure towards an explicitly available one may be used

o optimize learning strategies, both in the auditory domain as well as

n other modalities. Furthermore, these results could lead to the devel-

pment of new strategies for individuals with learning impairments. 

. Conclusions 

MEG is well suited to detect nonlinguistic statistical learning at both

he sensor and source level. Combined with behavioral data, these re-

ults shed light on different aspects of statistical learning. The present

tudy showed that a wide range of brain areas are involved in this pro-

ess of learning, not only those primarily related to auditory functions.

t also provided evidence that while the learning effects at the neural

evel are quite robust and strong, the more explicit expression of this

ind of nonlinguistic learning is difficult for participants. Nevertheless,

hese two components are systematically linked, as shown by the cor-

elational results. The nature and timing of these relations suggest that

ufficient exposure is necessary to build on the implicit encoding of an

nderlying structure represented by neural entrainment and to form ex-

licitly available knowledge. 
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