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SUMMARY

 Climate change is increasing insect pressure and forcing plants to adapt. Although chemotypic 

differentiation and phenotypic plasticity in spatially separated tree populations are known for 

decades, understanding their importance in herbivory resistance across forests remains 

challenging. 

 We studied four oak forest stands in Germany using non-target metabolomics, elemental 

analysis, and chemometrics and mapped the leaf metabolome of herbivore-resistant (T-) and 

herbivore-susceptible (S-) European oaks (Quercus robur) to Tortrix viridana, a oak pest that 

causes severe forest defoliation. 

 Among the detected metabolites, we identified reliable metabolic biomarkers to distinguish S- 

and T-oak trees. Chemotypic differentiation resulted in metabolic shifts of primary and 

secondary leaf metabolism. Across forests, T-oaks allocate resources towards constitutive 

chemical defense enriched of polyphenolic compounds, e.g. the flavonoids kaempferol, 

kaempferol and quercetin glucosides, while S-oaks towards growth-promoting substances such 

as carbohydrates and amino-acid derivatives.

 This extensive work across natural forests shows that oaks' resistance and susceptibility to 

herbivory are linked to growth-defense trade-offs of leaf metabolism. The discovery of 

biomarkers and the developed predictive model pave the way to understand Quercus robur's 

susceptibility to herbivore attack and to support forest management, contributing to the 

preservation of oak forests in Europe.

Keywords: adaptation; biomarker; chemotype; eco-metabolomics; ecotype; flavonoids; Quercus 

robur; Tortrix viridana 
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INTRODUCTION

Forest ecosystems are currently exposed to opposing forces of climate change. For example, 

global warming positively affects plant growth (Saxe et al., 2001; Pretzsch et al., 2014) and extends 

tree growth periods but also increases herbivory pressure on forest ecosystems. Milder winters 

improve survival of overwintering insects (Pureswaran et al., 2018), and a warmer climate accelerates 

insects' development and increases voltinism, the number of generation cycles per year (Hamann et 

al., 2021). The formation of more insects per growing season has negative consequences for plant 

fitness and growth (Bebber et al., 2013; Bacon et al., 2014). 

Overall, growth and reproductive allocations support plants improving inter-species 

competition, while investments in defense mechanisms help plants to resist, e.g., herbivorous 

pressure, maximizing plant fitness by reducing damage and improving survival. However, resistant 

phenotypes come at a cost: resource allocation towards chemical defense reduces growth by diverting 

energy and metabolic precursors from processes such as vegetative tissue expansion, biomass yield, 

and seed production. This is predicted in the classical growth-differentiation-balance (GDB) 

hypothesis developed by Herms and Mattson (1992). It describes the physiological case for a 

mutually exclusive allocation of limited resources to one or the other function - growth versus 

differentiation (including defense) to maximize the plant's fitness. Thereby, the plant's dilemma 

between growth or defense has important ecological consequences. At the intraspecific level, it is 

expected that both growth and defense increase with resource availability (van Noordwijk & de Jong, 

1986; Agrawal, 2020). Furthermore, individuals with greater access to limited resources can allocate 

larger amounts of resources to growth and defense than conspecifics who have limited access as a 

consequence of phenotypic plasticity (Agrawal, 2020).

In addition to phenotypic plasticity, plants' adaptation to changing environmental conditions 

and herbivore pressure is based on intraspecific genetic variation at individual and population levels. 

Through the formation of chemotypes, it provides the potential for adaptation under natural selection. 

Chemotypic differentiation in plant populations is influenced by various environmental factors, 

pathogen and herbivore pressure, and their interactions (Levin, 1976; Bradshaw et al., 1984; van 

Tienderen, 1992; Linhart & Grant, 1996; Galloway & Fenster, 2000; Montalvo & Ellstrand, 2000; 
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Etterson, 2004). As a response, spatially dispersed populations tend to adapt to specific ecological 

niches and evolve genotypic and metabolic patterns, the so-called 'ecotypes' (Kollmann & Bañuelos, 

2004; Kleessen et al., 2012; Nagler et al., 2018; Salomé-Abarca et al., 2020). Because phenotypic 

differences among members of a population driven by genetic differentiation lead to adaptation 

through natural selection (Alberto et al., 2013), plant phenotypes with increased resistance to 

herbivores may become selected over generations under higher herbivory pressure (Geber & Griffen, 

2003; Schemske et al., 2009). On the other hand, plants that invest in growth/reproduction are more 

competitive, especially during periods in the absence of abiotic or biotic stresses. To date, there is still 

scarce evidence on the prioritization of defensive vs. growth strategies in naturally occurring tree 

populations. To study the susceptibility of our forests to the effects of climate change, we need to 

better understand the phenotypic variation in relation to herbivory pressure and chemodiversity within 

a forest tree population and how they occur among members of a population and among populations 

in natural forests. The ecological consequences of intraspecific chemodiversity and the impacts on the 

interactions of plants with their biotic environment remain largely unknown (Müller et al., 2020). A 

valuable tool to understand plant–herbivory interactions is the identification of biomarkers, 

metabolites that are characteristic to the susceptibility or resistance of plants to insects.

Here we analyzed the interactions between phenotype, chemotype and herbivore resistance in 

the European oak (Quercus robur L.) by the development of metabolic biomarkers. Quercus robur is 

a widespread, ecologically, and economically important long-lived forest tree species (Yela & 

Lawton, 1997; Ehmcke & Grosser, 2014; Annighöfer et al., 2015). Native to Europe, it is cultivated in 

the temperate regions of Asia and North America (Eaton et al., 2016) and has been described as 

tolerant to high temperatures and drought. European oaks are characterized by a high genetic 

diversity, which helps species' adaptation under changing environmental conditions (Müller-Starck et 

al., 1993; Bresson et al., 2011). In previous works, we investigated grafted trees from an oak 

population grown under controlled conditions and identified two naturally occurring, insect-

susceptible (S) and insect-resistant (T) European oak phenotypes (Ghirardo et al., 2012; Kersten et 

al., 2013). In the forests, the scions’ mother plants are differently defoliated by the green oak leaf 

roller (Tortrix viridana L.), an herbivorous pest that can cause severe damage in oak forests during 

outbreak years (Hunter, 1990; Hartmann & Blank, 1992). Metabolomic and transcriptomic analyses 
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of plants grown in a phytochamber let us hypothesize that S-oaks might prioritize the biosynthesis of 

metabolites related to growth processes, while T-oaks to constitutive defense (Kersten et al., 2013). 

In the present work, we tested the growth-defense prioritization hypothesis of resistant and susceptible 

oaks in natural forests by developing metabolic biomarkers that can distinguish T-oaks and S-oaks 

irrespective of the oak populations in metabolically contrasting forests (ecotypes). For this, we 

analyzed the leaf metabolome of T- and S-oaks in four geographically separated forest sites of 

European oaks in North Rhine-Westphalia, Germany, with respect to geolocation and resistance to the 

insect T. viridana. We used a non-targeted metabolomics approach to study the oak's strategy in terms 

of prioritization towards growth or defense and related to tree-specific oaks' resistance/susceptibility 

inventory data collected over the last 24 years at the four sites. Non-targeted metabolomics is a useful 

tool to understand plant-environmental interactions (Kuzina et al., 2009; Peñuelas & Sardans, 2009), 

and its use has recently increased to address ecometabolomic questions (Sardans et al., 2011; Rivas-

Ubach et al., 2013; Allevato, DM et al., 2019; Rivas-Ubach et al., 2019). 

Here we show that i) each oak population is metabolically a different ecotype; ii) each ecotype 

community has conserved both resistant and susceptible phenotypes in regards to T. viridana 

infestation; iii) metabolic biomarkers and chemometrics can be used to develop a prediction model 

capable of classifying S- or T-oak phenotypes independently of their geographical origins. These 

results pave the way to study the European oak's susceptibility to herbivore attacks and may 

contribute to the long-term conservation of European oaks, an ecologically important tree species 

grown in temperate latitudes of Europe.
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MATERIAL AND METHODS

Plant material

We investigated the dark-adapted leaf metabolome of 67 European oak trees (Quercus robur 

L.) from four mixed forest stands near the cities of Borken, Everswinkel, Münster, and Warendorf 

(data set BEMW) in North Rhine-Westphalia, Germany (Fig. 1a, Table 1) (Schroeder & Degen, 

2008). The range of tree ages is 150-185 years. Oaks were phenotypically classified as insect-resistant 

(T-oaks) or as insect-susceptible (S-oaks) by monitoring from 1994 to 2018 the defoliation rates that 

occurred as a consequence of outbreaks years of the specialized herbivore Tortrix viridana L. 

(Lepidoptera, Tortricidae). The degree of herbivory defoliation has been visually estimated as %-

defoliation using standard images (Evers, 2004). In outbreak years, all trees with a foliage loss of >90 

% were classified as S-oaks (41 trees), and those of <60% as T-oaks (26 trees). Exceptionally for 

Warendorf, we classified as potential T-oaks those trees that had the lowest (<80 %) percentage of 

defoliation, as the overall insect defoliations were much more severe. 

From the 21st to the 24th of May 2019, we sampled sun-exposed leaves of the tree crowns (Fig. 

1b) by taking down branches of the trees using an arborist throw‐line launcher (Youngentob et al., 

2016). This method was necessary for reaching the small top branches of the 20-40 m spreading 

crown of tall oak trees. For each tree, we collected three leaves from different branches and inserted 

them in aluminum foil bags. The three leaves per tree were combined for analysis to account for 

metabolic variation within the canopy. To minimize the influence of developmental-dependent 

changes (Riipi et al., 2004), all leaves were of the same growth stage #5 (Fig. S1). We randomly 

sampled T- and S-oaks between 10:00-17:00 h. Due to difficulties in performing the flash-freezing of 

samples collected by the throw-line launcher method, in the availability of liquid-N2 in the forests, 

and sensitivity of some metabolites to changes of light condition unavoidable in the nature, we dark-

adapted the sampled leaves for 60-80 min inside a polystyrene box before deep-freezing in dry ice. 

Such procedure helps to reduce photosynthetic-dependent metabolic variation (Dyson et al., 2015) 

and lower bias in the analysis. Laboratory analysis indicated that the metabolome of dark-adapted 

leaves differs from those sampled under light, although most of the compounds differently expressed 
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in T- and S-oaks are end-products (e.g. tannins, sugars, lipids, amino acids) remain unchanged (see 

also validation below). 

Complementary and validation analyses were performed on grafted oaks originating from a 

different oak population of a forest ca. 300 km away from the forest stands in BEMW near the village 

of Asbeck (data set Asbeck) in North Rhine-Westphalia (Schröder, 2010; Kersten et al., 2013). 

Branches of these oaks were grafted in 2008 and were previously subjected to metabolic and 

molecular studies under controlled environmental conditions (Ghirardo et al., 2012). Since 2008, the 

grafted oaks have been growing in a common garden under similar climate and fertilization conditions 

for the last 12 years at Thünen-Institute of Forest Genetics, Grosshansdorf, Germany. Leaves from 10 

ramets each of 5 oaks and 50 individuals (20 S- and 30 T-oaks) were collected. Because the Asbeck 

data-set contains S- and T-oaks growth independently to climate conditions, oak population, sampling 

time, insect feeding, and sampling procedure (dark-adapted vs light conditions and liquid-N2 vs dry-

ice), we use this data to evaluate the prediction model performance of the here newly developed 

statistical approach based on dark-adapted metabolome of BEMW field samples (see below). For this, 

larvae have been set on grafted trees at 17:30 and leaves from these trees have been sampled 19 h 

later by flash-freezing with liquid-N2. Samples were stored at -80°C until metabolomics analysis.

Non-targeted metabolomics analysis 

All leaf material was homogenized under cryogenic condition using mortar, pestle, and liquid-

N2 to a fine powder and then freeze-dried at -50 °C under the vacuum condition of 0.040 mbar (Alpha 

1-4 LDplus, Christ, Osterrode, Germany). For extraction, 500 µL of cold (5 °C) methanol:2-

propanol:H2O (1:1:1, v/v/v) extraction solvent mixture were added to 25 mg of dried leaf powder 

containing 50 µL of internal standard (IS) mixture (0.028 mol mL-1 of magnolol, rosmarinic acid, 3, 

4-dihydromandelic acid, and 3', 4’-dihydroxyacetophenone, Table S1). Samples were mixed for 1 min 

inside a 2 mL polypropylene tube and sonicated in an ultrasonic bath for 10 min at 5 °C. The solution 

was centrifuged at 9.3 g for 10 min at 5 °C, and 400 µL of supernatant was recovered. The extraction 

was repeated with the rest of the precipitate, resulting in 800 µL of supernatant. The supernatant was 

dried by SpeedVac (Univapo 150H, Uniequip, Planegg, Germany), and the residue was dissolved in 
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350 µL of 50% (v/v) acetonitrile in water. The solution was mixed for 1 min and centrifuged at 9.3 g 

for 10 minutes at 5 °C, and 300 µL of supernatant was transferred in 350 µL amber glass vials. The 

chemicals (LCMS hyper grade) methanol/H2O were purchased from Merck (Darmstadt, Germany) 

and 2-propanol/acetonitrile from Honeywell (Puchheim, Germany). 

Non-targeted metabolomics analysis was performed following Ghirardo et al. (2020) and 

Hemmler et al. (2018), using an Ultra Performance Liquid Chromatography (UPLC) Ultra-High 

Resolution (UHR) tandem quadrupole/Time-of-Flight (QqToF) mass spectrometry (MS). The 

instrument is comprised of an Ultimate 3000RS UPLC (Thermo Fisher, Bremen, Germany), a Bruker 

Impact II (QqToF) and an Apollo II ESI source (Bruker Daltonic, Bremen, Germany). Separation of 

nonpolar and polar metabolites was achieved using a reversed-phase liquid chromatography (RPLC) 

column (C18, ACQUITY BEH (Waters Eschborn, Germany), 150x2.1 mm, 1.7 µm) and a hydrophilic 

interaction liquid chromatography (HILIC) column (ACQUITY BEH Amide, Waters, 100x2.1 mm, 

1.7 µm), respectively. Each sample was separately analyzed with RPLC, and HILIC columns with 

MS operated in both positive (+) and negative (-) electrospray ionization modes. For details on 

chromatography and MS parameters see Supplementary Methods S1.

Data processing and compound identification

The LC-MS/MS data were analyzed using Metaboscape 4.0 (Bruker) to perform the post-

acquisition peak-peaking, alignments, isotope filtering, and peak-grouping based on peak-area 

correlation (Domingo-Almenara et al., 2018). Detailed parameter settings are listed in the 

Supplementary Table S2. The software merged automatically the data obtained from the ± 

measurement modes and returns processed data in a result table. Results from RP and HILIC analyses 

were merged manually. The table contains the exact mass, chemical formula and peak area of 

compounds if the expected adducts and isotopologues co-occurred at r2>0.7. For the most abundant 

compounds, we confirmed the annotation by standards and therefore achieved the annotation level 1 

(Sumner et al., 2007; Reisdorph et al., 2020). For other compounds, the annotation was putative and 

achieved using MS/MS spectra, when available, matched by Metaboscape to the libraries HMDB 

(http://www.hmdb.ca/) (Wishart et al., 2009), GNPS (Global Natural Product Social Molecular 

Networking) (https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp), MoNa (Mass Bank of North 

America), Vaniya/Fiehn Natural Products Library; Fiehn HILIC; ReSpect (http://spectra.psc.riken.jp) 

http://www.hmdb.ca/
https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp
http://spectra.psc.riken.jp/
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(Sawada et al., 2012); LC-MS/MS Spectra (https://mona.fiehnlab.ucdavis.edu/downloads). Mass 

features without MS/MS spectra were tentatively annotated on MS1 level using 5.0 mDa tolerance for 

the precursor mass with an in-house built R code 

(https://osf.io/s9d2j/?view_only=733a0c1a9e444f669d44c6eaad44f253). Chemical class classification 

of compounds was achieved by the ‘multidimensional stoichiometric compound classification’ 

(MSCC) approach according to the elemental ratio compositions (Rivas-Ubach et al., 2018). 

Data processing included the replacement of missing values with the average area value from 

all samples for the corresponding mass feature (Denkert et al., 2006). Data were normalized by IS 

(Sysi-Aho et al., 2007) mixture, composed of four plant metabolites that spread through the whole 

analytical mass and RT range (Table S1) but not detectable in pure oak leaf extracts. Finally, peak 

areas were normalized to dry leaf weight. The final data table (Supplementary Table S3) was the input 

of the statistical analysis.

Elemental and stable isotope analyses 

For the determination of the content of macroelements (Ca, K, Na, S, P), 90.00 mg of freeze-

dried leaf powder was extracted as described by Schramel et al. (Schramel et al., 1980) and further 

analyzed by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) (Schramel, 

1983).

Carbon and nitrogen contents and stable isotope signature of δ13C and δ15N were measured by 

Isotope Ratio Mass Spectrometry (IRMS, delta-V Advantage, Thermo Fisher, Dreieich, Germany) 

coupled to an Elemental Analyzer (Euro EA, Eurovector, Milano, Italy) as described in 

Supplementary Methods S2.

Multivariate data analysis 

Before multivariate analyses, data were always logarithmically (log10) transformed, centered, 

and Pareto scaled (Eriksson et al., 2013; van den Berg et al., 2006). 

Descriptive Analysis 

The principal component analysis (PCA) and Orthogonal Partial Least Square Regression 

Discriminant Analysis (OPLS-DA) were performed using the SIMCA-P v13.0.3.0 (Umetrics, Umeå, 

https://mona.fiehnlab.ucdavis.edu/downloads
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Sweden). Uniform Manifold Approximation and Projection (UMAP) and cluster analysis (CA) were 

made with R software (R Development Core Team, 2019) using packages 'umap' (McInnes et al., 

2018) and 'Heatmap' (Gu et al., 2016) respectively. The unsupervised PCA and UMAP methods were 

used to describe the metabolic patterns and detect potential outliers. Individual trees were scores, and 

the normalized peak areas of mass features were the loadings in PCA, UMAP, and OPLS-DA. To 

visualize metabolic differences between both four locations and the S- and T-oak phenotypes, 

respectively, CA (based on Euclidean distances) was performed on forest-specific and phenotype-

specific discriminant mass features. Hypergeometric tests were performed using the function 'phyper' 

in R v.3.6.0 (R Development Core Team, 2019).

Discriminant analysis for biomarker discovery and classification of oak phenotypes

OPLS-DA was used to found forest-specific discriminant mass features on BEMW oaks. The 

discriminant model was computed using four Y-variables that corresponded to the four forests 

BEMW and assigning a binary discriminating variable codex to their class (Ghirardo et al., 2005). 

The dimensions of the data matrix analyzed were 67x10206 (trees x normalized peak areas to IS and 

leaf dry-weight), representing the individual trees (from the four groups of forest sites) and the mass 

features, respectively. Discriminant metabolites were defined as the loadings of the significant OPLS-

DA (cross-validated ANOVA < 0.05, (Eriksson et al., 2008)) that passed the following criteria: i) VIP 

values > 2 (Cocchi et al., 2018); ii) adjusted p-value < 0.05 (t-test and Benjamini-Hochberg 

correction,  (Benjamini & Hochberg, 1995)). The adj-p-value was computed for all six possible forest 

site comparisons, resulting in six values for each mass feature. 

To build a multivariate prediction model that allows classifying the European oaks in T- and 

S-oaks on the base of the metabolic profiles, we deployed OPLS-DA, as mass spectrometry data with 

partial least squares regression can be used for biomarker discovery and classification purposes 

(Ghirardo et al., 2005; Wiklund et al., 2008; Boccard & Rutledge, 2013). We computed the prediction 

model using 50 trees (training set) randomly selected from the dataset BEMW and kept the remaining 

9 trees (internal validation set, ratio training:validation = 80:20) to test the ability of the model to 

predict the oak phenotype. Such validation is termed ‘internal’ as the data originate from the same oak 
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populations. The dimensions of the training set data matrix were 50 x 10206 (trees x normalized peak 

areas to IS and leaf dry-weight). The model was computed using two Y-variables representing the T- 

and S-oak phenotypes. To identify reliable biomarkers, we maximized the regression sum of squares 

(R2Y), the prediction sum of squares (Q2Y), and minimizing the root mean square error of estimation 

(RMSEE) and RMSEcv (root mean square error of cross-validation) by reducing the number of X-

variables to those that have VIP > 1.0, relative averaged abundances of T-/S- metabolites with Log2 

(T/S) ratio of < -0.5 or > 0.5, significant changes of individual metabolite (t-test and Benjamini-

Hochberg correction) and group separation (CV-ANOVA) between T-/S-oaks at adj-p-value < 0.05. 

The resulting compounds were defined as phenotypic biomarker candidates. Furthermore, we defined 

borders between S- and T-oak phenotypes (0-0.4 T-oaks, 0.4-0.6 unclassified, 0.6-1.0 S-oaks) and 

introduced the range near the border as ‘unclassified’.

Model validation 

To evaluate the model’s robustness (Anderssen et al., 2006; Broadhurst & Kell, 2006; Worley 

& Powers, 2013) in predicting the oak phenotype, the OPLS-DA model was tested with the 

independent dataset Asbeck, a procedure termed ‘external validation’. 
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RESULTS

Eco-metabolomic analysis reveals specific in situ metabolic signatures of four oak forest sites 

We studied the leaf metabolome of Q. robur growing in four geographically separated forest 

stands of North Rhine-Westphalia (NRW), Germany (Table 1, Fig. 1a, Supplementary Table S3). An 

unsupervised UMAP analysis of 10,206 metabolomic-related mass features detected in this study 

suggested differences in the overall metabolic pattern of the forest stands, as indicated by the first two 

dimensions (Fig. 1c). We disentangled the discriminant mass features and studied in details the 100 

most location-correlated metabolites that showed significant differences (OPLS-DA, CV-ANOVA, p 

< 0.05) in the metabolic profiles of the oaks at the four forest sites (Fig. 2). Hierarchical clustering 

and heatmaps illustrate the changes in the relative abundance of metabolites related to the 

metabolisms of proteins, carbohydrates, lipids, nucleotides, and secondary metabolites (Fig. 3). 

Although these 100 metabolites were present in leaves at all four sites, the metabolic profile of Q. 

robur leaves from the four forest sites differed in terms of relative abundance in the primary 

metabolisms of protein, lipids, carbohydrates, and nucleotides or to the secondary metabolisms of 

condensed tannins and flavonoids. We referred to these metabolites hereafter as site-discriminant 

metabolites. The forest stand Borken, which is geographically most distinct to the others (Fig. 1a), 

displayed the most different chemical composition in lipids and secondary metabolites (Fig. 2). All 

forest stands, located in a ~50 km radius, are growing under similar climate conditions. 

Complementary analysis on eight oaks (two from each forest, with two replicates of each tree) 

indicated that in respect to tree-to-tree variation, the within-tree variation accounts from 0.52% to 

11.25% (Table S4). Therefore, the analysis indicated the presence of four Q. robur ecotypes, 

exhibiting a distinguishable chemical profile.

Because specific patterns in the metabolomes may be attributable to resource limitations in 

nutrient availability, we analyzed the macroelement composition (Ca, K, Na, S, N, P, and C) and the 

stable isotope signature of C and N (δ13C and δ15N) of the leaves. In general, the contents of all 

analyzed macro elements and isotopic signature poorly correlated with geolocation, except for the 

overall C and N content and their stable isotope signature (Fig. 2c-f). The δ15N were lowest in S-oak 

leaves from Warendorf and δ13C highest in leaves from the forest stand in Münster (Supplementary 
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Figure S2). Taken together, our analysis showed that the four forest stands are composed of four 

corresponding Q. robur populations that possess chemically different leaf metabolite profiles 

independent from nutrient availability.

Outbreaks of T. viridana unveils the resistant oak phenotype in all four-forest sites

The periodic outbreaks of the herbivore T. viridana cause infestations and severe Q. robur 

defoliation (Schröder, 2010; Ghirardo et al., 2012). However, at all investigated sites, some of the 

European oak trees become much less defoliated during T. viridana outbreaks, compared to almost 

entirely defoliated neighboring oaks. Analysis of the degree of defoliation showed a clear insect-

resistant phenotype (T-oaks) compared to an almost entirely defoliated susceptible phenotype (S-

oaks) (Fig. 4). Across the four forest sites, 66 S-oaks and 44 T-oaks have been monitored for 24 years, 

and differences in the canopy defoliation were always observed consistently different and statistically 

significant (two-sample t-test, p < 0.05). The percentage of S-oaks in the sample set differs from 

forest to forest and ranges from 40.7 % at the stand near Borken to 88.0 % at the stand near 

Warendorf. 

Trade-offs of growth and defense-related compounds in the herbivory-resistance of the two oak 

phenotypes across forests

Knowing that the four metabolically different forest stands are composed of the two different 

T- and S-oak phenotypes, we question whether the two phenotypes' metabolic fingerprint is consistent 

across the four forests. Cluster analysis and UMAP showed that the chemical differences in S- and T-

oaks are consistent across the four forests (Fig. 5, Supplementary Figure S3 and Table S3). Because 

compound identification in metabolomics study is still in its infancy (Domingo-Almenara et al., 

2018), we used the Van Krevelen diagram in combination with MSCC to classify all those detected 

mass features that could be assigned to a chemical formula but not to a specific chemical compound 

(Fig. 5b). This comprehensive analysis showed that in all the forest samples, carbohydrates and amino 

acids were overrepresented in S-oak, whereas flavonoids and their glucosides were overrepresented in 

T-oaks (adj. p-value < 0.05, hypergeometric test, Table S5). In turn, this statistical result suggested a 



This article is protected by copyright. All rights reserved

constitutive strategy of S-oaks to invest plant resources towards growth, and T-oak leaves in 

defensive compounds against herbivorous feeding. 

Figure 6 shows the top 10 most abundant metabolites discovered using our approach for each 

chemical class (amino acids and protein-related, sugars, lipids and secondary compounds). Among 

them, the defensive compound kaempferol, kaempferol-3-O-glucoside, quercetin-3-glucuronide, 

quercetin-3-O-malonylglucoside, quinic acid and pipecolinic acid showed significant increased levels 

in T-oaks together with the levels of some NSC (non-structural carbohydrates) such as maltose, 

glucose and arabinose and the amino acid tryptophan (Fig. 6, adj-p values < 0.05). In contrast, S-oaks 

contained higher levels of the sugar glucose 1,6-bisphosphate, catechin (component of 

proanthocyanidins), the putatively identified hydrolyzable tannin 1,2,3,6-tetrakis-O-galloyl-beta-D-

glucose, and the precursor of gallotannins 1-O-galloyl-beta-D-glucose (syn. glucogallin) (adj-p values 

< 0.05) (Fig. 6). Levels of quercetin was found unchanged. 

Therefore, non-targeted metabolomic analysis correlated metabolites to the resistant 

phenotype that are involved in plant defense mechanisms. 

Combining metabolomics and chemometrics predicts T. viridana-resistant oak phenotype

The discovery of herbivory-resistant biomarkers among ecotypes is a key for developing a 

prediction model that can classify the T- and S-phenotypes of European oak. Based on VIP values, 

Log2 (T/S) ratio, and p-values (see methods), we selected 17 metabolites and tested them as 

biomarkers to discriminate oaks in T. viridana-resistant trees. We built a chemometric prediction 

model based on OPLS-DA, which was highly robust (R2Y = 0.86, Q2Y = 0.81, p-values = 1.08 x 10-

15, CV-ANOVA) (Fig. 7a-b and Table 2). Then, we first used the model to test its ability to classify a 

subset of 9 oaks from the four forest stands in NRW that were not used in building the model, a 

procedure termed as internal model validation. The prediction model's accuracy was 100% for both S- 

and T-oaks (Fig. 7c). This initial analysis demonstrated that the model could predict the oak 

phenotype from the same tree communities used to calibrate the model. To validate the robustness of 

our model, we performed an external validation (Anderssen et al., 2006; Broadhurst & Kell, 2006; 

Worley & Powers, 2013): we used the 50 oaks from the Asbeck population growing under different 
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environmental conditions and sampled differently than those BEMW oaks used in building the model 

(see methods). The prediction model’s accuracy was 100% for both S-oaks and T- oaks (Fig. 7b).
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DISCUSSION

Eco-metabolomic analysis of in situ samples reveals the existence of ecotypes 

When exposed to different environments (E), spatially separated populations of a plant species 

can adapt and, according to the gene pool (G; genotype) present in the population, can form a variety 

of locally adapted chemotypes often exhibiting a different phenotype (P) according to the equation G 

x E = P (Sultan, 1987; Tack et al., 2012; Allevato et al., 2019). In addition, environmentally induced 

epigenetic modifications of chromatin structure influence gene expression, plant phenotype and 

contribute to plant adaptation (Rasmann et al., 2012; Schmid et al., 2018; Thiebaut et al., 2019). 

In our work, individual sites strongly correlated with several metabolite-related mass features 

that could be distinguished from their chemical profiles. This agrees with the concept of complex 

metabolomic networks driven by adaptation to local environments (Andrew et al., 2010; Nagler et al., 

2018; Allevato, DM et al., 2019; Salomé-Abarca et al., 2020), although it may also arise from long-

distance gene flow and random genetic drift (Kremer et al., 2012). 

Chemotype variations at the sites are due to the interaction between the environment (including 

herbivory pressure) and the genetic pool (Mitchell-Olds & Schmitt, 2006; Andrew et al., 2010). 

Natural regeneration via seeds at each site suggests that individuals may be closely related, possibly 

explaining similar chemical patterns, an assumption that requires future genomic analyses. Genetic 

differences are dependent on ecotype distances, as showed in single nucleotide polymorphism (SNP) 

genotyping studies of three Arabidopsis thaliana populations in Austria compared to outside 

European populations (Nagler et al., 2018). Although we observed the most different geolocation-

correlated chemo-ecotype in the forest of Borken compared to the other forest sites, further genetic 

studies are necessary to prove the genetic dependence on ecotype. By analyzing the macroelements 

and stable isotopes in the leaves, we observed shifts of N and C content and isotope signatures. These 

results suggest the influence of local environmental conditions and soil nutrient supply on ecotype 

formation. Variation in foliar δ15N reflects the variation in soil N availability and is affected by local 

differences in N fixation and uptake (Craine et al., 2015). Lower N contents found in oak leaves in 

Münster and lower δ15N in Warendorf samples may reflect a somehow lower N availability in the 

soils. Nevertheless, it must be noted that higher δ13C in Münster and the trend of higher δ13C in 

Warendorf might be related to their higher proportion of S-oaks, compared to the two other forest 
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sites. Leaves of S-oaks were more consumed by herbivory, resulting in a relatively higher proportion 

of leaf ribs than those of T-oaks, and leaf ribs are usually characterized by higher δ13C signature 

compared to intercostal tissue (Schleser, 1990). However, compared to the relative metabolites’ 

abundances, correlations between macroelements and ecotypes were much less remarkable. Our 

analysis showed that the four ecotypes could be described by the relative abundance of 100 

metabolites of the primary and secondary metabolisms, differently expressed in European oaks at the 

four forest stands. It should be noted that the top 10 most abundant metabolites (per chemical class) 

detected using our analytical approach in oak leaf extracts, such as the precursors of hydrolyzable 

tannins are neither discriminant for forest site nor oak phenotype. Together with comparable 

elemental compositions, this is an indication that general nutrient availability in the forest was similar 

among the four ecotypes. One reason of such typical metabolic patterns might be the plant chemical 

diversity, and the outbreak of the insect T. viridana is the driver of the susceptible vs resistant oak 

phenotypes.  

Changes in concentration and composition of flavonoids in leaves may reflect genetic drifts or 

local adaptation to environmental factors, such as spectral composition and intensity of the solar 

radiation (Ryan et al., 2001; Azuma et al., 2012), temperature (Goh et al., 2016), and biotic stress that 

generally triggers the formation of polyphenolic compounds (Treutter, 2005; Miranda et al., 2007; 

Koskimäki et al., 2009). The chemical diversity of secondary compounds is as diverse as their 

biophysical and biological functions in plants. They range from photoprotective pigments such 

anthocyanins and other flavonoids (Agati et al., 2013; Steyn et al., 2002; Koes et al., 2005), to 

defense substances such as proanthocyanidins and other tannins (Jaakola & Hohtola, 2010, Marsh et 

al., 2020), to quenchers of reactive oxygen species (Winkel-Shirley, 2002; Bailey-Serres & Mittler, 

2006; Agati & Tattini, 2010). The wide functional range is also reflected in the complex 

transcriptional regulation of their biosynthesis. Our analysis at the one-time point in June 2019 

represents an aggregated snapshot where the secondary metabolites from the group of flavonoids and 

flavonoid-like molecules play an important role in describing the metabolic differences of the four 

forest sites, suggesting different plant responses to site-specific environmental influences. This can be 

an explanation. Additionally, long-distance gene flow and random genetic drift in the local European 
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oak populations likely contributed to the observed metabolite patterns (Kremer et al., 2012). To which 

extend will be the subject of future genomic studies.

Trade-offs of primary and secondary metabolisms in the resistance of Q. robur to T. viridana 

and potential ecological implications

More than ten years ago, we started to study the mechanisms of the susceptibility/tolerance of 

European oaks under controlled conditions by using grafted plants originating from one single forest 

(Ghirardo et al., 2012). Compared to S-oaks, T-oak leaves showed upon herbivory feeding different 

induced responses of volatile organic compounds (VOCs). The major differences were related to the 

terpene emission profiles (Ghirardo et al., 2012). VOCs are key chemical cues for oviposition site 

choice during the host-plant recognition between T. viridana and Q. robur. The enriched 

sesquiterpene content in the VOC blend of T-oaks versus more monoterpene content of S-oaks could 

be used by adult females of T. viridana as chemical cues to locate S-oaks and avoid the higher 

phenolic content of T-oaks (Ghirardo et al., 2012). In this way, the insects benefit from the better 

quality of the leaves of S-oaks, as the larvae forced to feed on leaves from T-oaks need to consume 

more leaf material than when feeding on leaves of S-oaks to reach the same pupal weight (Ghirardo et 

al., 2012). Given the long lifespan and slow reproduction rates of European oaks compared to those of 

T. viridana, it is likely that some members of a tree community invest a conspicuous amount of 

resources towards defense against fast evolving herbivory to improve community fitness. 

Here, the detected differences in oak leaves' non-volatile metabolomes across the four forest 

stands enabled us to disentangle the metabolic fingerprint of resistant oaks. Positively correlated to 

the resistant phenotype were several metabolites of the secondary metabolism. Some major flavonoids 

(e.g., kaempferol, kaempferol and quercetin glucosides) - known for their roles in plant resistance 

(Treutter, 2005) - were higher in T-oaks. Feeding assays previously demonstrated the consequences of 

the increased defensive molecules of T-oaks' leaf metabolome on herbivory deterrence. Tortrix 

viridana larvae need to consume more leaf biomass from T-oaks to achieve the same larval weight as 

comparable larvae that fed on S-leaves only  (Ghirardo et al., 2012). We do not know to date whether 

the larger amounts of flavonoids or some other unidentified secondary metabolites were responsible 

for the limited herbivory fitness on T-oak compared to S-oak dietaries. For example, the antifeedants 
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polyphenolic hydrolyzable tannins (HTs) (gallotannins and ellagitannins) and condensed tannins 

(CTs) might also be involved (Feeny et al., 1970; Anstett et al., 2019). Although HTs and CTs are 

abundant in leaves of various Quercus species (Salminen et al., 2004), not all end-products of HT and 

CT metabolism were identified or detected in our non-targeted approach. Detection of some HTs and 

CTs is complicated by their larger molecular weight, as large polymers are not easily separated by 

HPLC (Schofield et al., 2001) and the measured mass range is limited (in our analysis, m/z 20-2000 ). 

It is also likely that HTs and CTs were not fully extracted from leaf materials as they require specific 

extraction procedures and the use of enzymatic steps or acid-catalyzed hydrolysis to breakdown the 

polymers into analyzable monomers (Mueller-Harvey 2001; Schofield et al. 2001). Indeed, among the 

most prominent detected metabolites, we mostly found low-molecular-weight compounds associated 

with the metabolism of HTs and CTs, such as the gallotannin precursor glucogallin, the components 

of the condensed tannins catechin and epicatechin, and the ellagitannin derivative ellagic acid. Further 

targeted analyses are therefore needed to study HTs and CTs in the sensitive and resistant oaks.

Another option for herbivory resistance might be based on other defensive mechanisms, e.g. protein 

inhibitors (Fürstenberg-Hägg et al., 2013). However, the crucial molecular mechanisms that enable 

resistant oaks to withstand increasing herbivory pressure remain to be fully elucidated and require the 

incorporation of further biochemical and genetic methods. 

Plants tend to adopt different defense strategies against abiotic and biotic stresses and to 

balance between the costs of investing in defense compound production (secondary metabolites) or to 

growth that allows plant competition (Herms & Mattson, 1992; Lerdau & Coley, 2002). Our field 

survey of 67 resistant/susceptible European oaks across four different forests showed that, regardless 

of geolocation-dependent differences in the oak metabolome pattern, there is a general pattern of 

constitutively up-regulated defense metabolism in T-oak leaves versus constitutively up-regulated 

growth-related metabolism in S-oak leaves. This metabolic shift is in line with the GDB theory 

(Herms & Mattson, 1992). Independent of nutrient availability, it is remarkable to note that 

carbohydrates were overrepresented in S-oaks (Fig. 6). Non-structural carbohydrates (NSCs) are 

generally important in growth/differentiation (Aspinwall et al., 2011; Woodruff & Meinzer, 2011) 

and play a role in osmoregulation, supporting physiological functioning in contrasting severe drought 

episodes (Sevanto et al., 2014; Hartmann, 2015). Because the frequency and intensity of drought 
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episodes are projected to increase in the future (Hari et al., 2020; Spinoni et al., 2018), S-oaks' 

strategy to invest in NSCs might be beneficial under the effects of climate change. Consistent with the 

GDB theory, the strong correlation of NSCs and amino acid derivatives to S-oaks was in concert with 

the negative correlation of detected defense molecules, suggesting trade-offs of resource allocations 

towards growth or defense in plants. Despite being the most mature of the plant defense hypotheses in 

evolutionary ecology, direct testing of the GDB is difficult (Stamp, 2004). Figure 8 summarizes the 

metabolic differences of two oak phenotypes that support the GDB theory based on field data. 

Remarkably, the over-representation of constitutive carbon-based defense compounds (polyphenols) 

and the under-representation of NSCs in T-oak leaves (Fig. 8) is not correlated to general increases of 

leaf nutrient and resource availability, as it would be predicted by the carbon-nutrient balance 

hypothesis (Bryant et al., 1983; Lerdau & Coley, 2002; Agrawal, 2020). 

Despite the potential advantages of S- and T-oaks for the consequences of regional climate 

change, the co-occurrence of both susceptible and resistant phenotypes in all different forest ecotypes 

and the presence of different chemotypes within the same forest stand is remarkable. These mixtures 

of trees suggest that natural European oak communities are formed by oaks that constitutively follow 

the strategies of ‘growth’ or ‘defense’. Our current data support the idea that the European oak 

population embraces a strategy to preserve both phenotypes in the same forest stand. Because species' 

survival may be assured if the community has a high intraspecific genetic variation (Norberg et al., 

2001), prioritizing the allocation of resources to either growth or defense in members of a plant 

community, when inherited and shared within a population, seems a successful strategy to improve 

the overall community fitness. Such a 'community' strategy would allow plant species adaptation and 

ensure long-term survival. Future genomic studies will be essential to assess the composition of 

susceptible and resistant phenotypes in oak forests.

Biomarker development to assist tree nurseries with early oak seedlings phenotype selection for 

building stronger forests

To counteract increasing herbivory pressure, phenotype selection has been employed in tree 

breeding nurseries with great success (Naidoo et al., 2019). Forest restoration aims to increase the 

number of resistant trees to the point where the population will be self-sustain with preserved genetic 
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diversity (Sniezko & Koch, 2017). We aimed to create a reliable and robust model for the phenotype 

selection of young herbivory-resistant trees in tree nurseries. Remarkably, the analysis of those few 

defensive-related compounds in European oak leaves is fully sufficient to differentiate the T-oaks 

from the S-oaks. When assessing OPLS-DA prediction model parameters, Q2Y and R2Y values 

together with CV-ANOVA p-value are the best indicators of model performances (Eriksson et al., 

2008; Westerhuis et al., 2008). The model could predict an independent external test set of a different 

European oak population growing under completely different environmental conditions (see details in 

Methods). Also, validation samples were flash-frozen under light, compared to dark-adapted leaves in 

the field, indicating that the chosen biomarkers are not quickly degraded neither sensitive to quick 

change of light conditions. The here developed prediction model may be implemented to help tree 

nurseries to select T-oaks among young trees. 

European oak is widely distributed all across Europe (Eaton et al., 2016), and it is the second 

most common deciduous tree species in Germany after beech (Polley et al., 2014). It has the highest 

biodiversity of the native tree species on all trophic levels (Yela & Lawton, 1997). The European oak 

situation in Germany has been critical for decades, caused by clearcutting, pathogen infestation, and 

insect outbreaks (Führer, 1998) without noticeable improvement (Hartmann & Blank, 1992). Another 

substantial threat is the predicted insect range expansion and invasion of new insect pest species, with 

unknown consequences (Pureswaran et al., 2018; Sturrock et al., 2011). In addition, impending 

climate change in global warming and prolonged drought episodes may act as a primary stressor for 

European oak. It has been noted that deciduous oak forests were the least persistent to the projected 

global change (Merlin et al., 2015; Acácio et al., 2017; Madrigal-González et al., 2017). This can lead 

to indirect consequences such as new herbivorous insects that will most likely migrate from Southern 

and Eastern Europe and become potential feeding pests for European oak stands in Germany (Delb, 

2012). Concerns are increasing that the genetic adaptation of long-living species to rapid ongoing 

global change may not be quick enough (Burrows et al., 2011; Dawson et al., 2011; Hoffmann & 

Sgrò, 2011; Duputié et al., 2015) as the genetic adaptations of long-lived species are slow (Savolainen 

et al., 2004). Therefore, European oak as a long-living tree species deploys more phenotypic plasticity 

than through microevolution as a response to the rapid environmental changes (Chevin et al., 2013; 

Franks et al., 2014).
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Moreover, the adaptation through phenotypic plasticity is not fully efficient, requiring further 

evolutionary changes to avoid maladaptation (Gienapp et al., 2013). One way to tackle forest survival 

under global change is through forest management (Noss, 2001; Bolte et al., 2009; D'Amato et al., 

2011), and the selection of appropriate herbivory-resistant phenotypes might be crucial to improve 

forest fitness under severe herbivory outbreaks in Europe (Saxe et al., 2001). Using the cost-effective, 

highly reliable metabolic-based phenotypic biomarkers developed herein, it might be possible to 

identify oak phenotypes during early seedling and plant cultivations. In particular, this strategy may 

support nurseries in the early selection of an appropriate proportion of two oak phenotypes from 

different proveniences that can be used in managing the forest composition during afforestation 

activities of threatened forests under climate-driven, enhanced herbivory pressure. Additionally, the 

further development of biomarkers, including robust diagnostic genetic markers combined with an 

extensive screening of oak forest, will pave the way to study Central European forest's susceptibility 

to future insect outbreaks and support forest management. Thereby, it will contribute to the long-term 

conservation of European oaks, an ecologically important tree species grown in temperate latitudes of 

Europe.
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Table 1. Environmental factors and forest characteristics of the four forest sites in North Rhine-

Westpha

lia, 

German

y, 

during 

the 

samplin

g 

campaig

n in 

2019. 

The 

temperat

ure and 

humidit

y values 

are 

shown as the mean value and standard deviation (σ). NA, not available. 

Borken Everswinkel Münster Warendorf

N° of trees 26 12 24 18

Coordinates 

[Lat, Long]

[52.021493, 

6.938061]

[51.907194, 

7.884056]

[51.906404, 

7.751286]
[51.834023, 

7.891956]

T / °C ± σ 23.6 ± 2.2 12.9 ± 1.6 19.0 ± 2.1 14.6 ± 1.9

Relative 

humidity 

(%) ± σ

34.7 ± 10.2 75.5 ± 6.7 49.4 ± 13.2 90.8 ± 10.1

Weather Sunny Cloudy Sunny Cloudy

Soil

Brown 

earth 

podsol

Alluvial soil Alluvial soil

Brown earth from 

marl and 

calcareous gravel

Age 150-180 150-180 156 185

Q. robur % / 

Forest 

composition

NA / Mixed 

forest

NA / 

Mixed forest

60 / (Fagus 

sylvatica, 

Carpinus betulus, 

Faxinus excelsior

70 / (Q. petraea, 

Fagus sylvatica)
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Table 2: OPLS-DA model fitness. PCs – number of predictive components; R2X(cum), R2Y(cum) - 

cumulative regression sum of squares; Q2Y (cum) - prediction sum of squares; RMSEE - root mean 

square error of estimation; RMSEcv - root mean square error of cross-validation.

OPLS-DA prediction model parameters

PCs 2

R2X (cum) 0.560

R2Y (cum) 0.858

Q2 (cum) 0.810

CV - ANOVA

p-value 1.08 x 10-15

RMSEE 0.19

RMSEcv 0.21

Misclassification Table

S-oaks T-oaks Correctly classified

S-oaks 20 0 100%

T-oaks 0 30 100%

Fisher's probability 2.1 x 10-14
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FIGURE LEGENDS

Figure 1: (a) Map of the four forest sites studied (Borken, geographic coordinates [latitude, 

longitude]: [52.021493, 6.938061], Everswinkel [51.907194, 7.884056], Münster [51.906404, 

7.751286] and Warendorf [51.834023, 7.891956]) in North Rhine-Westphalia, Germany drawn with 

R package ‘tmap’ (Tennekes, 2018). The site Borken is ~50 km further from the other three sites, 

located in a radius of 20 km. (b) A representative T-oak and typical sampling branch (red cyrcle) at 

the top of the canopy directly exposed to the sunlight. (c) Unsupervised Uniform Manifold 

Approximation and Projection (UMAP) with R package 'umap' (McInnes et al., 2018) of all mass 

features measured by non-targeted metabolomics indicates differences in the overall leaf metabolic 

pattern of oaks from the four forest stands.

Figure 2: Ecometabolomics and OPLS-DA of leaf oaks collected from four geographically separated 

forest sites (BEMW) reveal the presence of four ecotypes and show their correlations to the main 

chemical groups. (a) Scores, (b) X- (small circles) and Y- (large symbols) loadings of OPLS-DA 

computed from the metabolic composition of 27 site-specific metabolites (that significantly change 

for at least four comparisons (adj. p-value < 0.05)). The first two components describe the data, with 

44.5% of explained variance. (c-f) Scaled (to 1) and centered correlation coefficient plots of OPLS-

DA, showing the relationship between the X- and the Y-variables for the predictive components. 

OPLS model fitness: R2X (cum) = 0.655, R2Y (cum) = 0.714, Q2 (cum) = 0.625 using three predictive 

components. RMSEE/ RMSEcv (location): 0.24/0.27 (Borken), 0.20/0.22 (Everswinkel), 0.28/0.31 

(Münster) and 0.23/0.25 (Warendorf).  CV-ANOVA, p = 9.15x10-28. The mass feature significant for 

the OPLS-DA model is noted with *. Data: X-variables, discriminant metabolite-related mass 

features, macroelements, and stable isotopic signature of N and C. Y-variables: forest sites: Borken, 

Everswinkel, Münster, Warendorf.

Figure 3: Clustered Heatmap of site-specific mass features of 67 oak trees (BEMW). Data depicts the 

different metabolic patterns for each forest site (Borken, Everswinkel, Münster, Warendorf, all in 

North Rhine-Westphalia, Germany) and reveals the four forest ecotypes.  All mass features were 
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discriminant for ecotypes separation in OPLS-DA (VIP > 2; CV-ANOVA <0.05; individual mass 

feature adj. p-values < 0.05). Values are relative abundances, logarithmically transformed, and Pareto 

scaled with centering (Eriksson et al., 2013; van den Berg et al., 2006). Metabolites with higher 

values have more importance for the sample.

Figure 4: Box plots of defoliation levels (% of tree canopy defoliation) during the outbreak years of 

Tortrix viridana for four forest sites (BEMW) define the existence of two oak phenotypes naturally 

occurring in nature independently of tree origin and location. The trees with defoliation levels above 

90 % are defined as S-oaks, and trees with defoliation levels equal to or below 60 % are defined as T-

oaks (exception Warendorf, see main text). Lines in boxes indicate the median, the bottom and top of 

each box denotes the first and third quartile, respectively, and whiskers denote the 5th and 95th 

percentiles. Significant differences are noted as: ***, adj. p-values < 0.001. *, adj. p-values < 0.05. 

Figure 5: (a) Clustered Heatmap of phenotype-specific mass features. Data depicts the different 

metabolic patterns of resistant (T-) and susceptible (S-) oak phenotypes (two major clusters) 

independently of the ecotypes. (b-c) According to assigned chemical formulas, the Van Krevelen 

diagram combined with MSCC classifies all non-annotated mass features. All mass features in (a-c) 

were discriminant for phenotype separation in OPLS-DA (VIP > 1.0; CV-ANOVA <0.05; individual 

mass feature p-values < 0.05; Log2 (T/S) ratio of < -0.5 or > 0.5). Values are relative abundances, 

logarithmically transformed, and Pareto scaled with centering (Eriksson et al., 2013; van den Berg et 

al., 2006). 

Figure 6: Comparison of the ten most abundant detected metabolites in resistant (T-) and susceptible 

(S-) oak phenotypes for four major chemical classes: (a) proteins, peptides & AA; (b) carbohydrates; 

(c) lipids; (d) secondary metabolites. Metabolites marked with st are identified with pure standards. 

Metabolites levels are shown as logarithmically transformed chromatographic areas. Significant 

differences are noted as: ***, adj. p-values < 0.001. **, adj. p-values < 0.01. *, adj. p-values < 0.05. 

N.S., not significant.
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Figure 7: OPLS-DA of discriminant mass features for two (S- and T-) oak phenotypes. (a) Scores, (b) 

X- and Y-loadings of OPLS-DA computed from the metabolic composition of 17 phenotypic 

biomarker candidates shows (a) the separation of two oak phenotypes, and (b) different relation of 

main chemical groups to a specific phenotype. The data is described by the first two components with 

56.0 % of explained variance. (c) Scaled and centered correlation coefficient plot of 17 biomarker 

candidates shows that T-oaks are positively correlated to secondary compounds and negatively 

correlated to primary metabolism compounds (carbohydrates and proteins). OPLS model fitness: R2X 

(cum) = 0.560, R2Y (cum) = 0.858, Q2 (cum) = 0.810 using two predictive components. RMSEE 

(root mean square error of estimation) = 0.19 and RMSEcv (root mean square error of cross-

validation) of 0.21; CV-ANOVA, p = 1.08x10-15. OPLS-DA model showing the linear relationship 

between observed Y-variables (known phenotypes) and model-predicted Y-variables for the (d) 

internal (BEMW data set) and (e) external (Asbesk data set) validation analysis. (d) Predictions of the 

oak phenotype for a (d) randomly selected subset of 9 oaks from BEMW (accuracy of 100% for both 

S- and T-oaks) and (e) model-independent subset of 50 oaks from a different oak population (Asbeck) 

(accuracy of 100% for both S-oaks and T- oak). Oaks with Ypred< 0.4 and > 0.6 are classified by the 

model as T-oaks, and S-oaks, respectively. The grey zone (Ypred values between 0.4-0.6) denotes the 

unclassified region (see material and methods). Yvar = 1, S-oak; Yvar =0, T-oak. The mass feature 

significant for the OPLS-DA model is noted with *.

Figure 8: Schematic overview of the leaf metabolome characteristic of S- and T-oaks in combination 

with the proposed plant strategy for the allocation of available resources. S-oak leaves are enriched in 

nutritive compounds of the primary metabolism (carbohydrates, amino acids) that sustain growth (left, 

in blue). T-oak leaves are enriched in secondary compounds that help plants in chemical defense 

(right, in red). Tortrix viridana prefers feeding on S-oaks, causing higher defoliation rates 

(symbolized by the number of larvae and leaf damage). The growth-defense trade-offs of leaf 

metabolism in S- and T-oaks allowed the determination of herbivory-resistant oak phenotype using 

OPLS-DA and metabolomics.


