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SUMMARY
Knowing cell-type proportions in a tissue is very important to identify which cells or cell types are targeted by
a disease or perturbation. Hence, several deconvolution methods have been proposed to infer cell-type pro-
portions from bulk RNA samples. Their performance with noisy reference profiles and closely correlated cell
types highly depends on the set of genes undergoing deconvolution. In this work, we introduce AutoGeneS, a
platform that automatically extracts discriminative genes and reveals the cellular heterogeneity of bulk RNA
samples. AutoGeneS requires no prior knowledge about marker genes and selects genes by simultaneously
optimizing multiple criteria: minimizing the correlation and maximizing the distance between cell types.
AutoGeneS can be applied to reference profiles from various sources like single-cell experiments or sorted
cell populations. Ground truth cell proportions analyzed by flow cytometry confirmed the accuracy of
AutoGeneS in identifying cell-type proportions. AutoGeneS is available for use via a standalone Python pack-
age (https://github.com/theislab/AutoGeneS).
INTRODUCTION

Bulk RNA samples are routinely collected and profiled for clin-

ical purposes and biological research to study gene expression

patterns in various conditions such as disease states. Such

samples reflect mean gene expression across thousands of

cells and, thus, mask cellular heterogeneity in a complex tissue.

However, the knowledge of cell-type composition and their

fractions helps to characterize molecular changes in diseased

tissues that are important for the identification of disease-

related cell types as well as the development of targeted drugs

and therapies (Kuhn et al., 2011). Studying the variation of cell-

type composition also opens new avenues in analyzing a

tremendous yet underexplored quantity of biomedical data

that has already been collected in clinics. Therefore, a number

of deconvolution techniques have been proposed in the litera-

ture for analyzing cellular composition from mixture samples

(Du et al., 2019), (Frishberg et al., 2019), (Hunt et al., 2019),

(Kuhn et al., 2012), (Shen-Orr and Gaujoux, 2013), (Schwartz

and Shackney, 2010), (Zaitsev et al., 2019). These techniques

mainly rely on a so-called signature matrix, the mean expres-

sion of signature (or marker) genes chiefly of well-defined cell

types (Baron et al., 2016), (Kuhn et al., 2012). Some of these

techniques are only applicable to the samples of a specific tis-

sue and use a predefined signature matrix for deconvolution
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(Aran et al., 2017), (Kuhn et al., 2011), (Monaco et al., 2019),

(Schelker et al., 2017), (Shen-Orr et al., 2010). However, due

to the advances in single-cell RNA-sequencing (scRNA-seq),

many cell subtypes are still being discovered whose specific

signatures are yet unknown. Therefore, automatic techniques

are needed to specify cell-type-specific signatures, i.e., deter-

mination of a subset of transcripts also known as feature selec-

tion, in an unsupervised manner without requiring prior knowl-

edge about the markers (Figure 1A). The signatures can then

be employed to generate a signature matrix from the reference

dataset. To fill this need, previous studies have explored gen-

eral feature selection techniques that can be extended to

almost any tissue type (Du et al., 2019), (Kang et al., 2018),

(Newman et al., 2019), (Wang et al., 2019). These techniques

typically rank genes in each population (or cell type) based

on a single-criterion comparison (often q value from a t test)

and select the top-ranked genes that differentiate one popula-

tion from the others. However, when complex tissues contain

highly similar cell types and, more specifically, when the refer-

ence profiles are noisy (as is often the case for scRNA-seq

data; Brennecke et al., 2013), the signatures must be selected

based on additional criteria. Moreover, these techniques often

perform feature selection on each population individually and

accumulate population-specific features. This can result in a

large, overlapping set of genes between closely related
blished by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Framework for dissecting cellular composition

(A) AutoGeneS starts from the reference data of the populations (cell types) and (I) finds the discriminative features using a multi-objective optimization (MOO)

method, (II) generates a signature matrix by subsetting the reference profiles, and (III) calls one of the built-in regression methods to infer the cellular proportions.

Conventional methods, either use tissue-specific signatures driven from literature or perform a single-criterion test, like a t test (comparing one population with the

rest), to find differentially expressed genes.

(B) We indicate through five examples that minimizing inter-population correlation is not necessarily sufficient for feature selection. Gene 1 and gene 2 are

expressed in only one of the two populations with a high distance and a low intra-population variance. Gene 3 and gene 4 are correlated, the centroids of the

populations are very close for gene 5 and gene 6, both gene 7 and gene 8 have high variances, and finally, the populations are collinear (also highly correlated) for

the set of gene 9 and gene 10.
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populations. Therefore, it is important to globally select a set of

signatures that discriminates all populations.

In this study, we present a platform, named AutoGeneS that

automatically selects differentiating signatures for the purpose

of bulk deconvolution. To accomplish this, we developed a

feature selection method employing multi-objective optimization

that leverages reference profiles from single-cell or bulk-sorted

transcriptional data. The optimization approach targets closely

related cell types and aims at selecting a set of genes that simul-

taneously minimizes the correlation and maximizes the distance

between the cell types. The proposed feature selection is robust

against technical and biological noise and, together with a

regression method, can reveal cell proportion of complex

mixture samples without any a priori knowledge about the

marker genes. Several regression methods are integrated into

AutoGeneS that use the automatically generated signature ma-

trix to infer cellular proportions. Through comprehensive bench-

mark evaluations and applications to peripheral blood mononu-

clear cells (PBMC) in humans with single-cell and bulk-sorted

reference profiles as well as the ethmoid sinus of patients with

and without nasal polyposis, we show that AutoGeneS outper-

forms other approaches. Moreover, when the reference data

for feature selection includes more than one sample, we show

that the genes selected by AutoGeneS reduce batch effects.

This is of utmost importance when reference datasets include

many samples that are captured at different times and/or gener-
ated in multiple labs using different technology platforms (Tran

et al., 2020).
RESULTS

AutoGeneS enables tissue characterization using
reference profiles across multiple technologies
To dissect cellular content from bulk RNA samples, we first

require reference gene expression data, which may originate

from various technologies such as single-cell experiments or

sorted cell populations. For scRNA-seq data, dimensionality

reduction and clustering are first performed to reveal cell types

and annotate cells. AutoGeneS takes the annotated reference

data and generates the reference profiles as the closest points

to the centroids of the cell types (see STARmethods for technical

details). Depending on the source of data, we refer to them as

either single-cell or sorted bulk reference profiles. AutoGeneS

then identifies discriminative genes for deconvolution using

multi-objective optimization (MOO) (Figure 1A). This is particu-

larly crucial for (1) reducing computational complexity by elimi-

nating unexpressed genes or genes with a uniform expression

level across the cell types that are important for large-scale

studies and (2) increasing the signal-to-noise ratio by selecting

genes that differentiate the cell types. Once we filtered the refer-

ence profiles for differentially expressed genes, called a
Cell Systems 12, 706–715, July 21, 2021 707
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signature matrix, we leveraged them to predict cell proportions

from other mixture profiles.

Previous studies show that the expression profiles from each

cell type are linearly additive; this makes the contribution of

each cell type proportional to its fraction in the mixture profile

(Zaitsev et al., 2019). While several regression methods are inte-

grated into AutoGeneS, we employed Nu-Support Vector

Regression (Nu-SVR) in this paper to deconvolve a given mixture

as the last step of the workflow. This makes the regression

robust against technical and biological noise by discarding a

certain fraction of outliers specified by Nu and performing

regression on the remaining samples (Chen et al., 2005), (Chang

and Lin, 2011), (Newman et al., 2015) (discussed in STAR

methods).

Multi-objective optimization can learn non-
collinear genes
In this study, we propose a MOO approach to select a set of

non-collinear genes and show that excluding collinear genes

significantly improves the accuracy of the inferred proportions.

Collinearity occurs when two or more predictor variables (cell-

type-specific profiles) in a statistical model are linearly corre-

lated. In the case of high collinearity, coefficient estimates (the

proportions of cell types) are highly sensitive to small changes

in the dataset. Because biological datasets (specifically

scRNA-seq data) are typically considered noisy, collinearity is

one of the main challenges in bulk deconvolution. Several quan-

tifications of collinearity are proposed in the literature, with the

most common being the pair-wise correlation coefficient (Dor-

mann et al., 2013). While correlation and collinearity are not

equivalent, high absolute correlation coefficients are usually

indicative of high linear relatedness. AutoGeneS is then devel-

oped to select a set of genes that minimizes the global correla-

tion between all the predictors simultaneously to reduce collin-

earity. By global correlation, we mean the sum of the pair-wise

correlation coefficients between all pairs of populations.

However, selecting a subset of genes that only minimizes the

correlation might not be enough (Figure 1B). Indeed, when the

Euclidean distance between the centroids of two populations

is low, the coefficient estimates become highly sensitive to noise

in the dataset (Figure 1B, genes g5 and g6). Moreover, selecting

unstable genes with high inter-cluster variance can result in low

representability of the centroids, which can increase regression

error (Figure 1B, genes g7 and g8). Therefore, rather than select-

ing genes based only on a pair-wise correlation coefficient, we

propose a MOO approach that simultaneously minimizes global

correlation and maximizes the sum of pair-wise Euclidean dis-

tances (Figures 1A and S1). Wemay also consider the inter-clus-

ter variance as a third objective to be minimized, but instead, we

recommend adding this as a constraint to the optimizer by

filtering out genes with high inter-cluster variance (for more dis-

cussion, see STAR methods).

For aMOOproblem, there usually exists no single solution that

simultaneously optimizes all objectives. In this case, the objec-

tive functions are said to be conflicting, and there exists a

(possibly infinite) number of Pareto-optimal solutions (Figure 1A).

Pareto-optimal solutions are a set of all solutions that are not

dominated by any other explored solution. Optimization-wise,

Pareto-optimal solutions offer a set of equally good solutions
708 Cell Systems 12, 706–715, July 21, 2021
from which to select, depending on the dataset (discussed in

STAR methods). After selecting a solution, the reference profiles

are filtered for the corresponding genes to generate the signa-

ture matrix (Figure 1A). To visualize Pareto-optimal solutions,

we applied AutoGeneS to the human embryonic scRNA-seq

data from (Chu et al., 2016) using 4,000 preselected highly vari-

able (HV) genes (Figure S2). Conventional techniques typically

use a t test between each population and all other populations

to obtain differentially expressed genes (Figure 1A). We

compared the objective values of the solutions from AutoGeneS

with differentially expressed genes using t test (T-DE), HV genes,

and a set of random solutions, for which some genes are

randomly selected as markers. The results show that solutions

from AutoGeneS dominate other solutions and, moreover, Auto-

GeneS is capable of finding solutions with a very low global cor-

relation and a relatively high global distance (Figure S2B).

AutoGeneS selects non-batch driver genes
When reference datasets include multiple samples, it is impor-

tant to ensure that selected genes for deconvolution are not

exposed to large variations or batch effects. Otherwise, batch

effects vary the signature matrix and the deconvolution results,

respectively. To address this concern, we performed different

feature selection methods on two datasets with multiple sam-

ples: healthy pancreas (n = 6 samples and 3 studies) and fetal

pancreas (n = 2 samples) (Baron et al., 2016), (Enge et al.,

2017), (Segerstolpe et al., 2016), (Han et al., 2020). Healthy

pancreas data with a total of 10,955 cells includes one inDrop

and two Smart-seq2 datasets. Fetal pancreas data consists of

two microwell-seq datasets with a total of 9,456 cells. We

treated each sample as a batch and used a scaled Silhouette

score to evaluate the batch effects for the set of genes selected

by each feature selection method. Here, we compared Auto-

GeneS (n = 400 genes) to HV genes (n = 4,000), T-DE genes

(n = 400), and CIBERSORTx (n = 3,203 genes for healthy and

n = 2,109 genes for fetal pancreas) (Newman et al., 2019) (Fig-

ure S3). Scaled Silhouette score of 1 represents ideally mixed

batches and strongly separated cell types (see STAR methods)

(B€uttner et al., 2019). Results show that in both datasets, Auto-

GeneS achieved the highest scaled Silhouette score and the

selected genes reduced batch effects (Figure S3). While T-DE

genes perform similarly to AutoGeneS for healthy pancreas,

we show later that they are not sufficiently good for deconvolu-

tion because they do not necessarily reduce cellular

collinearity.

Evaluation on simulated bulk tissues
First, to systematically benchmark, we applied AutoGeneS to

synthetic bulk RNA-seq data. The reference data for signature

learning was human embryonic scRNA-seq data fromChu et al.

(2016). To make the deconvolution challenging but also more

realistic, the synthetic bulk RNA samples were generated by

summing the matched sorted bulk RNA-seq read counts of

the same tissue from (Chu et al., 2016). Indeed, library prepara-

tion protocols vary across different sequencing technologies as

well as laboratories, and bulk deconvolution analysis therefore

may be performed on reference data generated differently in

either way. In this scenario, true cell-type proportions are

known, which allows a comparison of the accuracy of the



Figure 2. Bulk deconvolution of synthetic bulk RNA samples with human embryonic single-cell reference profiles

The bulk data is constructed using sorted bulk RNA-seq read counts while the matched single-cell reference data is taken from Chu et al. (2016).

(A) Principal component analysis (PCA) projection of the scRNA-seq data with six major populations. Shown is PC1 versus PC2.

(B) Shown are pair-wise correlation and distance between the cell types using the signature matrix inferred from the optimization.

(C) Scatterplots illustrating real and estimated proportions for 100 synthetic bulk RNA samples. The significance of the results was assessed by r values and p

values from linear regression (solid red lines).

(D) Heatmap of signature matrix inferred by AutoGeneS. NPC, neuronal progenitor cell; DEC, definitive endoderm cell; EC, endothelial cell; TB, trophoblast-like

cell; HFF, human foreskin fibroblasts.
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proposed technique. In this experiment, AutoGeneS searched

for 400 marker genes that minimized cosine similarity (as a

measure of correlation) and maximized Euclidean distance be-

tween six major cell types (Figure 2). After filtering the 400

marker genes with the lowest mean correlation coefficients

among all the Pareto-optimal solutions, the average pair-wise

correlation coefficient was equal to 0.07. This shows that Auto-

GeneS efficiently explores the search space seeking non-

collinear genes (Figure 2C). Moreover, compared with ground

truth cell proportions, the deconvolution results show high ac-

curacy, with a r value > 0.99 and a p value < 1e-78 (Figure 2C).

The heatmap of the signature matrix further indicates that the

optimization result converges to the genes that are either highly

expressed in only one cell type or lowly but differentially ex-

pressed between the cell types (Figure 2D). See the STAR

methods section for more details on how to select the number

of marker genes using AutoGeneS.
To study the robustness of AutoGeneS to both cellular corre-

lation and noise in gene expression, we removed top differen-

tially expressed genes (n = 5,379) as well as HV genes

(n = 5,000) and incrementally added to the noise level through

randomly dropping out genes in the dataset. Removing differen-

tially expressed and HV genes increased the average cellular

correlation by 118% for HV genes (Figure S4A). However, Auto-

GeneS still returned very accurate predictions (r value = 0.89 and

p value = 3.11E-20). In addition, by increasing the noise level up

to 50%, AutoGeneS outperformed other feature selection

methods (average r value = 0.81) using HV genes (average r

value = 0.73) and T-DE genes (average r value = 0.63) (Fig-

ure S4E). Finally, we tested how the condition number varies

as a function of the Pareto index for the results of the optimiza-

tion (noise level = 0) (Figure S5). The condition number is another

measure of collinearity, and features with low condition number

are ideal for regression (Newman et al., 2015). We observed a
Cell Systems 12, 706–715, July 21, 2021 709
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Figure 3. Evaluation of AutoGeneS for bulk deconvolution of 12 PBMC samples using bulk-sorted reference profiles

The bulk data and the reference data are taken from Monaco et al. (2019).

(A) The flow chart depicts the underlying analysis and evaluation process of AutoGeneS when benchmarked against 7 other deconvolution approaches.

(B) For each signature matrix, the p values and r values were measured by fitting a linear regression with estimated and real proportions from flow cytometry

(ground truth). The regression results using AutoGeneS are represented in Figure S6.

(C) The average r values and p values as well as the execution times are summarized in the table.

(D) Shown are pair-wise correlation and distance between the cell types using the signature matrix inferred using AutoGeneS.
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high correlation between condition number and Pareto index

(r=0.94) in this analysis, which shows that the optimization result

with minimum correlation has the lowest or close to the lowest

condition number. More details on synthetic bulk and single-

cell data generation are explained in the STAR methods section.

Deconvolution of PBMC samples with sorted bulk
RNA-seq
We next deconvolved bulk RNA-seq data of PBMC samples

from (Monaco et al., 2019). The bulk RNA-seq data consisted

of gene expression measurements of 12 Singaporean individ-

uals. The sorted bulk RNA samples (n = 114) of 29 immune cell

types in the blood samples of four healthy individuals were

also available from (Monaco et al., 2019) to build the signature

matrix. The flow cytometry proportions of each sample were em-

ployed for validating the deconvolution results. The authors

(Monaco et al., 2019) delineated the cell types with the highest

mean Pearson correlation and merged those from the classifica-

tion used for FACS (i.e., the 29 cell types) with no detectable and/

or no specific signal into broader cell types. From this procedure,

they selected 17 cell types that we also used in our analysis.

To highlight the advantages and potential limitations of the

proposed method, we compared AutoGeneS to three other un-

supervised feature selection methods, including HV genes,

T-DE genes, and CIBERSORTx (Newman et al., 2019), as well
710 Cell Systems 12, 706–715, July 21, 2021
as five predefined signatures proposed in the literature for de-

convolving PBMC samples called Shiny (Monaco et al., 2019),

LM22 (Newman et al., 2015), xCell (Aran et al., 2017),

immunoStates (Vallania et al., 2018), and MCP-counter (Becht

et al., 2016). Besides the sorted bulk RNA samples, Shiny used

as reference the mixture samples weighted by flow cytometry

proportions. Because features are predicted from the same

mixture samples being used for deconvolution, we referred to

Shiny as a supervised approach. This approachworkswhen pro-

portion data, by e.g., flow cytometry, is available, which for many

studies is not. For some methods, namely LM22, xCell, immu-

noStates, andMCP-counter, only partial evaluationwas possible

because each proposed a signature matrix including some cell

types that were different or missing in our reference profiles.

Hence, we filtered the same reference profiles, as used by the

unsupervised feature selection methods, with the signatures

proposed by each of those methods. Because our goal was to

study the effect of different signatures on the accuracy of the re-

sults, we also employed the same regression method, Nu-SVR,

for all the signature matrices to infer the cellular proportions

(Figure 3A, see STAR methods).

The linear agreement between the real proportions from flow

cytometry and the predicted oneswas determined by correlation

coefficient (r value) and two-sided p value (Figure 3B).

xCell could not perform the regression within 3 days of



Figure 4. Evaluation of AutoGeneS for bulk deconvolution of 12 PBMC samples using single-cell reference profiles (n = 1 samples)

The bulk samples are taken from Monaco et al. (2019), while the single-cell reference data is taken from Reusch et al. (2021).

(A) UMAP of PBMC scRNA- seq data. Colors: six major cell types.

(B) Shown are pair-wise correlation and distance between the cell types using the signature matrix inferred using AutoGeneS.

(C) p values and r values for the deconvolution results using various signature matrices. The assessment process is similar to Figure 3A. The p values and r values

were measured by fitting a linear regression with estimated and real proportions from flow cytometry. The regression results using hierarchical AutoGeneS is

represented in Figure S7.
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computation time; therefore, we excluded that for this compari-

son. Excluding Shiny, AutoGeneS had the best prediction accu-

racy (r value = 0.77) and other methods failed to capture the cor-

rect proportions for several cell types (r values < 0.77, Figures 3B

and 3C). Moreover, although the accuracy of supervised Shiny is

only slightly higher (r value = 0.78) than AutoGeneS, AutoGeneS

is unsupervised and consequently has broader applications than

Shiny. Results also show that AutoGeneS successfully found the

signatures that minimize the correlation while simultaneously

maximizing the distance between each pair of cell types

(average pair-wise correlation = 0.07, Figure 3D). Besides, Auto-

GeneS had significantly less computation time (Figure 3C). The

reduction in the computation time is mostly because AutoGeneS

used only 500 genes, whereas, e.g., Shiny used 1,296.

Deconvolution of PBMC samples with scRNA-seq
We next turned to the problem of inferring cellular proportions

when bulk and single-cell reference data originate from different

studies. We deconvolved PBMC samples from (Monaco et al.,

2019) using the scRNA-seq data (SeqWell) of blood from Reusch

et al. (2021). The single-cell data (n = 1 sample) has a total of 3,417

cells and consists of cell types including: adipocytes, B cells,

CD4+ T cells, CD8+ T cells, chondrocytes, dendritic cells, endo-

thelial cells, eosinophils, erythrocytes, hematopoietic stem cells,

macrophages, monocytes, natural killer (NK) cells, neutrophils,

and skeletal muscle. We filtered out populations with fewer than

45 cells and were left with six major cell types. NK cells, CD4+

T cells, and CD8+ T cells have a high correlation that is also visible

in the uniform manifold approximation and projection (UMAP)

(McInnes et al., 2018a, 2018b) of the single-cell data (Figure 4A).

Here, we assessed how the aforementioned unsupervised feature

selection techniques as well as PBMC-specific signatures pro-

posed in the literature dealt with high correlation using a similar

evaluation process as in Figure 3A. After subsetting the reference

profiles, the proportions were inferred for each signature matrix

using Nu-SVR. We also performed CIBERSORTx with batch

correction (referred to as CIBERSORTx w/bc) to minimize the
technical differences between the signature matrix derived from

the single-cell reference profiles and themixture samples. The ex-

isting unsupervised methods mostly failed to infer the proportion

of B cells, neutrophils, andCD4+T cells,while AutoGeneS outper-

formed them.We observed that CIBERSORTxw/bc (r = 0.43) per-

formedbetter thanbasicCIBERSORTx (r = 0.26) that suggests us-

ing batch correction after feature selection to improve

deconvolution results. Also, AutoGeneS (r = 0.60) had the closest

results to Shiny (r = 0.61) while even predicting the fraction of NK

cells more accurately (Figure 4C). Interestingly, MCP-counter

showed the highest performance (r = 0.66) for this reference

data while its performance using sorted bulk reference profiles

was extremely low (r = 0.21) (Figure 3).

Compared with the ground truth cell proportions as deter-

mined by flow cytometry, the low correlation in the deconvolu-

tion results might be driven either by platform-specific variation

between bulk and scRNA-seq data or the inability of the feature

selection techniques to extract discriminative genes. However,

the lower accuracy of Shiny (r = 0.61) using the single-cell refer-

ence profiles compared to the previous results where sorted

bulks were used (r = 0.78) (Figure 3B) validates the former hy-

pothesis (for validation on synthetic datawith fixed bulk samples,

see Figure S4). Direct comparison of AutoGeneS and flow cy-

tometry results is presented in Figure S7.

Deconvolution of ethmoid sinus frompatientswith nasal
polyposis confirms a depletion in glandular cells and
enrichment in basal cells
Subsets of epithelial cells—including secretory (or apical) and

ciliated cells—differentiate from basal cells to protect the upper

airway (Whitsett and Alenghat, 2015), (Iwasaki et al., 2017), (Or-

dovas-Montanes et al., 2018). Allergic inflammation in the upper

airway can result in chronic rhinosinusitis like severe nasal

polyps (Ordovas-Montanes et al., 2018). During chronic rhinosi-

nusitis, the composition of overall tissue cellular ecosystem

might shift in humans. Ordovas-Montanes et al. (Ordovas-Mon-

tanes et al., 2018) revealed a remarkable reduction in cellular
Cell Systems 12, 706–715, July 21, 2021 711
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diversity of polyps mostly characterized by enrichment in basal

cells, concomitant loss of glandular cells, and phenotypic shifts

in secretory cell expression. To confirm these findings with de-

convolution results, we applied AutoGeneS to 27 mixture sam-

ples from the ethmoid sinus of patients with polyposis (n = 17)

and non-polyposis (n = 10). As reference data, we used

scRNA-seq data of n = 5 non-polyp and n = 6 polyp-patient

ethmoid sinus. All bulk and single-cell datasets in this study

are from (Ordovas-Montanes et al., 2018). A total of 10 cell

types—including apical, basal, ciliated, endothelial, fibroblast,

glandular, mast, myeloid, plasma, and T cells—was character-

ized in the reference dataset by Ordovas-Montanes et al. (Ordo-

vas-Montanes et al., 2018) (Figure 5A). From the reference data-

set, apical and basal cells are very sensitive to disease state and

their signatures vary between the polyp and non-polyp samples.

Therefore, we performed a data-driven clustering on the single-

cell dataset and assigned state-specific annotations to apical

and basal cells, called apical_non, apical_polyp, basal_non,

and basal_polyp (Figure 5A, see STAR methods). 85% of new

cell annotations agree with the ones used in (Ordovas-Montanes

et al., 2018). This helped to find state-specific markers during

feature selection that improved deconvolution (Figure 5B).

Next, we evaluated the performance of AutoGeneS, CIBER-

SORTx, and MuSiC in predicting the proportion of cell types in

the bulk samples. Using AutoGeneS, we obtained 400 genes

that differentiated the 12 cell types (Figure S8A) and success-

fully captured the genes associated with disease state in

epithelial cells—apical, basal, ciliated, and glandular cells (Fig-

ure 5B). In our results, AutoGeneS exhibited superior perfor-

mance in capturing shifts in the composition of non-polyps

versus polyps mostly driven by a decrease in glandular cell

proportion and an increase in basal cell proportion that are

significantly concordant with the related study (Ordovas-Mon-

tanes et al., 2018) (Figures 5C, 5E, and S8C). While CIBER-

SORTx failed to infer the proportion of basal cell and MuSiC

failed to reveal the cellular diversity of non-polyps and polyps

(Figures 5C and 5E). We should also highlight that only Auto-

GeneS predicted the proportion of state-specific apical cell

properly in non-polyps and polyps (Figure S8C). Due to the

high correlation between basal_non and basal_polyp cells

and the lack of enough unique biomarkers that differentiate

those, their proportions are not individually conclusive (Figures

5B and S8C).

Among epithelial cell types, ciliated and glandular cells are his-

tologically distinguishable and have non-overlapping gene bio-

markers. Therefore, to further confirm our results, we character-

ized the association of the proportion of ciliated and glandular

cells with the level of C11orf88 and CA2, two important bio-

markers for ciliated andglandular cells, respectively (FigureS8D).

Based on our results, AutoGeneS identified a high correlation be-

tween the proportion of ciliated and glandular cells and C11orf88

and CA2 levels (average r value = 0.84), while other methods per-

formed substantially worse (average r value = 0.66 and 0.04 for

CIBERSORTx and MuSiC, respectively, Figure 5D).

Finally, we examined the average number of molecule counts

in each cell type. The single-cell dataset indicates a significant

variation in average cell count across cell types mostly driven

by a high number of counts in apical non, ciliated, and glandular

cells, and a low number of counts in mast and T cells. This is
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mainly because of different cell size—the average number of

mRNA molecules in each cell type—and might lead to a higher

inferred proportion for larger cells (see STAR methods). With

no prior knowledge of cell sizes, predicting absolute cellular pro-

portions using conventional methods is impossible. Assuming

that the average number of molecule counts in a cell type is

roughly comparable with the size of that cell (Padovan-Merhar

et al., 2015), (Wang et al., 2019), we applied regression on the

average gene expression of cells without normalization as an

alternative approach to getting cell-type-specific relative abun-

dance rates (referred to as AutoGeneS+ in Figure S8C). Consid-

ering cell size, the absolute cellular proportions changed, how-

ever the fold change of cell-type proportions across samples is

similar to previous results (see STAR methods).

Hierarchical optimization for highly correlated cell types

The correlation matrix reflects the similarity between cell types.

Based on this, the user then groups the cells with almost no

differentiating signals. After running the optimization, the correla-

tion matrix on the selected features reveals whether some of the

cell types are still correlated. If the correlation is high for some

cell types, we propose running AutoGeneS at a different stage

on those correlated cell types and aggregating the new features

with the earlier ones to build the final signaturematrix. If the num-

ber of added genes is high, the correlation between other cell

types can potentially increase. To avoid that, we can run the opti-

mizationwith those genes being preselected and fixed in the new

solutions. Therefore, the optimization finds genes that in combi-

nation with those preselected ones optimize the objectives. For

the dataset studied in Figure 4, we ran AutoGeneS separately for

CD4+ and CD8+ T cells and added in total 10 more genes to the

signature matrix that can better differentiate between these two

cell types. For the example in Figure 4, the results show that the

hierarchical AutoGeneS (AutoGeneS*) obtained better results

compared with basic AutoGeneS specifically for CD8+ T cells

and monocytes (Figure 4C).

DISCUSSION

The knowledge of cell-type compositions is important to reveal

cellular heterogeneity in diseased tissues and is helpful to iden-

tify the targets of a disease. Although bulk RNA-seq averages

gene expression across thousands of cells and, thus, masking

cellular heterogeneity in complex tissues, scRNA-seq usually

does not reflect true cell-type proportions in intact tissues.

Furthermore, it remains costly for use in clinical studieswith large

cohorts. Therefore, several bulk deconvolution techniques have

been proposed in the literature to predict cell-type proportions

from mixed samples. Existing approaches either rely on prese-

lected marker genes or perform a single-criterion test to identify

differentially expressed genes among cell types. In this study, we

introduce AutoGeneS which, for the first time, selects discrimi-

native genes based on multiple criteria and infers accurate

cell-type proportions. AutoGeneS selects discriminative genes

using a MOO approach that simultaneously minimizes average

pair-wise correlation coefficients and maximizes the Euclidean

distance between cell types. By minimizing correlation, we

reduce the collinearity as one of the main challenges in bulk de-

convolution. We simultaneously ensure that the Euclidean dis-

tance between the cell types is maximized to safeguard



Figure 5. Bulk deconvolution results of 27 (n = 10 non-polyp and n = 17 polyp) ethmoid sinus samples

(A) UMAP plot of 14,878 single cells from ethmoid sinus (n = 6 non-polyp and n = 5 polyp samples) taken fromOrdovas-Montanes et al. (2018). Colors highlight 12

cell types where 85% of cell annotations overlap with the annotations characterized in Ordovas-Montanes et al. (2018).

(B) The expression of signatures distinguishing apical (secretory), basal, ciliated, and glandular cells across single cells from those cell types. The signatures

(n = 52) are the most differentially expressed genes between cell types selected from 400 discriminative ones assessed by AutoGeneS (see STARmethods). The

expression of these genes across bulk samples is shown in Figure S8B.

(C) Proportion of apical, basal, ciliated, and glandular cells across 27 samples using AutoGeneS, CIBERSORTx, and MuSiC. For the sake of visualization, the

proportion of apical_non and apical_polyp as well as basal_non and basal_polyp are summed up in the heatmap. The proportion of 12 cell types are presented in

Figure S8C.

(D) Top, scatterplot depicting concordance between the expression of C11orf88 and the frequency of ciliated cell quantitated by the three methods. Bottom,

similarly, concordance between the expression of CA2 and the frequency of the glandular cell. The significance of the results was assessed by r values from linear

regression.

(E) Composition shift in the non-polyp and polyp cellular ecosystems of the ethmoid sinus samples. Statistical comparisons were performed using a two-sided

t test, non-polyp versus polyp samples.
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predictions against noise. Through comprehensive benchmark

evaluations and analysis of multiple real datasets, we show

that AutoGeneS outperforms other approaches. Moreover,

ground truth cell-type proportions identified by flow cytometry

confirm the accuracy of the predictions by AutoGeneS.

While in this study we use correlation and distance as objec-

tives, AutoGeneS offers a flexible framework that can be easily

extended to other user-specific objectives. Among the unsuper-

vised feature selection techniques previously proposed for bulk

deconvolution, we implemented an objective function inspired
by the works in (Newman et al., 2015). Newman et al. (Newman

et al., 2015) proposed first preselecting top G marker genes for

each population using a t test with a low q value and later iter-

atingG across all populations and retraining the signaturematrix

with the lowest condition number. We studied a new implemen-

tation of this approach by integrating condition number into

AutoGeneS as an objective function to be minimized. We

compared that with other single-objective optimizations using

correlation and distance as well as the MOO for the dataset un-

derlying Figure 3 (Figures S10 and S11). We observed that the
Cell Systems 12, 706–715, July 21, 2021 713
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MOO (max r value = 0.77 and average std = 0.014) outperformed

the single-objective optimization using condition (max r value =

0.69 and average std = 0.033), distance (max r value = 0.29 and

average std = 0.013), or correlation (max r value = 0.76 and

average std = 0.031). Plotting the objective values of the optimal

solution as a function of r and p values, we observed that mini-

mizing condition number does not necessarily improve the pre-

dictions (the minimum condition number using 200 genes is

lower than 1,200 genes while the predictions using 1,200 genes

are more accurate). However, correlation is negatively associ-

ated with r value. Therefore, correlation can be employed as a

measure to select the right number of genes for deconvolution.

AutoGeneS currently requires reference profiles of desired cell

types to search for discriminative genes. The reference profiles

can be provided by either sorted bulk RNA-seq or scRNA-seq.

Using scRNA-seq data has the advantage of putatively revealing

novel cell types and subtypes in a system that no prior knowl-

edge of marker genes for such novel populations exists. We

have demonstrated in this work that AutoGeneS can success-

fully utilize scRNA-seq data as effective references to identify

marker genes for differentiating cell types.
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Görtler, G.F., Solbrig, S., Wettig, T., Oefner, P.J., Spang, R., and

Altenbuchinger, M. (2018). Loss- function learning for digital tissue deconvolu-

tion. J Comput Biol. 27, 342–355.

Gu, Z., Eils, R., and Schlesner, M. (2016). Complex heatmaps reveal patterns

and correlations in multidimensional genomic data. Bioinformatics 32, 2847–

2849. https://doi.org/10.1093/bioinformatics/btw313.

Han, X., Zhou, Z., Fei, L., Sun, H., Wang, R., Chen, Y., Chen, H., Wang, J.,

Tang, H., Ge, W., et al. (2020). Construction of a human cell landscape at sin-

gle-cell level. Nature 581, 303–309.

Hunt, G.J., Freytag, S., Bahlo, M., and Gagnon-Bartsch, J.A. (2019). Dtangle:

accurate and robust cell type deconvolution. Bioinformatics 35, 2093–2099.

Iwasaki, A., Foxman, E.F., and Molony, R.D. (2017). Early local immune de-

fences in the respiratory tract. Nat. Rev. Immunol 17, 7–20.

Kang, K., Meng, Q., Shats, I., Umbach, D.M., Li, M., Li, Y., Li, X., and Li, L.

(2018). A novel computational complete deconvolution method using RNA-

seq data. bioRxiv https://www.biorxiv.org/content/10.1101/496596v1.

Klein, A.M., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V.,

Peshkin, L., Weitz, D.A., and Kirschner, M.W. (2015). Droplet barcoding for sin-

gle-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201.

Konak, A., Coit, D.W., and Smith, A.E. (2006). Multi-objective optimization us-

ing genetic algorithms: a tutorial. Reliab. Eng. Syst. Saf 91, 992–1007.

Kuhn, A., Kumar, A., Beilina, A., Dillman, A., Cookson, M.R., and Singleton,

A.B. (2012). Cell population-specific expression analysis of human cerebellum.

BMC Genomics 13, 610.

Kuhn, A., Thu, D., Waldvogel, H.J., Faull, R.L., and Luthi-Carter, R. (2011).

Population-specific expression analysis (PSEA) reveals molecular changes in

diseased brain. Nat. Methods 8, 945–947.

McInnes, L., Healy, J., and Melville, J. (2018a). UMAP: uniform manifold

approximation and projection for dimension reduction. aRxiv http://arxiv.org/

abs/1802.03426.

McInnes, L., Healy, J., Saul, N., and Großberger, L. (2018b). Umap: uniform

manifold approximation and projection. J. Open Source Software 3, 861.

https://doi.org/10.21105/joss.00861.

Monaco, G., Lee, B., Xu, W., Mustafah, S., Hwang, Y.Y., Carr e, C., Burdin, N.,

Visan, L., Ceccarelli, M., Poidinger, M., et al. (2019). RNA-seq signatures

normalized by mrna abundance allow absolute deconvolution of human im-

mune cell types. Cell Rep 26, 1627–1640.e7.

Newman, A.M., Liu, C.L., Green, M.R., Gentles, A.J., Feng, W., Xu, Y., Hoang,

C.D., Diehn, M., and Alizadeh, A.A. (2015). Robust enumeration of cell subsets

from tissue expression profiles. Nat. Methods 12, 453–457.

Newman, A.M., Steen, C.B., Liu, C.L., Gentles, A.J., Chaudhuri, A.A., Scherer,

F., Kho- dadoust, M.S., Esfahani, M.S., Luca, B.A., Steiner, D., et al. (2019).

Determining cell type abundance and expression from bulk tissues with digital

cytometry. Nat Biotechnol 37, 773–782.
Ordovas-Montanes, J., Dwyer, D.F., Nyquist, S.K., Buchheit, K.M., Vukovic,

M., Deb, C., Wadsworth, M.H., Hughes, T.K., Kazer, S.W., Yoshimoto, E.,

et al. (2018). Allergic inflammatory memory in human respiratory epithelial pro-

genitor cells. Nature 560, 649–654.

Padovan-Merhar, O., Nair, G.P., Biaesch, A.G., Mayer, A., Scarfone, S., Foley,

S.W.,Wu, A.R., Churchman, L.S., Singh, A., andRaj, A. (2015). Singlemamma-

lian cells compensate for differences in cellular volume and DNA copy number

through independent global transcriptional mechanisms. Mol. Cell 58,

339–352.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn:

machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830.

Reusch, N., Bassler, K., and Schultze, J. (2021). https://beta.fastgenomics.

org/datasets/ detail-dataset-4ed9c26de21346268965537b892ec25b.

Schelker, M., Feau, S., Du, J., Ranu, N., Klipp, E., Macbeath, G., Schoeberl, B.,

and Raue, A. (2017). Estimation of immune cell content in tumour tissue using

single-cell RNA-seq data. Nat. Commun 8, 2032.

Schwartz, R., and Shackney, S.E. (2010). Applying unmixing to gene expres-

sion data for tumor phylogeny inference. BMC Bioinformatics 11, 42.
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Theis (fabian.theis@helmholtz-muenchen.de).

Materials availability
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Data and code availability
d Source data statement: In this study, we used existing datasets which are openly available as cited in the references section.

The single-cell source datasets are listed in Table S1. The bulk RNA samples, as well as sorted bulk samples underlying Figures

3, 4 and S6 are downloaded fromGEOwith accession codes GEO: GSE106898 and GEO: GSE10701, respectively. Finally, the

bulk RNA samples underlying Figures 5 and S8 are accessible in Table S11 of Ordovas-Montanes et al. (Ordovas-Montanes

et al., 2018).

d Code statement: AutoGeneS is publicly available as a Python package at Github: https://github.com/theislab/AutoGeneS. A

tutorial and an example are also provided.

d Scripts statement: The scripts used to generate the figures reported in this paper are available at Github: https://github.com/

theislab/reproducibility-AutoGeneS.

d Any additional information required to reproduce this work is available from the lead contact, Fabian Theis (fabian.theis@

helmholtz-muenchen.de).
METHOD DETAILS

Simulated bulk RNA sample generation
To validate the proposed deconvolution process, we required bulk RNA-seq with known cell-type proportions. The single-cell refer-

ence data underlying Figure 2 has six cell types for which matched sorted bulk RNA samples (n=16 with at least 2 replicas per cell

type) are also available. We generated in total of 100 synthetic bulk profiles as a mixture of the sorted bulk RNA samples. For each

synthetic bulk, we subsampled from the sorted bulks to have at least one sample per cell type and then multiplied the gene expres-

sion profiles with a random fraction (sum of fractions=1.0). We used the fractions later to validate the inferred proportions using our

method. Because the single-cell reference profiles and the synthetic bulk RNA samples were generated using different sequencing

technologies, this was amore realistic way of generating synthetic bulk RNA samples comparedwith the approaches that subsample

scRNA-seq data and sum the expression profiles to simulate bulk RNA samples.

Simulated scRNA-seq data generation
In the scRNA-seq data underlying Figure 2, the cell types are well defined with low correlation. To evaluate our method concerning

different noise levels as well as higher cellular correlation, we modified the single-cell data as follows: We first removed top differen-

tially expressed genes (n=5,379) from a total of 19,089 genes. We then removed highly variable genes (n=5,000) from the remaining

ones and a total of 8,719 genes was left for efficiency analysis. Since the gene selection in AutoGeneS is based on the mean expres-

sion of cells, dropout— low mRNA detection in single-cell data—can influence the efficiency of AutoGeneS. Therefore, we added to

the noise level through dropping out genes from the single-cell data and re-generated the signature matrix for each noise level. De-

pending on the dropout rate, genes are randomly selected and set to 0. We tested various dropout rates between 0�50 percent

(rate=r means that r percent of genes in each cell were randomly set to 0). The results in Figure S4 show that AutoGeneS, compared

to highly variable (HV) and differentially expressed (T-DE) genes, is more robust to this source of noise. However, increasing the

dropout rate decreases r-value as expected.

Deconvolution
To infer cellular proportion, relatedwork generally assumes that the countmatrix Y ofmmixture samples with N genes is theweighted

sum of K cell-type-specific count profiles with the same N genes, represented by matrix X (Kuhn et al., 2011), (Frishberg et al., 2019),

(Görtler et al., 2018). This can be modeled as a system of linear equations as follows:

Y = XW+E (Equation 1)

where, W is an k3m fractional abundancematrix and E represents the residual errors. To computeW, we solve the equation for only

a subset of genes g << N selected using AutoGeneS:

Yg =XgW+E (Equation 2)
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RNA count data is often normalized for library size to remove any difference that is arisen due to sampling effects. However, this

approach can mask the difference between biological samples with different mRNA abundance. To consider the total mRNA abun-

dance of each cell type, we can add the mean library size of cell types to Equation 2 as follows:

Yg =XgSW0 +E (Equation 3)

where, S is a k3 k diagonal matrix with Sll being the average number of mRNAs in cell type l (also called cell size). Considering S in the

regression function, absolute cellular proportions canchange (WsW0), however for a cell-type specific comparison across samples i

and j,
Wl;i

Wl;j
is still equal to

W0l;i
W0l;j.

To build the signature matrix using bulk-sorted RNA-seq, we averaged transcripts-per-million (TPM)-normalized cell-type-specific

profiles in non-log linear space and filtered the markers. Later, we used the mean expression of all cells in a population after normal-

izing each cell into TPM and filtered the markers to obtain population-specific reference profiles. Multi-objective optimization. The

proposed feature selection approach solves a multi-objective optimization problem that can be generally formulated as: subject to:

minimize=maximize f
!ð z!Þ : = ½f1ð z!Þ; :::::; fkð z!Þ � (Equation 4)
hið z!Þ%0; i= 1; :::;m (Equation 5)
eið z!Þ= 0; i= 1; :::;p (Equation 6)

where z! is the vector of decision variables and fi :R
n /R, i = 1,..., k are the objective functions which evaluate the quality of a solution

by assigning a fitness value to it. Also, hi,ej : R n / R, i = 1,...,m, j = 1,...,p are referred to as the inequality and equality constraint

functions of a problem which must be satisfied. In AutoGeneS, we have n binary decision variables where n is equal to the number

of genes fromwhich the optimizer selects themarkers. The value of a decision variable represents whether the corresponding gene is

selected as a marker. Later, we evaluate the objective functions (correlation and distance) only for genes G whose decision variables

are set to one. Considering Xk
G as the expression profile of cell type k for genes G, the correlation objective is measured as:

CG =
X

c k˛K
ck0˛K; ksk0

�����
XG
k X

G
k0

kXG
k kkXG

k0 k

����� (Equation 7)

and the distance objective is measured as:

DG =
X

c k˛K
ck0˛K; ksk0

kXG
k �XG

k0 k (Equation 8)

AutoGeneS allows setting the number of selected markers G as a fixed value that can be implemented as a constraint (all the so-

lutions where |G| is larger than a desired value, are marked as infeasible and will not be evaluated). However, we show later how this

constraint is implemented differently in AutoGeneS to obtain a better performance.

Several techniques have been proposed in the literature for solving multi-objective optimization problems. Among these, meta-

heuristics such as multi-objective evolutionary algorithms (MOEAs) are quite popular and well established mainly because of their

flexibility andwidespread applications (Deb et al., 2002), (Deb, 2011), (Smith, 2005). MOEA denotes a class of searchmethods where

the decisions are made in the presence of trade-offs between objectives. As the name suggests, multi-objective optimization in-

volves more than one objective function to be optimized at once. When no single solution exists that simultaneously optimizes

each objective, the objective functions are said to be conflicting. In this case, the optimal solution of one objective function is different

from that of the others. This gives rise to a set of trade-off optimal solutions popularly known as Pareto-optimal solutions. The list of

Pareto-optimal solutions includes non-dominated solutions, which are explored so far by the search algorithm. These solutions

cannot be improved for any of the objectives without degrading at least one of the other objectives. Without additional subjective

preference, all Pareto-optimal solutions are considered to be equally good.

AutoGeneS uses a genetic algorithm (GA) as one of the main representatives of the family of MOEAs. GA uses a population-based

approachwhere candidate solutions that represent individuals of a population are iterativelymodified using heuristic rules to increase

their fitness (i.e., objective function values) (Garcı́a-Mart et al., 2018), (Konak et al., 2006). The main steps of the generic algorithm are

as follows:

1. Initialization step: Here the initial population of individuals is randomly generated. Each individual represents a candidate so-

lution that, in the feature selection problem, is a set of marker genes. The solution is represented as a bit string with each bit

representing a gene. If a bit is one, the corresponding gene is selected as a marker.
Cell Systems 12, 706–715.e1–e4, July 21, 2021 e2
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2. Evaluation and selection step: Here the individuals are evaluated for fitness (objective) values, and they are ranked from best to

worst based on their fitness values. After evaluation, the best feasible individuals are then stored in an archive according to their

objective values.

3. Termination step: Here, if the termination conditions (e. g., if the simulation has run a certain number of generations) are satis-

fied, then the simulation exits with the current solutions in the archive. Otherwise, a new generation is created.

4. If the simulation continues, the next step is creating offspring (new individuals): The general GAmodifies solutions in the archive

and creates offspring through random-based crossover and mutation operators. First, parents are selected among the can-

didates in the archive. Second, the crossover operator combines the bits of the parents to create the offspring. Third, the mu-

tation operator makes random changes to the offspring. Offspring are then added to the population, and the GA continues with

step 2.

We modified the python package DEAP (v1.0 https://github.com/DEAP/deap) (De Rainville et al., 2012) to adapt it to our problem.

The algorithms in Figure S9 represent how the crossover and mutation operators are implemented in AutoGeneS to always return

individuals with a fixed number of marker genes. In our feature selection problem, we are generally interested in finding the most

discriminative genes out of N variable genes (e. g., (Baron et al., 2016),000 HV genes). This results in a search space with 2|N| possible

solutions. However, the number of possible solutions is decreased to

� jNj
jGj

�
whenwe only search for solutionswith a fixed number of

genes. Therefore, this implementation avoids generating infeasible solutions (where the number of markers are not equal to |G|) and

significantly improves the efficiency of the whole GA. For all the studies in this paper, we showed that |G| ˛ [200 � 500] provided

sufficiently good results. The number of discriminative genes depends on the number of cell types and their cellular correlation.

For the desired solution, the correlation matrix showing correlation coefficients between cell types is a good assessment of the num-

ber of genes. In case the cellular correlation is still high after optimization, either more genes should be added or very similar cell types

(usually with correlation> 90%) should be merged as one cell type. The number of genes also influences the execution time of the

objective function (Figure S4C).

It should be noted that the number of HV genes affects the efficiency of AutoGeneS because many differentially expressed genes

might not appear in the top HV genes (e. g., n < 1, 000). On the other side, selecting a large number of HV genes (e. g., n > 10, 000)

increases the search space and slows the convergence of optimization results. Feeding the optimization with 4,000-6,000 HV genes

often works well. For highly correlated cell types (correlation 60%), we recommend using at least 5,000 number of HV genes.

Finally, the most time-consuming part of an optimization process is the evaluation part where the objective functions are executed.

Therefore, we designed the optimizer to cache the explored solutions and their objective values to avoid re-calculating the objective

functions if some of those are generated in later iterations. For a fixed number of iterations, the number of HV genes should not

change the execution time as it only changes the size of the search space. However, for a low number of HV genes (n < 2, 000),

the probability of generating similar solutions increases resulting in lower execution time (Figure S4C). When the number of HV genes

increases (n > 2, 000), the execution time slightly escalates.

Selection of a solution from Pareto-optimal solutions
By their nature, multi-objective optimization problems give rise to a set of Pareto-optimal solutions that need further processing to

find a single solution that satisfies the subjective preferences of the users. AutoGeneS also plots the set of Pareto-optimal solutions;

comparing the correlation and the distance of the two extremes (the solutions with lowest correlation and highest distance) indicates

which solution might be better. For the analysis in this paper, we selected the solution with minimum correlation for deconvolution.

Regarding our results with ground truth, that solution always returned the highest r-value (Figure S4D). However, still, other solutions

on the Pareto front might also work well.

Highly variable genes
Highly variable (HV) genes are those that are informative of the variability in a dataset (Brennecke et al., 2013). These genes are usually

filtered as the first step of feature selection. Depending on the complexity of a dataset, typically between 1,000 and 5,000 HV genes

are selected for downstream analysis. The authors in (Klein et al., 2015) suggested that downstream analysis is only as robust as the

exact choice of the number of HV genes. Due to the possible batch effects especially regarding varying library preparation protocols

between reference andmixture samples, we prefer to select a higher number of HVGs, like 4,000. We used the method implemented

in single-cell analysis in Python (SCANPY) (Wolf et al., 2018) for selecting HV genes in which genes are binned by their mean expres-

sion and those with the highest variance-to-mean ratio are selected as HV genes in each bin. Of course, before applying this method,

genes with a low average expression are excluded (if not already done for the external datasets) as a quality control filter. Differentially

expressed genes. To find differentially expressed genes in a population of interest, statistical tests like Wilcoxon rank-sum test or t

test are usually used to rank genes by their difference in expression between two groups (the population of interest and the remaining

populations). In the present study, we used t test from the Seurat package (Butler et al., 2018), (Stuart et al., 2019) implemented in

SCANPY (tl.rank_genes_groups) with Benjamini-Hochberg (BH) corrected p-values (Benjamini and Hochberg, 1995) (called q-

values) on log-transformed data. The top G marker genes with lowest q-values are selected for each population and aggregated

as T-DE. We have selected G so that T-DE contained in total the same number of genes as used in AutoGeneS.
e3 Cell Systems 12, 706–715.e1–e4, July 21, 2021
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Silhouette score
Silhouette weight (SW) measures how similar a cell is to the cells within its own cluster compared to other clusters. SW ranges from

�1 to +1,where a high value indicates that the cell is well matched to its own cluster and poorlymatched to neighboring clusters. If the

average of Silhouette weights (ASW) over all cells is high, the clusters are dense and well-separated. An ASW of 0 or -1 represents

overlapping clusters. We used the implementation in scIB (https://github.com/theislab/scib/blob/master/scIB/metrics.py) to mea-

sure how batches are mixed. scIB scales ASW (1 � |ASW|) that we refer to it as Silhouette score. A Silhouette score of 1 represents

separated clusters and mixed batches which is ideal.

Regression
The proposed feature selection strategy is orthogonal to the regression technique used for inferring cellular proportions. AutoGeneS

offers a set of regression methods including linear regression, Nu-support vector machine (Nu-SVR), and non-negative least squares

(NNLS). For the analysis in this paper, we used Nu-SVR (sklearn.svm.NuSVR) (Pedregosa et al., 2011). Compared with regular linear

regression, which attempts to minimize regression error, SVR tries to fit the regression error within a certain threshold. The ε-loss

function in SVR ignores errors that are within ε distance of the observed value by treating them as equal to zero. For other points

outside this boundary, the loss is measured based on the distance between observed value y and the ε boundary. This produces

a better-fitting model by highlighting the loss of outliers alone. In Nu-SVR, Nu ˛ (0, 1] indicates an upper bound on the fraction of

training errors (poorly predicted samples) and a lower bound on the fraction of support vectors to use. The regression is performed

on normalized, non-log-transformed data. After the regression, we ensure that theweights are positive and they sum to one. Thus, we

set the negative values to 0 and normalize the rest to sum to one.

The execution times underlying Figures 3C and S4Cweremeasured on an Intel(R) Xeon(R) Gold 6126 CPU at 2.60GHz with 395GB

of RAM. Statistical test. Linear concordance between estimated and real proportions were assessed using linear regression (scipy.s-

tats.linregress) (Virtanen et al., 2020). Pearson correlation (r-value) and two-sided p-value using Wald Test were determined for

each test.

Normalization
The external RNA-seq datasets were downloaded and analyzed using the authors’ normalization consisting of TPM or reads per kilo-

base of transcript per million (RPKM). The count matrix for scRNA-seq datasets were normalized to one million counts per cell.

Cell type annotation of ethmoid sinus. Clustering was performed on both non-polyps (n=5) and polyps (n=6) single-cell samples (a

total of n=14,878 cells) from (Ordovas-Montanes et al., 2018). A single-cell neighborhood graph (kNN-graph) was computed on the

first 50 principal com- ponents using 30 neighbors. For clustering and cell-type annotation, Louvain-based clustering (Blondel et al.,

2008) was used as implemented in louvain-igraph (v0.6.1 https://github.com/vtraag/louvain- igraph) and adopted by SCANPY (tl.lou-

vain) with resolution parameter set to 0.9. Clusters were annotated on the basis of similarity to the original annotations (Ordovas-Mon-

tanes et al., 2018). 85% of new cell annotations overlapped with the original ones. We used state-specific annotations for apical and

basal cells: in non-polyps, they were annotated as apical non and basal non, respectively. Similarly, apical and basal cells in polyps

were annotated as apical polyp and basal polyp, respectively.

Benchmarks
We used CIBERSORTx and MusiC with default parameters. CIBERSORTx recommended to perform batch correction to minimize

batch effects as a source of confounding technical variation between reference and mixture samples. Batch correction is applied

after feature selection. Since our main objective in this paper is to study the importance of feature selection for bulk deconvolution,

batch correction was not performed on bulk samples using CIBERSORTx except for the analysis underlying Figure 4 (batch mode =

S). This was necessary to make the comparison with other methods fair as the proposed batch correction can be applied to the

output of all the methods. For xCell, immunoStates, MCP-counter, LM22, and Shiny, we downloaded their proposed signatures

and filtered the reference profiles used in this paper for those signatures, and performed deconvolution using Nu-SVR. For the results

underlying Figure 5, CIBERSORTx was performed using its built-in regression.

Visualisation
The UMAP plots in this paper are generated using SCANPY (tl.umap) (McInnes et al., 2018a, 2018b). The heatmaps underlying Fig-

ures 2, 3, and 4 are generated using ComplexHeatmap (Gu et al., 2016).
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https://github.com/theislab/scib/blob/master/scIB/metrics.py

	AutoGeneS: Automatic gene selection using multi-objective optimization for RNA-seq deconvolution
	Introduction
	Results
	AutoGeneS enables tissue characterization using reference profiles across multiple technologies
	Multi-objective optimization can learn non-collinear genes
	AutoGeneS selects non-batch driver genes
	Evaluation on simulated bulk tissues
	Deconvolution of PBMC samples with sorted bulk RNA-seq
	Deconvolution of PBMC samples with scRNA-seq
	Deconvolution of ethmoid sinus from patients with nasal polyposis confirms a depletion in glandular cells and enrichment in ...
	Hierarchical optimization for highly correlated cell types


	Discussion
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★methods
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Method details
	Simulated bulk RNA sample generation
	Simulated scRNA-seq data generation
	Deconvolution
	Selection of a solution from Pareto-optimal solutions
	Highly variable genes
	Silhouette score
	Regression
	Normalization
	Benchmarks
	Visualisation






