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Abstract: The hepatitis C virus (HCV) is capable of spreading within a host by two different trans-
mission modes: cell-free and cell-to-cell. However, the contribution of each of these transmission
mechanisms to HCV spread is unknown. To dissect the contribution of these different transmission
modes to HCV spread, we measured HCV lifecycle kinetics and used an in vitro spread assay to
monitor HCV spread kinetics after a low multiplicity of infection in the absence and presence of a
neutralizing antibody that blocks cell-free spread. By analyzing these data with a spatially explicit
mathematical model that describes viral spread on a single-cell level, we quantified the contribution
of cell-free, and cell-to-cell spread to the overall infection dynamics and show that both transmission
modes act synergistically to enhance the spread of infection. Thus, the simultaneous occurrence of
both transmission modes represents an advantage for HCV that may contribute to viral persistence.
Notably, the relative contribution of each viral transmission mode appeared to vary dependent
on different experimental conditions and suggests that viral spread is optimized according to the
environment. Together, our analyses provide insight into the spread dynamics of HCV and reveal
how different transmission modes impact each other.

Keywords: HCV; cell-to-cell transmission; mathematical modeling; spatial spread; agent-based model

1. Introduction

The way a virus spreads within a host is a critical determinant that impacts the es-
tablishment and progression of an infection that can affect pathogenesis, host response,
and treatment efficacy. Although classical viral life cycles are often diagramed as be-
ing initiated by the entry of diffusing virions via cell-surface receptors followed by viral
replication and subsequent release of newly formed viral particles, it is recognized that
viruses can spread in multiple ways. Besides transmission by cell-free viral particles, many
viruses [1–3], including the hepatitis C virus (HCV) [4,5], have been observed to spread
via direct cell-to-cell mechanisms. The strategies employed by different viruses are not all
well-defined but can involve a broad range of mechanisms, such as the formation of viro-
logical synapses, movement on the outside of membrane bridges, or extensions created by

Viruses 2021, 13, 1308. https://doi.org/10.3390/v13071308 https://www.mdpi.com/journal/viruses

https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0002-3357-1817
https://orcid.org/0000-0002-4935-3312
https://orcid.org/0000-0002-1198-6632
https://doi.org/10.3390/v13071308
https://doi.org/10.3390/v13071308
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/v13071308
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v13071308?type=check_update&version=1


Viruses 2021, 13, 1308 2 of 22

either the target or donor cell or within cytoplasmic tunnels connecting adjacent cells [1,2].
In terms of efficient dissemination of infection, both cell-free and cell-to-cell transmission
have their advantages and disadvantages. While diffusing viral particles facilitate the infec-
tion of distant cells and transmission to new hosts, direct cell-to-cell transmission between
neighboring cells is considered to be more efficient as it can circumvent complex entry
processes and shield viral material from neutralizing antibodies [5–7]. Furthermore, it is
thought to allow more viral genomes to simultaneously enter individual cells, increasing
resistance to host defenses and antiviral therapies [8]. Yet, to which extent these different
means of transmission contribute to viral spread and establishment of chronic infection,
as well as influence viral escape and disease progression, has not been determined.

Cell-free and cell-to-cell spread can be studied individually by experimentally blocking
either of the two transmission modes. For HCV, neutralizing antibodies against the HCV E2
glycoprotein (anti-E2) have been used to inhibit cell-free virus uptake and to allow the study
of HCV cell-to-cell transmission in vitro [4,9–11]. However, when both transmission modes
occur simultaneously, the extent to which each of these transmission modes contributes
to viral spread and influences the other is difficult to measure directly. Mathematical
models that provide an accurate representation of the infection process have proven to be
invaluable for analyzing infection dynamics and quantifying important parameters that
characterize viral spread kinetics and response to antiviral treatment (reviewed in [12]),
particularly in the case of HCV [13–16]. Specifically, analyzing the interplay of cell-free and
cell-to-cell transmission during viral spread requires the use of mathematical models that
are able to account for the spatio-temporal dynamics of these processes and the individual
dynamics of foci growth [12,17].

In this study, we combined experimental data and mathematical modeling to deter-
mine the contribution and dynamic interaction between cell-free and cell-to-cell transmis-
sion modes in HCV spread. Using a multi-step approach, we first analyzed the kinetics
of HCV single cycle infection experimentally at the population level, measuring intracel-
lular replication and extracellular viral secretion, as well as the spatial spread of HCV
during multi-cycle infection on a single cell level by measuring foci number and growth
under different conditions, e.g., in the absence and presence of neutralizing antibodies
that block cell-free transmission. To analyze these data, we then developed a spatially
resolved, multi-scale agent-based model (ABM) that accounts for intracellular viral replica-
tion dynamics, direct cell-to-cell spread, as well as extracellular viral diffusion, and cell-free
spread. Using appropriate parameter inference methods to adapt our multi-scale ABM to
the experimental data, our model is able to describe the experimentally observed spread
dynamics. In addition, the model allows for estimates of transmission parameters and to
infer the contribution of cell-free and cell-to-cell transmission to HCV spread that cannot
be measured experimentally. We found that the relative contribution of each transmission
mode varied under different culture conditions, which suggests that HCV may optimize
the spread mechanisms utilized according to the environmental conditions. Together, our
analyses provide insight into the transmission dynamics of HCV on a cellular level and
reveal how different transmission modes might impact each other.

2. Materials and Methods
2.1. Experimental Methods
2.1.1. Cells and Virus

Huh7 human hepatoma cells were obtained from F.V. Chisari (The Scripps Research
Institute, San Diego, CA, USA) [18] and cultured in complete Dulbecco’s modified Eagle’s
medium (cDMEM) supplemented with 100 units/mL penicillin, 100 mg/mL streptomycin,
2 mM L-glutamine (Corning), 10 mM HEPES (Santa Cruz), non-essential amino acids
(Thermofisher Scientific, Waltham, MA, USA), and 10% fetal bovine serum (FBS) (Hyclone
or Gibco, Waltham, MA, USA). Cells were maintained at 37 ◦C in 5% CO2 conditions. Stocks
of HCV were produced from a plasmid encoding the JFH-1 genome that was provided by
Takaji Wakita (National Institute of Infectious Diseases, Tokyo, Japan) [18,19]. Methods for
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HCV RNA in vitro transcription and electroporation into Huh7 cells have been described
previously [20]. Media collected from HCV RNA transfected cells was then used to infect
Huh7 cells at a multiplicity of infection (MOI) of 0.01 foci forming units (FFU)/cell. Culture
media from those infections were harvested, pooled, aliquoted, frozen, and titered as
described previously [20]. To achieve high titer virus stocks for high MOI experiments,
the virus was collected in serum-free, phenol red-free media and concentrated via Amicon
ultracentrifugation filters (Milipore) prior to aliquoting and freezing.

2.1.2. Reagents

The human anti-HCV E2 antibody (AR3A) was provided by Mansun Law (The Scripps
Research Institute, San Diego, CA, USA) [21]. Mouse anti-HCV NS5A (9E10) was provided
by Charlie Rice (Rockefeller University, NY, USA) [22]. Secondary antibodies anti-human-
HRP and goat anti-mouse-HRP were purchased from Thermofisher Scientific and Vector
Labs, respectively. The 3-amino-9-ethycabazole (AEC) substrate kit was purchased from
BD Pharmingen.

2.1.3. High MOI HCV Life Cycle Kinetics

Huh7 cells were plated in 96-well plates at 4000 cells per well. The next day cells were
inoculated with serum-free HCV at a MOI of 6 ffU/cell in 50 µL of serum-free cDMEM
for 3 h. The inoculum was then removed, and the wells were rinsed twice with warm
cDMEM before adding 200 µL fresh cDMEM with 10% FBS. Media and cell lysates were
collected from triplicate wells at 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 36, 42, 48, 72, and 96 h
post-inoculation (p.i.). To determine the amount of cell division, cells in parallel wells were
counted at 0, 36, 72, and 96 h post-inoculation. Additionally, duplicate wells were fixed at
30 and 72 h p.i. to determine the percent infected cells by immunostaining for HCV.

2.1.4. RNA Isolation and Quantification

Total intracellular RNA was isolated using an ABI PRISM 6100 Nucleic Acid Prep-
station (Applied Biosystems, Waltham, MA, USA), using the manufacturer’s instruc-
tions. Extracellular RNA was extracted from culture media spiked with 1 µg mouse liver
RNA, which served as an internal extraction efficiency control RNA, using a KingFisher
Duo Prime Purification System or a KingFisher Flex purification system (ThermoFisher,
Waltham, MA, USA), per the manufacturer’s instructions. Isolated RNA was used to create
cDNA via random prime reverse transcription (Revertaid transcriptase, Thermofisher,
Waltham, MA, USA). Quantitative PCR was then performed with iTaq Universal SYBR
Green Supermix (BioRad, Hercules, CA, USA) using Applied Biosystems 7300 real-time
thermocyclers. The thermal cycling program included an initial 30 s 95 ◦C denaturation
step followed by 40 cycles of denaturation (15 s at 95 ◦C) and a 1 min annealing/extension
step at 60 ◦C. HCV copies were quantified relative to a serially diluted standard curve
of the pJFH-1 plasmid. Intracellular HCV copies were normalized to cellular huGAPDH,
and extracellular HCV copies were normalized to mGAPDH. The PCR primers used to
amplify HCV were 5′-GCC TAG CCA TGG CGT TAG TA −3′ (sense) and 5′-CTC CCG
GGG CACTCG CAA GC-3′ (antisense). The PCR primers used to amplify GAPDH were
5′-GAA GGT GAA GGT CGG AGT C-3′ (sense) and 5′-GAA GAT GGT GAT GGG ATT
TC-3′ (antisense).

2.1.5. HCV Titer Assay

Huh7 cells were plated at 4000 cells per well in a 96-well plate. Approximately 24 h
later, 100 µL of 10-fold serial dilutions of virus samples were added to the cells in duplicate.
At 24 h p.i., a 0.5% methylcellulose overlay was added to the wells. At 72 h p.i., cells were
fixed with 4% paraformaldehyde for 20 min, washed with 1× phosphate buffered saline
(PBS), and immunostained for HCV. Titers (FFU/mL) were determined by counting the
number of foci in multiple dilutions.
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2.1.6. HCV Immunohistochemical Staining

Fixed cells were permeabilized by adding a 1:1 mixture of −20 ◦C methanol:acetone
for 10 min. After a 1× PBS wash, endogenous peroxidases were inactivated with 0.3% (v/v)
hydrogen peroxide for 5 min, followed by another 1X PBS wash. Cells were blocked for
60 min at room temperature on an orbital rocker with blocking buffer (1× PBS containing
0.5% (v/v) TritonX-100, 3% (w/v) bovine serum albumin (BSA), and 10% (v/v) FBS),
followed by incubation with the primary antibody diluted in binding buffer (1× PBS
containing 0.5% (v/v) TritonX-100, and 3% w/v BSA) for 60 min at room temperature. Cells
were incubated with mouse anti-HCV NS5A (9E10) (1:500) or human anti-HCV E2 (AR3A)
(1:750), as indicated. After washing with 1X PBS, an appropriate secondary antibody in
binding buffer was added for 60 min at room temperature. Secondary antibodies included
either goat anti-mouse HRP (1:4) or goat anti-human HRP (1:750). After washing with
1× PBS, HRP staining was developed using an AEC substrate kit. The wells were washed
with ddH2O, and a 1:1 glycerol:water mixture was added to the wells for storage.

2.1.7. Spread Assay

Details of the protocol have been previously published [9,10], but briefly, confluent
monolayers of Huh7 cells in 96-well plates were infected with indicated FFU per well. After
17 h incubation at 37 ◦C, the inoculum was removed, and media containing 1% dimethyl
sulfoxide (DMSO) was added to slow cell growth because it has been previously shown
that culturing Huh7 cells in 1% DMSO causes cell proliferation to stop after approximately
6 days [20,23]. Cells were either left untreated or treated with neutralizing HCV E2 antibody
(AR3A) at 10 µg/mL, which has been documented to block HCV cell-free spread under the
experimental conditions utilized herein [4,9,10]. Media was changed at 72 h p.i., and every
24 hrs thereafter unless noted otherwise. The number of cells per well was counted at
each time point throughout the course of the assay to assess cell division. Cells were fixed
at 48, 72, 96, and 120 h (Exp. A) or 48, 59, 72, and 83 h (Exp. B) as indicated using 4%
paraformaldehyde and immunohistochemically stained for HCV (with either anti-NS5A
or anti-E2). The number of foci and foci sizes (i.e., cells/focus) were counted using light
cell microscopy.

2.1.8. Quantifying Foci Size

Initially, the number of cells/focus was determined either by manual counting through
a light microscope or by taking pictures with a Nikon Diaphot TMD inverted phase-contrast
microscope equipped with an Olympus DP21 camera and subsequently using Microsoft
Paint Program to count the number of cells per focus in pictures. We expedited our
quantification procedure by using the measurement tool in ImageJ to measure the area of
representative cells at each time point (to account for decreasing cell size over time) as well
as the area of each focus. For each time point, the foci area was divided by the average
area of single cells. As such, the majority of the foci size data was obtained via ImageJ
quantification, which we confirmed to match the manual counting data.

2.2. Mathematical Modeling
2.2.1. Modeling Viral Life Cycle Kinetics

We described the intracellular and extracellular viral RNA kinetics for individual
infected cells by modeling the dynamics of the corresponding concentrations. Intracellular
HCV RNA concentration, R, was assumed to follow a logistic growth with a maximal
replication rate λ and a total carrying capacity RC for individual cells. Intracellular viral
RNA was then exported at a constant rate ρ, to become new extracellular viral RNA,
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V. Furthermore, extracellular viral concentration is assumed to be lost at a rate c. The model
could then be described by the following system of ordinary differential equations:

dR
dt = λR

(
1− R

RC

)
− ρR

dV
dt = ρR− cV

(1)

To allow parameter identifiability given the available data, the degradation of in-
tracellular RNA was not explicitly modeled. Therefore, the parameter λ describes a net-
replication rate considering viral production and degradation. The model in Equation (1)
was fit to the measured intracellular and extracellular RNA life cycle kinetics data (Figure 1)
using a maximum likelihood approach. To account for the experimental setting, we addi-
tionally considered the initial viral inoculum, Vr, that loses its infectivity at rate c, i.e., dVr/dt
= −cVr. Thus, the measured extracellular viral RNA concentration, Ṽ, is a combination of
Vr and the newly produced viral RNA, V, i.e., Ṽ = Vr + V. Despite the removal of media,
some viral particles adhere to hepatocytes resulting in high initial cell-associated RNA
counts and residual viral particles in the media at early time points due to continuous
binding and release. Therefore, measurements at 3 and 6 h p.i. were neglected in the
fitting procedure. Parameters estimated include the maximal net-replication rate λ, the
viral export and loss rates ρ and c, respectively, the maximal carrying capacity RC, as well
as the initial concentrations of intracellular viral RNA R0 and extracellular residual viral
RNA V0 (see Table S1). The 95% confidence intervals of estimates were determined using
the profile likelihood approach [24].

Figure 1. HCV High MOI Infection Kinetics: Huh7 cells were infected with HCV at an MOI of 6. Cell lysates and culture
media was harvested at the indicated time points. (A) Intracellular HCV RNA (black triangles). HCV and cellular GAPDH
RNA levels were quantified by RT-qPCR. Cellular GAPDH was used to normalize HCV copies, which are then graphed
as average HCV copies/µg RNA in triplicate samples +/− standard deviation (SD). (B) Extracellular HCV RNA (blue
triangles) are graphed as average HCV copies/mL. HCV titers (green triangles) are graphed as foci-forming units (FFU)/mL.
Pooled culture media samples from the triplicate wells were spiked with equal amounts of mouse liver RNA as an internal
control before extracellular RNA was extracted. Extracellular HCV RNA and mouse GAPDH (mGAPDH) RNA levels were
quantified by RT-qPCR. HCV copies were normalized to mGAPDH and graphed as average HCV copies/mL in duplicate
samples +/− SD. Titers were determined by titrating the pooled media on naïve Huh7 cells. Results are the average of foci
counted in three wells +/− SD.

2.2.2. A Multi-Scale Model to Describe HCV Infection Dynamics

To analyze the HCV spread assays and determine the contribution of individual trans-
mission modes, we developed a multi-scale model that describes HCV infection dynamics
in a monolayer of cells. To this end, we extended a model that we had developed previously
to simulate the spread of HCV in in vitro cell culture systems [14,17]. The model accounts



Viruses 2021, 13, 1308 6 of 22

for the spatial distribution of cells and viral spread dynamics on a cellular level, as well as
intracellular viral replication on a per-cell basis and extracellular viral diffusion. Cells are
placed on a two-dimensional lattice using a hexagonal grid structure, i.e., each cell having
a maximum of six possible neighbors. For the whole grid, we assume closed boundary
conditions with our simulation environment representing a single well. Extending the
previously published model to additionally account for some degree of cell proliferation,
a fraction of grid sites was left unoccupied in the beginning, and uninfected cells were
allowed to proliferate into empty adjacent grid sites following a normal distribution with
mean µ and standard deviation σ = 0.1. This fraction was set to 60% to allow for cell divi-
sion within the model while also ensuring sufficient cell confluence and densely packed
grids at later time points. For our simulations, we took a simplified approach for modeling
cell division by averaging the cell division experimentally observed over the course of
the entire experiment so that individual cells were assumed to divide every 32 h (Exp. A)
or 24 h (Exp. B) on average, which was simulated stochastically for each cell. Cells are
stationary and are infected by either cell-free or direct cell-to-cell transmission, with the
probability of infection depending on the concentration of cell-free virus at the respective
grid site or the intracellular viral concentration of neighboring infected cells, respectively.
Upon infection, intracellular viral replication and export follow the dynamics as described
in Equation (1) with the corresponding ordinary differential equations discretized and
described by a set of differential equations with a time-step size of ∆t = 1 min. Thus,
Equation (1) becomes:

Ri,j(tn+1) = Ri,j(tn) + ∆t
(

λRi,j(tn)
(

1− Ri,j(tn)
RC

)
− ρRi,j(tn)

)
Vi,j(tn+1) = Vi,j(tn) + ∆t

(
ρRi,j(tn)− cVi,j(tn)

) (2)

where Ri,j(tn) and Vi,j(tn) denote the concentration of intracellular and extracellular viral
RNA for the cell at grid site (i,j) at time step tn. Exported viral RNA will contribute to the
extracellular viral concentration at the respective grid site, Vi,j. Diffusion of viral particles
between grid sites follows the approach introduced by Funk et al. [25] with:

Vi0,j0(tn+1) = Vi0,j0(tn)−
m
6 ∑

(i,j)∈Ω

(
Vi,j(tn)−Vi0,j0(tn)

)
(3)

where Vi0,j0(tn+1) denotes the viral concentration at grid site (i0,j0) at time step tn+1, with
m and Ω denoting the fraction of viral particles allowed to diffuse and the set of neigh-
boring grid sites of (i0,j0), respectively. At the beginning of simulations and following the
experimental protocol, infected cells were initialized according to a truncated exponential
distribution as described in [17].

Infection by cell-free and cell-to-cell transmission: The probability of a hepatocyte at posi-
tion (i,j) to get infected by cell-free transmission in time-step tn, p f

i,j(tn), depending on the
concentration of extracellular virus at the corresponding grid site, Vi,j(tn), and a scaling
factor βf that corresponds to the cell-free transmission rate as used in deterministic mathe-
matical models to describe viral spread [17,26,27]. Thus, at each time-step, the probability
for cell (i,j) to get infected was calculated by:

p f
i,j(tn) = min

{
1, β f Vi,j(tn)

}
(4)

A Bernoulli trial with this probability was performed. In case of a successful infection,
the extracellular viral concentration at this grid-site was reduced by R0. In case Vi,j(tn) < R0,
additional neighboring grid sites were considered to reduce the local viral concentration
by R0.
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Analogously, the probability of an infected cell infecting a neighboring uninfected cell
by direct cell-to-cell transmission was calculated by:

pc
i,j(tn) = min

{
1, βcRi,j(tn)

}
(5)

where Ri,j(tn) denotes the concentration of intracellular viral RNA in cell (i,j), and βc the
corresponding scaling factor representing the cell-to-cell transmission rate. If there was at
least one uninfected cell in the direct neighborhood, a Bernoulli trial with probability pc

i,j(tn)

was performed. In case of a successful infection, the intracellular viral concentration in the
infecting cell was reduced by R0, the estimated initial concentration of viral RNA within
an infected cell (Table S1). In addition, to account for possible unsuccessful cell-to-cell
transmissions events despite a high intracellular RNA concentration due to non-infectious
viral material (i.e., low specific infectivity), a factor τ was introduced that delayed the
occurrence of another transmission event originating from the same infected cell. This
factor of intracellular HCV-specific infectivity corresponded to the waiting time between
two successful cell-to-cell transmission events from one infected cell and was therefore
sampled from an exponential distribution with average τ. The delay was also considered
for any newly infected cells before they are able to contribute to the cell-to-cell spread.

Modeling anti-E2 treatment effects: As an additional extension to our previous model [17],
we also added the concentration of anti-E2 as included within some of the experimental
cultures. To this end, extracellular virus was reduced through neutralization by anti-E2
dependent on its relative concentration, E2, by:

V(i,j)(tn+1) = ∆tρR(i,j)(tn) + V(i,j)(tn)

(
1− E2(tn)

E20

)
(1− ∆tc) (6)

where E20 denotes the initial concentration of anti-E2 and E2(tn) the concentration at time
point tn. Through the neutralization of the virus, anti-E2 is depleted/consumed at a rate
of cE2, reducing the concentration according to:

E2(tn+1) = E2(tn)− ∑
(i,j)∈Ω

cE2
E2(tn)

E20
V(i,j)(tn) (7)

where Ω is the set of all grid sites. Note that we assumed a homogenous concentration of
anti-E2 throughout the grid. For simplicity, E2 is given in arbitrary units with E20 = 104.

The complete model was implemented in the C++ programming language with
simulations run in R. Simulations were performed using a time step, ∆t, of one minute.

2.2.3. Parameter Inference

Parameters for the intracellular viral life cycle kinetics were obtained as described
in Section 2.2.1. The multi-scale model was fit to the experimental data to determine the
rates for cell-free and cell-to-cell transmission, the intracellular HCV specific infectivity
parameter τ, the rate of clearance of anti-E2, cE2, and the effective viral diffusion, D,
within these cultures. For model fitting, a likelihood-free simulation-based Approximate
Bayesian Computation-Sequential Monte Carlo (ABC-SMC, [28]) method was employed,
using sequential importance sampling to obtain an increasingly better approximation of
the Bayesian parameter posterior distribution. Likelihood evaluation is circumvented by
assessing the distance of the observed data to model simulations for sampled parameters,
according to a distance measure (defined below), and accepting only particles below a
sequentially reduced acceptance threshold. Fitting was performed to untreated and treated
cultures simultaneously with all empirical spread data shifted by 18 h, which was used as a
lower bound to account for the delay between the time point of infection and experimental
detection of infection. Analysis was restricted to measurements up to 120 h p.i. (Exp. A)
and 83 h p.i. (Exp. B) to ensure the robust determination of foci size distributions within the
data. To account for the stochasticity due to the different number of wells used within the



Viruses 2021, 13, 1308 8 of 22

experiments, we used the mean of two (Exp. A) and five (Exp. B) individual simulations
for comparison against the experimental data.

Distance measure used to fit the data: To capture the changing focus size distributions as
well as the number of infected cells over the course of the experiment, we defined a relative
distance between the predicted, Ipred, and measured, Iexp, total number of infected cells
as follows:

dI =

∣∣∣Iexp − Ipred

∣∣∣
Iexp

To describe the focus size distribution, the predicted, fpred, and measured, fexp, cumu-
lative density functions for the occurrence of a focus with a specific size were calculated.
Subsequently, the enclosed area between predicted and experimental cumulative density
functions was divided by the average focus size as observed in the experiment:

d f sd =
∑I

∣∣∣ fexp(I)− fpred(I)
∣∣∣

∑I Inexp
I

where the relative frequency of each focus size in the experiment is denoted by nexp
I .

Dividing by the average focus size allowed comparable distances between early and late
time points as the occurrence of large foci at late times would otherwise bias the calculated
distance (Figure S1). The sum of both distances, dtotal = dI + dfsd was then applied in
the ABC-SMC algorithm. Due to the surprisingly fast increase of infected cells in anti-E2
treated wells between 83 and 96 h p.i. in Exp. B; in comparison to the slower increase in
the untreated culture systems, the last time point was not considered within this analysis.

2.2.4. Parameter Fitting by pyABC

To fit the agent-based model to the experimental data, we used the tool pyABC [29],
which employs a distributed ABC-SMC algorithm based on [28]. The algorithm subse-
quently performs the following steps to find the best parameter set θ = (θ1,θ, . . . ,θν) for
explaining the data over a sequence of iterations t = 1, . . . ,nt:

Sample parameters from a proposal distribution θ́i ∼ gt(θi);
Simulate data from the model using the sampled parameter combinations, y ∼ p(y|θ́)

with θ́ = (θ́1, θ́2, . . . , θ́n);
Calculate the distance, d, between simulated and observed data and accept the param-

eter combination if the distance is below a given threshold, d(y, yobs) ≤ εt.
Here, g1 is the prior and subsequently gt is based on a multivariate normal kernel den-

sity estimate of the accepted particles (=parameter combinations) in the previous iteration,
thus allowing to reduce the acceptance threshold εt, while maintaining high acceptance
rates. The acceptance threshold was automatically chosen as εt = mediani(di) of the
accepted distances in the previous iteration, a strategy that has proven to be robust [30].
We used a population size of n = 100 or 200, meaning the algorithm needed to accept
n parameter combinations according to the given threshold εt before starting the next
iteration. The procedure is automatized in the pyABC-framework [29] and customized
for high-performance computing systems. In particular, the framework uses dynamic
scheduling to minimize the overall runtime. Please refer to Klinger et al. [29] for more
detailed information.

2.3. Evaluating the Synergistic Effect of Simultaneous Occurrence of Cell-Free and
Cell-to-Cell Transmission

In order to determine to which degree the different ratios of cell-free and cell-to-
cell transmission affect the spread synergy achieved by the combined occurrence of both
transmission modes, we tested the effect of varying ratios of the transmission modes
in our multi-scale agent-based model. We simulated viral spread either using a “wild-
type” (WT) strain that was able to spread by cell-free and cell-to-cell transmission or two
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“mutant strains” (MUT-CF and MUT-CC) that were only able to spread by cell-free or
cell-to-cell transmission, respectively. We then defined the relative synergistic effect, RSE,
of the simultaneous occurrence of both transmission modes by calculating the ratio of
the number of infected cells obtained in each scenario, i.e., RSE = IWT/(IWT +(IMUT-CF +
IMUT-CC)). The RSE is related to the expected fold-increase by Fold = (1/RSE − 1)−1. Thus,
an RSE of 0.5 would mean no synergistic effect of the simultaneous occurrence of both
transmission modes, while an RSE of 0.8 corresponds to a 4-fold higher number of infected
cells in comparison to the separated spread of both mutants.

We simulated the dynamics for varying assumptions for the combined occurrence of
cell-free and cell-to-cell transmission, βI = βf + βc, assuming 15 different combinations for
the ratio of the transmission factors for cell-to-cell, βc, vs. cell-free infection, βf, to cover
different proportions of transmission modes. In addition, the impact of viral diffusion on
the outcome was tested by varying the effective viral diffusion rate over different orders of
magnitude. For each parameter combination, 10 simulations were performed simulating a
time period of 10 days. The equilibrium value of the proportion of cells infected by cell-
to-cell transmission was determined for each simulation and plotted against the maximal
RSE obtained. For better comparison, a third-degree polynomial was then fitted against
all 150 simulations for each combination (pI,D) (i.e., 15 ratios βc/βf, 10 simulations each)
to determine the proportion of cell-to-cell transmission at which the RSE was maximal for
the investigated condition. We considered 5 different values for pI and 4 different viral
diffusion rate, D, in total.

2.4. Statistical Analysis

Statistical comparison of foci sizes between untreated and anti-E2 treated cultures
within the two experiments (Exp. A and Exp. B) were performed using the Mann–Whitney
U-test. Note that foci sizes from individual wells were combined for the analysis.

3. Results
3.1. Single Round Infection Kinetics Defines the Timing of Viral Life Cycle

Viral spread can only occur after sufficient time has elapsed to allow for infectious
progeny virus production in the newly infected cell. Therefore, to elucidate the kinetics of
HCV spread, we determined the timing of different HCV life cycle events by analyzing
the kinetics of intracellular and extracellular viral RNA. To this end, Huh7 cells were
infected with HCV at a multiplicity of infection (MOI) of 6 for 3 h to establish a reasonably
synchronized infection. Culture media and cell lysates were then harvested from triplicate
wells at frequent time intervals for 96 h. Total RNA was extracted from the cell lysates and
the culture media to quantify intracellular and extracellular HCV RNA levels by RT-qPCR
(Figure 1A and Figure 1B, respectively). The culture media was also titrated to determine
extracellular infectious HCV levels (Figure 1B). Intracellular HCV RNA first increased
between 9 and 12 h post-inoculation (p.i.), suggesting HCV RNA replication begins around
9 h p.i. Intracellular RNA levels then continued to increase until approximately 72 h p.i.
when levels began to plateau (Figure 1A). After ~18 h of decline, extracellular HCV RNA
plateaued, and then both extracellular RNA and viral titers started to slowly increase
(Figure 1B), which suggests that secretion of progeny virus begins at ~18 h p.i., but that
newly secreted virus levels are initially tempered by continued degradation of input virus
and possibly some disappearance of extracellular virus due to infection. Based on the
early kinetics observed, secondary cell-free virus infection would be expected to begin
contributing to detected intracellular HCV RNA accumulation levels by 27 h p.i. (i.e., 18 h
for secondary infection to initiate + 9 h for replication to occur), and extracellular HCV
RNA and titer levels by 36 h p.i. (i.e., 18 h for secondary infection to initiate + 18 h for
secretion of progeny virus to begin). However, the cell-to-cell spread could, in theory, begin
sometime after 9 h of infection as newly synthesized genomic HCV RNA is accumulating
in the cell. Aside from providing kinetic data for model calibration of intracellular viral
replication (see below), this data indicates that to experimentally inhibit cell-free spread,
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the necessary inhibitor (e.g., neutralizing HCV anti-E2) needs to be added prior to 18 h p.i.
before infectious progeny virus is detected.

3.2. Experimentally Monitoring Viral Spread

To characterize the impact of cell-to-cell transmission on HCV spread, we measured
viral spread in untreated cultures where both cell-free and cell-to-cell spread occurred
together and used a neutralizing E2 antibody (anti-E2) in parallel cultures to inhibit the
cell-free spread and measure cell-to-cell transmission alone. For each of these conditions,
HCV spread was analyzed by evaluating the number and size of HCV-infected cell foci
(Figure 2A). In untreated wells where both cell-free and cell-to-cell spread was free to occur,
there was an increase in mean focus size over time (mean and range: 4.73, 1–66 cells/focus
at 72 h p.i.; 23.1, 1–227, cells/focus at 120 h p.i.). However, there was also an increase in
the number of small foci, which resulted in only a slight increase in the median focus size
(2 cells/focus at 72 h p.i. vs. 4 cells/focus at 120 h p.i.) (Figure 2B). Thus, focus sizes showed
a bimodal distribution with many small and large foci at later time points (Figure 2B and
Figure S2). In contrast, in cultures where anti-E2 was added to block cell-free spread, there
was an increase in foci sizes over time without an increase in the number of foci, and, thus,
no establishment of new small foci, resulting in a steady increase in median focus size over
time (4 cells/focus at 72 h p.i. vs. 18.5 cells/focus at 120 h p.i.) (Figure 2B). The largest foci
at 96 and 120 h p.i. were observed in the untreated wells. Besides the possibility of foci
merging, for which we did not find evidence in our observations, this appeared to suggest
that cell-free virus spread was not only establishing new small foci but also contributing
to the growth of individual foci. The difference in the average total number of infected
cells of 1560 +/− 387 and 938 +/− 158 infected cells at 120 h p.i. in untreated and anti-E2
treated wells, respectively, showed that wells in which cell-free spread was additionally
able to occur exhibited a ~1.7-fold higher number of infected cells (Figure 2D).

Surprisingly, a subsequent round of experiments gave a different result, with median
foci sizes in anti-E2 treated wells decreasing over time from 72 h p.i. to 96 h p.i. (Figure 2C).
One obvious explanation for these differences in focus growth patterns was a viral escape
from anti-E2 neutralization, as evidenced by the increasing number of foci in the anti-E2
treated wells in the later experiments (Figure 2C). While the presence of viral escape was
perplexing considering that the identical protocol and the same pre-aliquoted cells, virus,
and antibody were utilized for all experiments, one difference identified was an increase in
the number of cell divisions that occurred during the later experiments, which in hindsight
correlated to the purchase of a new lot of fetal bovine serum (FBS). Specifically, the earlier
round of experiments (represented in Figure 2B, Exp. A) exhibited a 2.5-fold increase in
cell numbers at 96 h post-plating, while the later experiments (represented in Figure 2C,
Exp. B) exhibited a ~12-fold increase in cell numbers 96 h post-plating (Figure 2E) despite
the same number of cells being plated at confluence for all experiments. We speculate that
the increase in cell number allowed for higher virus levels per well, which outcompeted
the available neutralizing antibody and allowed for cell-free spread in anti-E2 treated wells.
However, it remains to be determined to which extent cell-free and cell-to-cell transmission
modes contribute to HCV spread within these different settings.

3.3. A Multi-Scale Mathematical Model to Analyze HCV Spread Kinetics

To further elucidate the dynamics of HCV spread and disentangle the contribution
of cell-free and cell-to-cell transmission, we extended an agent-based model that we had
developed previously for analyzing the spread of HCV in vitro [14,17]. The multi-scale
model follows the progression of infection on a single-cell level by considering individual
cell infection kinetics as well as their spatial distribution in the monolayer of cells to account
for local effects. It combines a deterministic description of the intracellular viral replication
and secretion dynamics with the stochastic transmission dynamics on a cellular level in the
form of an agent-based model with cells representing the individual agents. A sketch of
the model is shown in Figure 3A, with a detailed description provided in Materials and
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Methods. In brief, uninfected cells are distributed on a hexagonal grid representing the
in vitro culture system. These cells proliferate and can get infected via either cell-free or
cell-to-cell transmission according to stochastic processes that depend on the extracellular
viral concentration at the respective grid site or the intracellular viral concentration of
directly neighboring infected cells, respectively. Upon infection, the intracellular processes
of viral replication and viral export for each individual cell are described by a deterministic
mathematical model according to the viral kinetics observed experimentally. This model
describes the logistic growth of intracellular RNA, R, according to a maximal production
rate, λ, with viral RNA exported to the extracellular space at a constant rate, ρ (Figure 3A
and Section 2). Extracellular viral RNA will diffuse through the simulated grid to contribute
to cell-free transmissions and is cleared at a rate c.

Figure 2. HCV Spread Kinetics: (A) Schematic of the experimental protocol: Confluent Huh7 cells were infected with
35 HCV FFU/well. At 17 h p.i. the viral inoculum was removed, and fresh cDMEM was added either in the absence
(i.e., untreated) or presence of 10 µg/mL anti-E2. Monolayers were fixed at different times post-infection and then stained
for HCV to detect infected cells. Focus size was counted by individual cell counts for small foci or by area using ImageJ to
circle each focus and divide the focus area by the average area of single cells for larger foci. The accuracy of ImageJ focus size
calculation was determined by comparing three technical replicates ImageJ area counts with three technical replicate manual
counts. The graph shows individual cell counts vs. area counts by ImageJ for representative foci, numbered arbitrarily on
the X-axis. (B) Representative of early experiments: Duplicate wells fixed at 72, 96, and 120 h p.i. and then stained for HCV
with NS5A antibody to detect infected cells. (C) Representative of later experiments: Five to six wells were fixed at 72, 83,
and 96 h p.i. and stained for HCV with E2 antibody to detect infected cells. The numbers of foci per well were counted and
are indicated below the dot plots as average +/− standard deviation per well. The number of cells/focus was counted and
graphed. Red bar: Median focus size. Statistical differences relative to untreated are indicated (*, p < 0.05; **, p < 0.01; ****,
p < 0.0001 by Mann–Whitney U-test). Note that foci sizes from individual wells were pooled for the statistical comparison
of foci sizes. The results in each panel are representative of two experimental repeats. (D) Total number of infected cells
per well over time calculated from the data in (B,C). Individual well counts (open circles/triangles) and mean (closed
circles/triangles). (E) Total number of cells per well over time counted in parallel untreated wells for each experiment.
Individual (open circles) and mean (closed circles) cell numbers for three wells are shown.



Viruses 2021, 13, 1308 12 of 22

Figure 3. A multi-scale agent-based model to describe HCVcc spread assay dynamics: (A) Schematic of the agent-based
model showing the multi-level structure considering single-cell and intracellular viral replication dynamics when simulating
HCV spread. Individual cells are distributed on a hexagonal grid (left), which represents parts of the in vitro culture system.
These uninfected cells are able to proliferate to fill empty grid sites with probability pp. Starting from a number of initially
infected cells, uninfected cells can get infected by cell-free or cell-to-cell transmission by stochastic processes according to the
probabilities pf and pc, that depend on the extracellular viral concentration, V, or the intracellular viral load, R, of infectious cells,
respectively. Intracellular viral replication within these cells considers the changing concentration of intracellular viral RNA, R,
and viral production, ρ (right). See Section 2 for a detailed description of the different processes considered. (B) Sketch of the
step-wise analytical approach used to infer the contribution of the different transmission modes to the HCV infection dynamics:
(1.) Experimental data on viral lifecycle kinetics are combined with a mathematical model to quantify and parameterize
intracellular viral replication and viral export. (2.) These results are then incorporated in the multi-scale agent-based model
(ABM) that is used to simulate HCV spread dynamics under the various experimental conditions. The ABM was fitted to the
time-resolved focus size distribution data with and without the use of anti-E2 using a high-performance computing approach
(pyABC). (3.) The parameterization of the individual processes within the ABM to describe the observed dynamics allows
us to infer the contribution of the individual transmission modes to viral spread given different scenarios. (4.) In addition,
based on the obtained simulation environment, we predict the advantage of combined transmission modes for viral spread.
(C) Experimental data (black dots) and model predictions (red line) showing the dynamics of intra- and extracellular viral
RNA over time. Red-shaded area indicates the 95% prediction interval of model predictions. For the extracellular RNA (lower
panel), the dashed lines indicate the contribution of the initially applied (blue) and newly produced (green) virions to the total
viral load.
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To apply the multi-scale mathematical model to our experimental data, we used a
step-wise approach (Figure 3B). In the first step, we parameterized the intracellular viral
replication dynamics by fitting the corresponding deterministic mathematical model to the
life cycle kinetics data from Figure 1. Parallel cultures from this experiment were stained
at 30 and 72 h p.i. to determine the percentage of cells infected, and other cultures were
utilized to count cells per well at 0, 36, 72, and 96 h p.i. which allowed us to estimate
the average HCV RNA copies per individual infected cell. The model provides a good
description of the observed infection kinetics (Figure 3C) with the maximal production
rate of intracellular RNA estimated at λ = 0.24 (0.194–0.278) h−1, the concentration of viral
RNA reaching a carrying capacity of RC = 7.73 (6.30–9.76) × 104 RNA copies per cell, and
a viral export of ρ = 2.10 (1.24–3.47) × 10−3 h−1 (numbers describe the best estimate and
95% confidence intervals of estimates) (see also Table S1). This parameterization of the
intracellular replication dynamics within individual cells is then used in the second step,
in which we applied the whole multi-scale model to the HCV spread assay data in order to
parameterize the kinetics of cell-free and cell-to-cell transmission, the viral diffusion rate,
and the loss of anti-E2 neutralization efficacy in the treated cultures. In this second step,
we used a distributed, likelihood-free simulation-based method based on approximate
Bayesian computation (pyABC [29], see Section 2) to fit the stochastic, computationally
demanding models to the experimental measurements. Before analyzing the actual experi-
mental data, we validated the general appropriateness of our approach by simulating data
in correspondence to the experimental measurements and testing the ability of our method
to retrieve the parameters used for simulation. Our analysis showed a correct recovery of
the predefined parameters using focus size distribution of simulated treated and untreated
HCV spread assays for model adaptation (Figure S3).

3.4. Mathematical Analysis Allows Determination of Transmission Kinetics and Reveals Varying
Contributions of Viral Transmission Modes to HCV Spread

After validation of the general applicability of our approach, we fit our agent-based
model to the HCV spread data, separately analyzing the two sets of experiments repre-
sented in Figure 2B (Exp. A) and 2C (Exp. B). Corresponding to the experimental scenarios,
model simulations were run with or without simulating the neutralization of cell-free
HCV via anti-E2. To account for the stochasticity due to the different number of wells
within the individual experiments, we used the mean of two (Exp. A) and five (Exp. B)
individual ABM-simulations for comparison against the experimental data. Each run
by pyABC evaluated ~21,000 particles, i.e., parameter combinations, with each particle
comprising the corresponding number of individual simulations. The algorithm was
stopped after 13–15 generations, i.e., successive improvements of the approximation of
the parameter posterior distribution (see Section 2) as sufficient convergence was reached.
With these methods, our multi-scale model is able to reproduce the observed experimental
data. Specifically, the model recapitulates the focus size distribution in both untreated
(Figure 4A and Figure S4A) and anti-E2 treated cultures (Figure 4B and Figure S4B), except
for a tendency to predict a higher number of small foci sizes, particularly at later time
points. Total infected cell numbers are generally well predicted for both conditions and
experiments (Figure 4C,D and Figure S4C,D). Thus, our agent-based model was able to re-
produce the experiments and mimic the complex spatio-temporal dynamics on a single-cell
level. As would be expected, model estimates for the coupling parameter for the change of
viral concentrations between grid sites were similar between the two experiments and in
the order of 10−2, which corresponded to effective viral diffusion coefficients, D, of 10−2 to
10−1 µm2/s (Figure 4E and Table 1). However, our analysis predicted a higher usage rate
of anti-E2 within the later experiment (Exp. B) compared to the first round of experiments
(Exp. A), which is consistent with the hypothesis that there was a considerable anti-E2
escape in Exp. B.
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Figure 4. Model fits, parameter estimates, and relative contribution of cell-free and cell-to-cell transmission modes to HCV
spread: (A,B) Measured (black/grey) and predicted (red/blue) focus size distributions for Exp. A in the absence (A) and
presence (B) of anti-E2 at 48, 72, 96, and 120 h p.i. and calculated across two replicates (=wells) according to the experimental
conditions. Predictions are based on an exemplary parameterization of the model as obtained by the fitting procedure.
(C,D) Measured (black/grey) and predicted (red/blue) average number of infected cells in untreated (C) and anti-E2
treated (D) wells calculated across two replicates (=wells). (E) Credibility intervals for the individual parameter estimates
obtained by the high-performance computing approach (pyABC) for Exp. A (black/grey) and Exp. B (orange/wheat) after
15 generations of optimization. White circles indicate the weighted mean for each parameter. Corresponding estimates
are shown in Table 1. (F,G) Predicted proportion of cells infected by cell-free transmission for Exp. A (F) and Exp. B (G)
over the course of the experiment. Mean (solid lines) and 95% CI (shaded area) as calculated from all model predictions
obtained from the best performing parameter combinations (=particles) with a distance smaller than 4.0, i.e., 10–15 particles,
for untreated (red) and anti-E2 treated (blue) simulations. Please note that time courses denote the time point of infection of
cells and need to be shifted by 18 h to be related to the empirical data, as a time delay of 18 h was considered to account for
the delay between infection and experimental detection of infection (see Section 2).
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Table 1. Estimates of parameters describing HCV spread within the different experiments: The
estimate indicates for each experiment the weighted mean out of all parameter combinations obtained
after 15 (Exp. A) and 13 (Exp. B) generations of optimizations by pyABC (see Section 2). Numbers
in brackets indicate 95% credibility intervals. (* The theoretically derived diffusion coefficient D
according to the Stokes-Einstein equation is D = 8.05 µm2/s (=0.91 on a log10 scale) according to the
assumed diameter of a hepatocyte (20 µm), of an HCV virion (30 nm) and the dynamic viscosity of
the medium. The estimated diffusion is much slower than the theoretical prediction as it represents
the effective diffusion allowing exported virions to reach uninfected cells in the culture.).

Description Parameter Unit
Experiment

Exp. A Exp. B

Cell-to-Cell transmission
rate (i.e., scaling factor) βc

log10, min−1

intraRNA−1
−4.19

(−6.24–−2.15)
−3.74

(−6.13–−2.02)

Cell-free transmission rate
(i.e., scaling factor) βf

log10, min−1

extraRNA−1
−5.75

(−6.48–−5.05)
−3.87

(−4.46–−3.00)

Rate of anti-E2
usage/depletion due to

neutralization of
extracellular RNA

cE2

log10,
arbitrary

unit min−1

−0.98
(−1.95–0.62)

0.33
(−0.27–0.95)

Specific infectivity for
cell-to-cell transmission τ log10 −3.15

(−3.27–−2.93)
−3.29

(−3.52–−3.07)

Viral diffusion coefficient * D log10, µm2/s
−1.68

(−1.96–−0.91)
−1.67

(−1.91–−1.27)

Estimates for the model parameters determining the infectivity of HCV intracellular
viral material indicated that the time span between two successful cell-to-cell transmission
events originating from the same infected cell was between 23 and 42 h. This intracellular
viral infectivity in combination with high intracellular RNA levels impairs the identifiability
of the cell-to-cell transmission factor βc that scales the probability of infection with the
amount of intracellular viral RNA for each time-step and corresponds to the cell-to-cell
transmission rate (Figures S5 and S6). As such, the parameter combinations to describe the
experimental data for both experiments contained estimates for βc that spanned a broad
range between ~10−6–10−2 min−1 intraRNA−1. In contrast, parameter estimates for the
cell-free transmission factor were in a tighter estimated range and varied between the
two experiments with βf ~ 10−4.5–10−3 min−1 extraRNA−1 in Exp. B compared to βf ~
10−6.5–10−5 min−1 extraRNA−1 in Exp. A (Figure 4E and Table 1). Independent of the
individual parameter estimates, all obtained parameter combinations provided a robust
prediction of the contribution of the individual transmission modes to viral spread. For
Exp. A, which had less cell division, the initial phase of viral spread up to 1–1.5 days
p.i. was almost exclusively characterized by cell-to-cell transmission even in cultures that
were not treated with anti-E2 (Figure 4F). Cell-to-cell transmission remained the dominant
mode of spread with on average ~76% (63%–89%) of successful infections mediated by this
transmission mode at 96 h p.i. (Numbers in brackets indicate min and max. predictions
by selected parameter combinations, see Figure 4F). Cell-free transmission is predicted
to also contribute to viral spread in the anti-E2 treated cultures starting around ~2 days
p.i. and being responsible for ~9% (0%–25%) of all infections 96 h p.i. Regardless, cell-
to-cell transmission was predicted to be the dominant mode of transmission in Exp. A.
In contrast, for Exp. B, in which cell division was more significant, the contribution of
the individual transmission modes is predicted to change over the time course of the
experiment, with most of the infections (~72% (62%–80%) (untreated) and ~72% (64%–81%)
(anti-E2 treated)) being mediated by cell-free transmission at later time points (Figure 4G).
Thus, the virus shows versatility in the contribution of the individual transmission modes
to the progression of infection between the experimental conditions.
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3.5. Simultaneous Occurrence of Cell-Free and Cell-to-Cell Transmission Enhances Viral Spread

As inferred from the experimental data and shown by our mathematical analyses, the
spread of HCV relies on the simultaneous occurrence of both transmission modes. This
suggests that the combined occurrence of cell-free and cell-to-cell transmission provides an
advantage for viral spread and the progression of infection. Based solely on the number of
cells that became infected in Exp. A in the absence and presence of neutralizing anti-E2,
we calculated that the presence of cell-free spread resulted in a ~1.7-fold higher average
number of infected cells/well at 120 h p.i. (1559.5 (untreated) vs. 937.5 (anti-E2)). Using
our multi-scale agent-based model with the obtained parameterizations for this experiment
to predict the infection dynamics given each transmission mode separately, we would
only expect a 1.1-fold increase in the total number of infected cells, with an average of
22% of cells being infected through cell-free transmission (Table 2). Thus, the combined
occurrence of both transmission modes provides a substantial synergistic effect for the
viral spread that exceeds the simple additive contribution of both transmission modes.
In order to determine the degree to which different ratios of cell-free and cell-to-cell
transmission affect this advantage, we tested the effect of varying transmission modes
in our multi-scale model. To this end, we simulated viral spread using either a “wild-
type” (WT) strain that was able to spread by both cell-free and cell-to-cell transmission or
two “mutant strains” (MUT-CF and MUT-CC) that were only able to spread by cell-free
or cell-to-cell transmission, respectively. Comparing the spread dynamics of these three
hypothetical viruses allowed us to assess the synergy achieved when varying ratios of
cell-free and cell-to-cell transmission occur simultaneously. Hereby, we defined a relative
synergistic effect, RSE, determined by the ratio of the number of infected cells obtained
in each scenario, i.e., RSE = IWT/(IWT +(IMUT-CF + IMUT-CC)). An RSE of 0.5 would mean
no synergistic effect of the simultaneous occurrence of both transmission modes, while
values close to 1 indicate a large synergistic effect (see also Section 2). We tested various
scenarios for the combined probability of both transmission modes, also assuming different
rates of viral diffusion (Figure 5A). We find that for comparable viral diffusion rates as in
our experiments (Figure 4E), the relative synergistic effects were largest if ~60%–70% of
the infections are due to cell-to-cell transmission (Figure 5B and Figure S7), comparable
to the cell-to-cell spread contribution predicted for Exp. A (Figure 4F). Thus, under the
experimental conditions with low cell division, HCV spread seems to use the optimal
combination of both transmission modes for viral spread.

Table 2. Advantage of combined spread: Mean number of infected cells for experimental (Exp. A) and simulated
data with and without anti-E2 treatment 120 h post inoculation. Experimental data allowing for both transmission
modes show a 1.66-fold increase in infected cells compared to anti-E2 treated cultures. Similar results for simulated data
using the parameterizations obtained for Exp. A with ~22% of infected cells due to cell-free transmission. Simulations
show that the additive combination of infected cells by cell-free and cell-to-cell transmission would only lead to a ~10%
increase in infected cell numbers compared to anti-E2 treated cultures. (* The results for the ABM show the average over
10 individual simulations).

Treatment Infected Cells
(Mean)

Fraction of Cells
Infected by CF Fold Increase Expected Fold

Increase

Experiment (Exp. A) anti-E2 937.5 - 1 -

untreated 1559.5 - 1.66 -

Simulation * (ABM)
anti-E2 1028 0 1 -

untreated 1650 0.22 1.61 1.09
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Figure 5. Advantages of combined modes of viral spread: (A) Predicted advantage of combined modes of viral spread
indicated by the Relative Synergistic Effect (RSE) of combined viral spread. The RSE is shown dependent on the proportion
of infections by cell-to-cell transmission given different viral diffusion coefficients and infection rates. Individual points
indicate the maximal RSE obtained for simulating viral spread in the ABM for a 10-day time course with different
combinations of the transmission factors for each transmission mode, βc and βf, defining the combined infection rate βI.
Curves show the result of a spline function of third-degree fitted to the individual data. (B) Maximal RSE value and
proportion of infections due to cell-to-cell transmission at which the fitted curves reached their maximum for different
conditions analyzed ((A), Figure S7).

4. Discussion

Viral spread within a host is a critical parameter that determines the kinetics of in-
fection and the efficacy of antiviral therapies. Cell-to-cell spread has specifically been
implicated in the establishment of persistent infections [31], the propagation of antiviral
resistant mutants [8], and in requiring increasing effective doses of antiviral drugs [31].
Yet, many aspects of viral cell-to-cell spread and the relative contributions of cell-free
versus cell-to-cell transmission during infection are still unknown. Here, we present a
cross-disciplinary approach that combines experimental kinetic data and multi-scale math-
ematical modeling to determine HCV spread kinetics and to disentangle the contribution
and interplay of cell-free and cell-to-cell transmission modes.

While the experimental data demonstrated that infection progressed faster when both
transmission modes were available for spread relative to when the cell-free transmission
was inhibited by anti-E2 (Figure 2D), additionally, our mathematical analysis revealed that
the combined spread by cell-free and cell-to-cell transmission results in a synergistic effect
that exceeded the additive contribution of both transmission modes (Table 2). Conceptually,
a synergy between the two modes of spread was expected as the fraction of cells con-
tributing to cell-to-cell spread within individual foci is limited by whether or not infected
cells are adjacent to uninfected neighboring cells. This fraction decreases as foci expand
with more and more cells enclosed by other infected cells. As such, new foci formed by
cell-free spread seed additional areas for cell-to-cell spread to occur, a concept that is also
corroborated by the increased number of individual foci observed at later time points in
our experiments (Figure 2). In experiments with low cell division (represented by Exp. A),
we also observed that the largest foci were formed when both means of HCV spread were
allowed to proceed, indicating that cell-free spread could also contribute to individual foci
growth. However, this could be influenced by the in vitro cell culture system in which cells
are maintained in relatively stagnant media. To which extent this contribution might also
play a role in vivo, where blood flow influences viral dispersion remains to be determined.
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Combining our experimental data with a mathematical model allowed us to quantify
the contribution of cell-free and cell-to-cell transmission modes throughout the time course
of the experiments. While the initial predominance of cell-to-cell spread observed in our
earlier rounds of in vitro culture experiments (Figure 4F) is consistent with the idea that
cell-to-cell spread was the predominant mechanism of HCV transmission, after switching
lots of FBS, we observed an increase in the number of cell divisions occurring during our
experiments, as well as an increase in the degree of cell-free spread (Figure 4G). The consis-
tent differences in the results observed when the different serum lots were utilized suggest
that the contribution of each transmission mode may be influenced by the environmental
conditions encountered. The observation that viral transmission modes were influenced
by environmental conditions is in line with observations made for other viruses, such as
HIV-1 [26,32], and highlights the utility of trying to incorporating more physiologically
relevant conditions and altering other aspects of cell culture environments (e.g., concentra-
tions of lipids, iron, and other components of serum) in future experiments when studying
viral spread [33], as well as accounting for these factors within the mathematical models
used to analyze these data.

Arguably, cell proliferation dynamics could have an impact on the efficacy of viral
transmission modes. One could envision that actively dividing cells do not maintain the
necessary stable cell-cell contacts required to mediate cell-to-cell virus transmission. If this
is the reason for the inferred increase in the cell-free spread in more actively dividing
cell cultures (Figure 4G), this would suggest that there might be a predominance of HCV
cell-to-cell spread in the liver where hepatocyte division is generally low. However, the
more actively dividing cell cultures also presumably had higher extracellular virus levels,
as indicated by the notable anti-E2 escape in our in vitro data and confirmed by our
mathematical analyses that estimated higher rates of anti-E2 usage in Exp. B compared
to Exp. A (Table 1 and Figure 4E). Thus, there could also be a self-reinforcing effect on
the importance of cell-free transmission, with small cell-free infection advantages in high
proliferating cell cultures leading to higher extracellular viral levels and, thus, the enhanced
contribution of cell-free transmission to viral spread. To determine if and how the observed
differences in cell proliferation are responsible for the observed changes in ratio between
the different modes of spread, additional experimental analyses will be needed.

Besides influencing cell proliferation dynamics, further variables that might differ
between the two serum lots could affect the efficacy of individual transmission modes
and might be relevant to environmental changes within the liver of chronically infected
individuals (for example, influenced by diet, medication, age, gender, and liver health).
For example, different concentrations of lipids could affect HCV entry and replication
dynamics [34–36]. In particular, because HCV is known to exploit the very low-density
lipoprotein pathway and lipid droplets for viral assembly and maturation [37], lipid-
enriched environments could potentially enhance cell-free transmission.

Independent of environmental conditions, the predicted stability of the inferred ratios
of cell-free vs. cell-to-cell transmission at later time points despite the ongoing increase in
the number of infected cells (Figure 4F,G) indicates that these ratios seem to be favorable
for viral spread in the respective experimental scenario. This raises the question of whether
there is an optimal balance of these transmission modes and whether our in vitro infections
reflected that optimal ratio. Simulating viral spread for different ratios and efficacies of
cell-free vs. cell-to-cell spread in conditions experiencing slow cell division, we found
that the relative synergistic effects are largest if ~60%–70% of infections are due to cell-
to-cell transmission (Figure 5). Notably, this is comparable to the transmission mode
contributions estimated for Exp. A. This suggests that HCV naturally achieves the ratio
of transmission modes that optimally exploit the available synergistic advantages, even
within the relatively non-competitive in vitro culture dish.

It is tempting to speculate that a dominant contribution of cell-to-cell transmission
could also play a role in HCV spread in vivo. Indeed, detailed analyses of liver biopsy
samples of patients chronically infected with HCV by single-cell laser microdissection and
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microscopy techniques revealed that infected cells occurred in clusters that are heteroge-
neously distributed throughout the tissue [38–40]. These patterns of infection support the
simultaneous occurrence of both transmission modes in vivo [41]. Considering the various
immune responses that HCV encounters in vivo, cell-to-cell transmission might be even
more beneficial in vivo than what was measured here in vitro.

Our analysis combining experimental data and mathematical modeling allowed us
to quantitatively assess HCV transmission dynamics on a cellular level. However, while
our mathematical model is able to provide a good representation of the observed spread
dynamics, it generally overestimates the number of very small foci sizes (i.e., single-cell
foci) at later time points (Figure 4 and Figure S4). There are several possible explanations
for this discrepancy. One possible explanation is the limited ability of the grid-based model
to completely account for experimental cell proliferation dynamics. In vitro, even when
cells are plated at confluence, they continue to divide while decreasing in size as they pack
in tighter within the allotted space. With simulated cells having a fixed volume, our model
does not allow for continuous cell proliferation once the grid has been filled, limiting the
ability to account for foci growth due to cell division. Advanced modeling frameworks,
such as cellular Potts models that allow for dynamic cell shapes [42], as well as spread
assay experiments within non-dividing cell cultures, could help to address this discrepancy.
Another theoretical possibility for the observed overestimation of small foci sizes is that
defective particles initiate non-productive infections that result in non-expanding single-cell
foci. This could cause the model to overestimate the contribution of cell-free transmission
at earlier time points, leading to the increased predicted frequency of newly founded foci
at later time points. Notably, in this case, the contribution of cell-free transmission to viral
spread might be even smaller than estimated here.

Besides these limitations, the current model is quite complex, such that individual
parameter estimates have to be taken with care. For example, estimates for the individual
parameters describing viral transmission, anti-E2 usage, and effective viral diffusion can
vary over different orders of magnitude. However, predictions regarding the contribution
of the transmission modes to viral spread by the determined parameter combinations
are quite robust, allowing for a reliable assessment of these quantities. All parameters
governing the viral kinetics in the agent-based model were identifiable, and the best fit
estimates were adopted for the purpose of describing HCV spread in a monolayer of Huh7
cells (Table S1). We used a simplified model system that explains HCV viral replication
and export dynamics in a continuous and deterministic way, providing an appropriate
representation of the observed lifecycle dynamics and the development of intracellular and
extracellular viral loads (Figure 3C). Although the initial intracellular RNA concentration
was considerably larger than 1, presumably due to co-infection, abortive infections, and a
significant association of non-infectious particles on the outside of the cells, these results
do not bias the conclusions drawn from the agent-based model as the total concentration
of intra- and extracellular viral RNA was always scaled with the transmission factors, βc
and βf, respectively, which were estimated using the observed focus size distributions.

Additional experimental advancements, such as automated image analyses, could
increase the amount of available data and, thus, improve parameter inference in our
mathematical models. In addition, experimental approaches that exclusively block cell-to-
cell transmission are desirable. However, both transmission modes rely on many of the
same cell surface receptors [9,11,14,43], making this currently experimentally difficult.

5. Conclusions

In summary, we monitored HCV spread kinetics in vitro and combined the experi-
mental data with a multi-scale mathematical model to disentangle the contribution and
interplay of cell-free and cell-to-cell transmission modes during viral spread. Our analysis
revealed varying contributions of transmission modes to HCV spread under different
culture conditions highlighting the adaptability of the virus. Regardless of environmental
effects, our analysis also revealed synergistic effects between the two modes of transmission
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that seem to be optimally exploited during viral spread. This leads to the possibility that
some of the advantages typically attributed specifically to cell-to-cell spread, i.e., the ability
to establish viral persistence, might be due to having two synergistic modes of transmission
rather than cell-to-cell spread itself.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13071308/s1, Figure S1: Graph of distance measure used for fitting ABM to in silico or
in vitro data, Figure S2: Bimodal HCV foci size distribution, Figure S3: Estimated kernel densities of
fitted parameters for simulated data, Figure S4: Model predictions for Exp. B, Figure S5: Estimated
kernel densities of fitted parameters to in vitro data obtained from Exp. A, Figure S6: Estimated
kernel densities of fitted parameters to in vitro data obtained from Exp. B, Figure S7: Advantages of
combined modes of viral spread, and Table S1: Parameter estimates for viral life cycle kinetics.
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