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Aims Recent evidence points towards a distinct obese phenotype among patients with heart failure with preserved ejection
fraction (HFpEF). We aimed to identify differentially expressed circulating biomarkers in obese HFpEF patients and
link them to disease severity and outcomes.
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Methods
and results

From the LIFE-Heart study, 999 patients with HFpEF and 999 patients without heart failure (no-HF) were selected and
92 circulating serum biomarkers were measured using a proximity extension assay. Elevation of identified biomarkers
was validated in 220 patients from the Aldo-DHF trial with diagnosed HFpEF. HFpEF patients were older and had
more comorbidities including coronary artery disease and type 2 diabetes as compared to no-HF patients (P< 0.05
for all). After adjusting for covariates, adrenomedullin (ADM), galectin-9 (Gal-9), thrombospondin-2 (THBS-2), CD4,
and tumour necrosis factor-related apoptosis-inducing ligand receptor 2 (TRAIL-R2) were significantly higher in obese
HFpEF patients [body mass index (BMI) ≥30 kg/m2, n = 464] as compared to lean HFpEF (BMI <30 kg/m2, n = 535)
and obese no-HF patients (BMI ≥30 kg/m2, n = 387) (P< 0.001 for both); these findings were verified in the Aldo-DHF
validation cohort (P< 0.001). Except for CD4 these proteins were associated with increased estimates of left atrial
pressure in a linear fashion. Importantly, ADM and CD4 were associated with increased mortality in obese HFpEF
patients after adjusting for covariates.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Conclusion Obese HFpEF patients exhibit higher circulating biomarkers of volume expansion (ADM), myocardial fibrosis
(THBS-2) and systemic inflammation (Gal-9, CD4) compared to obese non-HFpEF or lean HFpEF patients. These
findings support the clinical definition of a distinct obese HFpEF phenotype and might merit further investigation.
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Graphical Abstract

Exploration of 92 proteins from the Olink Cardiovascular II panel and their association with obese heart failure with preserved ejection fraction
(HFpEF). Proteins that were different in HFpEF in general as compared to no-heart failure (HF) controls are displayed in the upper left box with an
arrow indicating their expression in HFpEF vs. no-HF patients (↑ meaning increase, ↓ meaning decrease). Their association with all-cause mortality
is indicated by their colour with red meaning increased mortality and green meaning decreased mortality with increasing serum levels, while black
indicates no association with mortality. Proteins with higher serum levels in obese HFpEF patients after adjustment for covariates (age, sex, presence
of diabetes, creatinine, presence of coronary artery disease, white blood cell count and haematocrit) are displayed in the upper right box. Their
prognostic translation in all-cause mortality in obese HFpEF patients and their functional translation in the overall cohort are depicted in the lower
boxes. Hazard ratios in the obese HFpEF group were adjusted for age, sex, renal function, the presence of diabetes and the presence of coronary
artery disease. Hazard ratios for the overall HFpEF group were adjusted for age, sex, renal function smoking status, systolic blood pressure at
admission, total cholesterol, presence of diabetes, C-reactive protein (CRP), N-terminal pro brain natriuretic peptide (NT-proBNP) and presence
of coronary artery disease. BMI, body mass index; LAPI, left atrial anteroposterior diameter index; LV, left ventricle; sPAP, systolic pulmonary artery
pressure. For protein abbreviations see online supplementary Table S3.
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Introduction
A relevant fraction of patients hospitalized for heart failure (HF)
show a preserved left ventricular ejection fraction (LVEF) and mor-
tality among these is high.1,2 Up to now, successful therapeutic
approaches are limited to treatment with mineralocorticoid recep-
tor antagonists and angiotensin receptor–neprilysin inhibitors in
certain subgroups of HF with preserved ejection fraction (HFpEF)
patients.3,4 Therefore, identifying further specific HFpEF subgroups
is crucial to discover therapies that will improve outcomes in
future HFpEF treatment strategies. Obesity often mimics clinical
and pathophysiological features of HF (e.g. exertional dyspnoea)
and has been associated with early development of HFpEF in the
young,5 yet the pathomechanistic understanding of this clinically
easily identifiable HFpEF phenotype is poor.6

Identifying circulating biomarkers uniquely expressed in patients
with HFpEF and obesity might support the prediction of HF
disease courses, disease monitoring and identification of previously
unrecognized pathophysiological pathways.7 Studies investigating
the protein profile of patients with obesity compared to lean HFpEF
phenotypes revealed differences in the expression of parameters
for inflammatory activity8,9 such as the tumour necrosis factor
(TNF) pathway.9 However, as those studies did not include patients
with obesity without HF, it remains unclear whether the increased
inflammatory state is attributable to obesity alone10 rather than a
specific obese HFpEF phenotype.

We therefore aimed to investigate whether there is evidence
for a distinct protein profile in patients with obesity with or
without HFpEF as compared to lean HFpEF patients and obese
patients without HFpEF and whether such a profile might translate
into prognostic value regarding HFpEF severity and premature
mortality.

Methods
Study cohort
Within the observational LIFE-Heart cohort,11 patients with HFpEF
and control patients were identified according to current guideline
recommendations of the European Society of Cardiology (ESC).12

Between 2006–2014, patients were consecutively included into the
LIFE-Heart study at our tertiary care centre and were comprehensively
evaluated including invasive coronary angiography, echocardiography
and laboratory testing.13 HFpEF in patients was defined by a LVEF
≥50%, elevated N-terminal pro brain natriuretic peptide (NT-proBNP,
≥125 ng/L), and evidence of structural heart disease defined by either
diastolic dysfunction (E/E′ ≥13), left ventricular hypertrophy (≥115
g/m2 in men; ≥95 g/m2 in women) and/or left atrial (LA) dilatation
(≥34 mL/m2 or anteroposterior diameter ≥23 mm/m2). The HFpEF
group included patients with a ‘manifest HFpEF’ diagnosis requiring
patients to report signs and/or symptoms of HF and patients with
‘pre-HFpEF’ where signs of cardiac structural alterations and elevated
natriuretic peptides were present in the absence of HF specific symp-
toms and signs. If not otherwise stated, ‘HFpEF’ patients included both
pre- and manifest HFpEF patients. The control group was comprised
of patients without overt HF characterized by a LVEF ≥50% and
NT-pro-BP concentrations <125 ng/L. Obesity was defined by a
body mass index (BMI) ≥30 kg/m2. Plasma volume was estimated by ..
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.. (1-haematocrit)× [a+ (b×weight in kg)] where a = 1530 for men and
864 for women, and b= 41 for men and 47.9 for women, respectively.14

Exclusion criteria were the presence of acute coronary syndrome,
LVEF <50%, relevant valvular disease (more than moderate aortic
stenosis − regurgitation or mitral regurgitation; more than mild mitral
stenosis), missing classification data, age <40 years, and inconclusive
classification. Survival status was verified yearly via hospital records and
inquiries at central residence registers. Out of the available patients,
999 HFpEF patients were randomly sampled and analysed, 999 control
cases for comparison were selected to roughly fit age, sex and BMI
specifics of the HFpEF cohort as outlined in the supplemental material
in more detail. The study meets the ethical standards of the Declaration
of Helsinki. It has been approved by the local ethics committee and is
registered with ClinicalTrials.gov (NCT00497887). Written informed
consent was obtained from all participants enrolled in the study.

Validation cohort
To validate identified proteins from the derivation cohort, patients
from the randomized prospective Aldosterone Receptor Blockade in
Diastolic Heart Failure (Aldo-DHF) study were included. The study
design and main findings were reported previously.15 In brief, between
2007 and 2012, 422 patients with chronic New York Heart Association
(NYHA) class II or III, preserved LVEF of ≥50%, and evidence of
diastolic dysfunction were randomly assigned to receive either 25 mg
of spironolactone or placebo for 12 months. Patients were classified
as HFpEF when they fulfilled the ESC criteria for HFpEF as outlined
in detail above.15 Out of all patients included into the Aldo-DHF trial,
220 fulfilled current ESC criteria for the diagnosis of HFpEF and served
as the validation cohort.

Biomarker measurement
In each patient, peripheral venous blood samples were drawn imme-
diately after informed consenting in the fasted state. Clinical chem-
istry was measured on the day of blood sampling using an automated
Roche Modular analysis system (Roche Diagnostics, Mannheim, Ger-
many). Multiple aliquots of plasma samples were stored at −80∘C or
liquid nitrogen for further analysis. In 2019 and 2020, plasma sam-
ples from the Aldo-DHF and LIFE-Heart cohorts, respectively, were
post-hoc analysed for circulating protein biomarkers using the Olink
(Uppsala, Sweden) Cardiovascular II panel. This panel was chosen as
it reflects biomarkers proposed to be associated with inflammatory,
immuno–cardiovascular interaction, tissue and vascular neogenesis as
well as cardio–metabolic interaction. Cases and controls were ran-
domly distributed across plates, and assays were performed in a blinded
fashion. For the assay, a proximity extension assay technology was
used where 92 oligonucleotide-labelled antibody probe pairs per panel
may bind to their respective targets in 1 mL plasma sample.9,16 When
bound, they give rise to new DNA amplicons with each identification
barcoding their respective antigens. Quantification of the amplicons
was subsequently performed using a Fluidigm BioMark HD real-time
polymerase chain reaction (PCR) platform. The PCR platform provides
log2-normalized protein expression (NPX) data and an increase of 1

NPX means a doubling in concentration of the specific biomarker. All
assay validation data are available on the manufacturer’s website (www
.olink.com). When levels of any biomarker fell below the limit of detec-
tion in≥10% of the study population, the biomarker was excluded from
further analysis (in the LIFE-Heart cohort: fibroblast growth factor 23,
23%; integrin beta 1 binding protein 2, 33%).

© 2021 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Statistical analysis
Parametric data (Kolmogorov–Smirnov test) are given as their mean
and corresponding standard deviation. If data were non-parametric,
they are presented as median and corresponding interquartile range
(IQR); differences in protein concentrations are also shown as fold
changes. Continuous variables were compared with Student’s t-test
and Mann–Whitney U test where appropriate. Categorical variables
were compared using the Fisher’s exact test.

Kaplan–Meier analyses were used to compare survival in different
subgroups; the log-rank test was used to test for differences. Cox
regression analyses were performed to test the prognostic relevance
of continuous variables with regard to all-cause mortality; results are
presented as hazard ratios (HR) with corresponding 95% confidence
interval (CI).

In a first step, we analysed proteins that were associated with pre-
and manifest HFpEF. In a next step, we identified proteins that were
significantly higher expressed in obese HFpEF patients when compared
to lean HFpEF patients as well as obese no-HF patients after adjustment
for multiple testing (Bonferroni correction). The association of these
proteins with HFpEF and obesity was then adjusted for age, sex,
presence of diabetes, creatinine, presence of coronary artery disease,
white blood cell count and haematocrit as those variables might
influence circulating biomarker levels. Further, the identified differences
in protein concentrations were then investigated in the validation
cohort, adjusting for the above-mentioned variables.

A primary component analysis was performed to reduce the identi-
fied proteins to a single protein score, which could be established for
each individual patient. The identified primary component as well as
the respective individual proteins and their association with functional
HFpEF-related clinical characteristics [HFA-PEFF score, LA anteropos-
terior diameter index, E/E′; left ventricular mass index, systolic pul-
monary artery pressure (sPAP), NT-proBNP, and C-reactive protein
(CRP)] were than analysed using linear regression analysis with adjust-
ment for age, sex and renal function.

A two-sided significance level of α≤ 0.05 was defined appropriate to
indicate statistical significance. In case of multiple testing, a Bonferroni
adjustment was performed multiplying the test significance niveau times
the number of hypothesis tested. Statistical analyses were performed
using the SPSS software (IBM Corp. released 2017, IBM SPSS Statistics
for Windows, version 25.0. Armonk, NY, USA).

Results
Patient characteristics of the entire
cohort
Overall, 6995 patients were consecutively included in the
LIFE-Heart study between 2006 and 2014. After application
of the inclusion and exclusion criteria (Figure 1), 1048 patients
with HFpEF and 1583 control patients were identified. Out of
those, 999 patients were sampled per group as outlined in the
supplementary material; 370 patients had manifest HFpEF (37%)
and 629 pre-HFpEF (63%). Characteristics of excluded patients
are displayed in online supplementary Table S1. Overall, 464 (46%)
patients in the HFpEF group and 387 (39%) patients in the no-HF
group were obese (BMI ≥30 kg/m2). Baseline characteristics of the
respective cohorts are displayed in Table 1 (stratified according
to HFpEF or no-HF and the presence of obesity) and online
supplementary Table S2 (stratified according to HFpEF or no-HF ..
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.. only). HFpEF patients displayed the expected profile characterized
by higher age, higher BMI, higher estimated plasma volume and
a higher frequency of comorbidities like arterial hypertension,
diabetes or atrial fibrillation compared to the no-HF group.
Echocardiographically, HFpEF patients had higher mean E/E′ ratios,
more pronounced left ventricular hypertrophy and more progres-
sive LA dilatation. Markers of inflammation [CRP and interleukin
(IL)-6] were also markedly higher in HFpEF patients.

In comparison to obese no-HF patients, obese HFpEF patients
were older and had a higher prevalence of atrial fibrillation. As in
the overall cohort, CRP and IL-6 tended to be higher in obese
HFpEF patients, even when compared to obese no-HF patients.
Lean HFpEF patients exhibited a comparable profile with higher
markers of inflammation when compared to lean no-HF controls.

Despite being at comparable age and extent of comorbidi-
ties (except for the presence of diabetes), obese HFpEF patients
had higher indices of cardiac mass, more progressive LA dilata-
tion and higher E/E′ values as compared to their lean HFpEF
counterparts.

Analytical validation of the Olink assay
Overall, 92 cardiovascular and inflammatory biomarkers were mea-
sured as described above. IL-6 and NT-proBNP were measured
within the initial recruitment phase of our cohort and showed
a good linear correlation to biomarker levels measured with the
Olink system with IL-6 and NT-proBNP (r = 0.813, P< 0.001 and
r= 0.830, P< 0.001, respectively) (online supplementary Figure S1).
As NT-proBNP was part of the stratification of patients into HFpEF
or no-HF, we removed brain natriuretic peptide from further anal-
ysis to avoid selection bias.

Protein levels in HFpEF patients
with obesity
Out of the 91 analysed proteins, 44 proteins were significantly
different in HFpEF patients, with 5 proteins being lower and 39
proteins being higher as compared to no-HF patients (online
supplementary Table S3). Of those, nine proteins [adrenomedullin
(ADM), tumour necrosis factor receptor superfamily member
10A (TNFRSF10A), tumour necrosis factor receptor superfamily
member 11A (TNFRSF11A), tumour necrosis factor-related
apoptosis-inducing ligand receptor 2 (TRAIL-R2), galectin-9
(Gal-9), spondin-2 (SPON2), kidney injury molecule (KIM1),
thrombospondin-2 (THBS2), T-cell surface glycoprotein CD4
(CD4)] were significantly different between obese HFpEF patients
as compared to both lean HFpEF or obese no-HF patients (online
supplementary Table S4).

After adjustment for covariates, only ADM, CD4, Gal-9,
THBS2 and TRAIL-R2 remained associated with HFpEF (P< 0.001,
P = 0.013, P = 0.008, P< 0.001 and P< 0.001, respectively) and
obesity (P< 0.001, P = 0.005, P< 0.001, P< 0.001 and P< 0.001,
respectively), with no significant interaction between HFpEF and
obesity (Figure 2, online supplementary Table S5). Except for the
association of CD4 and obesity, this remained true even when only
patients with manifest HFpEF were included in the analysis (online

© 2021 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Figure 1 Study flow chart. ESC, European Society of Cardiology; HFpEF, heart failure with preserved ejection fraction; LV, left ventricular;
NT-proBNP, N-terminal pro brain natriuretic peptide.

supplementary Table S6). Further, in a multivariable stepwise
forward model including both baseline characteristics and the
identified proteins from the Olink panel as independent covari-
ates, all five proteins remained associated with the diagnosis of
obese HFpEF in comparison to lean HFpEF (online supplementary
Table S7).

Association of adrenomedullin,
galectin-9, thrombospondin-2, CD4
and TRAIL-R2 with HFpEF severity
and C-reactive protein
A protein score (primary component 1, PC1) derived from ADM,
CD4, Gal-9, THBS2 and TRAIL-R2, as well as the individual
proteins were all associated with higher HFA-PEFF scores, LA
dilatation, left ventricular mass index and increased CRP (Figure 3),
except for TRAIL-R2. Except for CD4, all other proteins showed
an association with E/E′ even after adjustment for age, sex and renal
function in the overall cohort. Furthermore, ADM showed the best
linear correlation of all four identified proteins to estimated plasma
volume in HFpEF patients (r = 0.225, P< 0.001). NT-proBNP did
not show a correlation with estimated plasma volume (P = 0.11).
Association of the proteins with known functional pathways as well
as a network analysis based on partial correlation are displayed in
online supplementary Figures S2 and S3, respectively.

Association of HFpEF and obese HFpEF
specific proteins with all-cause mortality
in HFpEF patients
At a median follow-up of 7 years (IQR 5.2, 9.0), 113 HFpEF and
43 no-HF patients died (online supplementary Figure S4, log-rank
P< 0.001). The association of the proteins with significantly dif-
ferent levels in HFpEF patients, with risk for all-cause death among ..

..
..
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..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..
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..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.. patients with HFpEF, before and after adjustment for age, sex, renal
function, smoking status, systolic blood pressure at admission, total
cholesterol, presence of diabetes, CRP, NT-proBNP and the pres-
ence of coronary artery disease are displayed in Table 2.

In the subgroup of obese HFpEF patients of the five proteins
uniquely higher expressed proteins ADM (P = 0.013) and CD4
(P = 0.015), as well as the PC1 (P = 0.013) were associated with
all-cause mortality, following adjustment for age, sex, renal func-
tion, the presence of diabetes and the presence of coronary artery
disease (Graphical Abstract). Interestingly, NT-proBNP (measured
at timepoint of patient inclusion with a standard assay), which was
prognostically relevant in the pooled cohort of HFpEF patients,
was not able to predict survival in HFpEF patients with obesity
(P = 0.063) (Graphical Abstract).

Validation of the identified proteins
Of the 422 patients included in the Aldo-DHF trial, 389 patients
had measurements of the Olink Cardiovascular II panel available,
and of those 220 had HFpEF according to the ESC criteria. Of
those, 77 (35%) were obese. As outlined among other baseline
characteristics in online supplementary Table S8, obese patients
more frequently exhibited diabetes and had higher baseline gly-
cated haemoglobin values. All five identified proteins which were
higher expressed in obese HFpEF patients in the derivation cohort
were also higher in obese HFpEF patients as compared to lean
HFpEF patients in the validation cohort (online supplementary
Figure S5 and Table S9).

Discussion
In this large cohort study, we set out to identify circulating biomark-
ers that might be associated with a distinct obese phenotype of
HFpEF. The main findings of the study are: (i) we identified and vali-
dated five proteins that were uniquely elevated in a clinically defined

© 2021 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Figure 2 Differences in protein concentrations in adrenomedullin (ADM), galectin-9 (Gal-9), thrombospondin-2 (THBS2), T-cell surface
glycoprotein CD4 and tumour necrosis factor-related apoptosis-inducing ligand receptor 2 (TRAIL-R2) in obese heart failure with preserved
ejection fraction (HFpEF) patients as compared to lean HFpEF and obese no-heart failure (HF) patients. NPX, normalized protein expression.

obese HFpEF phenotype, and (ii) these proteins reflect pathogenic
factors in HF including volume expansion (ADM), fibrosis (THBS2)
and inflammation (Gal-9, TRAIL-R2 and CD4), which might charac-
terize an obese HFpEF phenotype, with (iii) some of those proteins
being linked to mortality.

The theory of a distinct HFpEF phenotype linked to obesity
has sparked large interest in recent years with reports associ-
ating it with a distinct haemodynamic profile14 and the hypoth-
esis that it might be associated with plasma volume expansion,
accumulating fibrosis and enhanced inflammation when compared ..

..
..

..
..

..
..

..
..

..
..

..
..

..
.. to other HFpEF phenotypes as proposed by Packer et al.6,8,17

Our observations support this concept and expand it by linking
the obesity HFpEF phenotype to a distinct biomarker signature.
Importantly, in contrast to other studies that aimed to identify
circulating protein markers of an obese HFpEF phenotype, we
included a control cohort with obesity, but no evident HF to dif-
ferentiate the pathognomonic effects of mere obesity from true
obesity specific HFpEF features.9,18 Further, we validated those
findings in an independent prospective cohort of patients with
HFpEF from a randomized trial.15 In contrast to previous studies,

© 2021 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Figure 3 Associations of protein concentrations of
adrenomedullin (ADM), galectin-9 (Gal-9), tumour necrosis
factor-related apoptosis-inducing ligand receptor 2 (TRAIL-R2),
thrombospondin-2 (THBS2) and T-cell surface glycoprotein CD4
with functional parameters. CRP, C-reactive protein; LAPI, left
atrial anterior posterior index; LV, left ventricle; NT-proBNP,
N-terminal pro brain natriuretic peptide; PC1, primary com-
ponent 1; sPAP, systolic pulmonary artery pressure. All other
results showed an adjusted P-value <0.05 after adjustment for
age, sex and renal function.

we can now distinguish obesity-related alterations from primarily
HFpEF-associated changes and identify volume expansion, fibrosis
and inflammation as possible hallmarks of an obese HFpEF pheno-
type on a protein level.9,19

Adrenomedullin is a peptide hormone accredited with cardio-
protective effects and leads to vasodilatation, inhibition of vascular
structural remodelling, potentially reduced vascular permeability
and natriuresis, which have been linked to impaired cardiovascular
outcome.20,21 Like BNP, ADM is also metabolized by neprilysin,20

which is proposed to be overactivated in obese individuals. In con-
trast to BNP which mainly serves as a marker of intravascular
congestion, ADM has been proposed as a marker of total fluid over-
load among HF patients incorporating intravascular as well as tissue
congestion, which is possibly reflected in our cohort by the bet-
ter correlation to total plasma volume than NT-proBNP among
HFpEF patients. Circulating ADM levels are proposed as a coun-
teracting response to volume overload and have been shown to
decrease alongside successful decongestion in HF.20,22 As observed
in our cohort, ADM has been associated with echocardiographic
parameters of diastolic impairment, likely mediated by increases in
total volume.23 Recently, increased levels of ADM were observed
in patients with HFpEF when compared to healthy controls and
a linear correlation of rising ADM levels with pulmonary capil-
lary wedge pressures was described. Interestingly, as compared to
controls, the HFpEF population investigated in this study was signifi-
cantly heavier (BMI 34.1 vs. 27.5 kg/m2, P = 0.0003) and might have
potentially largely resembled a comparable obese HFpEF pheno-
type as analysed in our study.24 Furthermore, ADM is expressed in

© 2021 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Table 2 Prognostic association of different protein concentrations with outcome in patients with pre- and manifest
heart failure with preserved ejection fraction

Protein
abbreviation

Univariable
HR (95% CI)

Adjusted for
covariatesa

HR (95% CI)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A disintegrin and metalloproteinase with thrombospondin motifs 13 ADAM-TS13 0.23 (0.11, 0.45) 0.55 (0.12, 2.40)
Adrenomedullin ADM 3.10 (2.21, 4.36) 2.67 (1.71, 4.18)
Agouti-related protein AGRP 2.23 (1.75, 2.84) 2.42 (1.74, 3.38)
Protein AMBP AMBP 3.05 (1.30, 7.18) 2.54 (0.84, 7.65)
Angiopoietin-1 ANGPT1 0.23 (0.11, 0.45) 0.34 (0.16, 0.71)
Natriuretic peptides B BNP 1.55 (1.36, 1.76) 1.37 (1.14, 1.65)
Carbonic anhydrase 5A, mitochondrial CA5A 1.00 (0.85, 1.18) 0.98 (0.83, 1.16)
T-cell surface glycoprotein CD4 CD4 2.85 (1.82, 4.47) 2.66 (1.53, 4.60)
Cathepsin L1 CTSL1 3.39 (2.09, 5.48) 2.58 (1.46, 4.58)
Decorin DCN 4.72 (2.92, 7.62) 2.14 (1.18, 3.90)
Fibroblast growth factor 21 FGF21 1.16 (1.02, 1.31) 1.14 (0.99, 1.31)
Fibroblast growth factor 23 FGF-23 1.34 (1.14, 1.57) 1.49 (1.16, 1.91)
Follistatin FS 1.90 (1.28, 2.81) 1.09 (0.69, 1.72)
Galectin-9 Gal-9 3.68 (2.20, 6.16) 3.64 (1.93, 6.88)
Growth hormone GH 1.08 (0.97, 1.19) 1.02 (0.92, 1.13)
Gastrotropin GT 1.24 (0.98, 1.56) 1.15 (0.88, 1.51)
Osteoclast-associated immunoglobulin-like receptor hOSCAR 3.51 (1.40, 8.83) 3.95 (1.43, 10.94)
Heat shock 27 kDa protein HSP 27 1.66 (1.13, 2.43) 1.26 (0.82, 1.95)
Pro-interleukin-16 IL16 2.02 (1.37, 2.97) 1.76 (1.17, 2.66)
Interleukin-17D IL-17D 1.59 (1.24, 2.05) 1.43 (0.95, 2.17)
Interleukin-1 receptor antagonist protein IL-1ra 1.13 (0.83, 1.53) 1.28 (0.90, 1.83)
Interleukin-27 IL-27 4.28 (2.77, 6.63) 2.68 (1.65, 4.33)
Interleukin-4 receptor subunit alpha IL-4RA 1.57 (1.24, 1.99) 1.54 (1.09, 2.18)
Interleukin-6 IL6 1.31 (1.15, 1.49) 1.24 (1.05, 1.47)
Kidney injury molecule 1 KIM1 1.51 (1.27, 1.78) 1.43 (1.16, 1.76)
Matrix metalloproteinase 12 MMP-12 1.80 (1.45, 2.22) 1.73 (1.34, 2.22)
Matrix metalloproteinase 7 MMP-7 2.37 (1.44, 3.92) 2.18 (1.22, 3.89)
Pappalysin-1 PAPPA 1.64 (1.31, 2.05) 1.37 (1.07, 1.75)
Proteinase-activated receptor 1 PAR-1 4.25 (2.57, 7.03) 4.13 (2.17, 7.84)
Platelet-derived growth factor subunit B PDGF subunit B 0.22 (0.10, 0.49) 0.39 (0.16, 0.93)
Placental growth factor PGF 2.36 (1.76, 3.15) 2.95 (1.61, 5.39)
Polymeric immunoglobulin receptor PIgR 3.56 (1.11, 11.43) 2.29 (0.65, 8.08)
Prolargin PRELP 6.93 (3.12, 15.38) 3.28 (1.29, 8.30)
Pentraxin-related protein PTX3 PTX3 1.50 (0.98, 2.28) 1.33 (0.82, 2.16)
Receptor for advanced glycosylation end products RAGE 1.47 (0.97, 2.23) 1.21 (0.77, 1.90)
SLAM family member 7 SLAMF7 1.59 (1.22, 2.06) 1.34 (1.02, 1.77)
Spondin-2 SPON2 7.62 (2.24, 25.96) 5.03 (1.24, 20.52)
Proto-oncogene tyrosine-protein kinase Src SRC 0.69 (0.51, 0.94) 0.88 (0.63, 1.23)
Thrombospondin-2 THBS2 3.57 (1.47, 8.67) 2.43 (0.94, 6.26)
Tumour necrosis factor receptor superfamily member 10A TNFRSF10A 2.10 (1.44, 3.07) 2.36 (1.42, 3.92)
Tumour necrosis factor receptor superfamily member 11A TNFRSF11A 1.75 (1.38, 2.22) 1.93 (1.31, 2.82)
Tumour necrosis factor receptor superfamily member 13B TNFRSF13B 2.06 (1.41, 3.02) 1.85 (1.23, 2.77)
Tumour necrosis factor -related apoptosis-inducing ligand receptor 2 TRAIL-R2 1.64 (1.39, 1.93) 1.48 (1.20, 1.84)
Vascular endothelial growth factor D VEGFD 1.06 (0.70, 1.60) 1.12 (0.78, 1.60)
Lymphotactin XCL1 1.75 (1.32 2.34) 1.66 (1.12, 2.27)

Per NPX. CI, confidence interval; HR, hazard ratio.
aAdjusted for age, sex, renal function, smoking status, systolic blood pressure at admission, total cholesterol, presence of diabetes, C-reactive protein, N-terminal pro brain
natriuretic peptide and presence of coronary artery disease.

© 2021 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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epicardial fat tissue25 which has been proposed to show expansion
and altered paracrine function especially among HFpEF patients
with obesity26 and might account for increased circulating ADM
levels in our cohort.

Thrombospondin-2 is a matricellular protein and has been pro-
posed to contribute to counteract cardiac fibrosis and matrix
integrity during states of cardiac pressure overload.27 THBS2 is
also expressed in adipose tissue and might be up-regulated by nutri-
tionally induced obesity.28 It has been shown to have at least partial
cardiac origin, association with the development of HF29 and that it
might be a marker of disease severity among patients with HFpEF.27

Due to its role in matrix remodelling, it has been proposed as a pos-
sibly relevant mediator in the transition from mere cardiac fibrosis
to eminent HF, explaining its overexpression in our cohort in which
a large proportion of patients was marked by structural alterations
in the absence of evident symptoms (pre-HFpEF).30

Galectin-9 is mainly expressed by endothelial cells, macrophages,
and in particular T lymphocytes and induces apoptosis in subsets
of differentiated T cells, particularly in Th1 and Th17 cell.31 Neu-
tralization of Gal-9 leads to enhanced inflammatory responses.32,33

It has been associated with extracellular matrix remodelling and
has repeatedly been associated with the prediction of incipient HF
in patients at risk for cardiovascular disease.19,34 In obese rodents,
Gal-9 expression increases vastly in visceral adipose tissue and has
been linked to an immunoregulatory effect.35 Increasing levels of
Gal-9, specifically observed in HFpEF patients with obesity, might
be a regulatory effect to cope with overexpression of inflamma-
tion above and beyond the extent of obesity-related inflammation,
as Gal-9 levels were significantly higher in HFpEF patients with obe-
sity when compared to lean HFpEF or no-HF patients with obesity.

CD4 is a glycoprotein found on the surface of immune cells
like T-helper cells and has been associated with progression of
HF and increased fibrosis.36 CD4 has been shown to infiltrate
visceral adipose tissue and correlate with the extent of obesity.
In obese patients, CD4 T-cells in visceral adipose tissue produce
higher amounts of interferon-gamma as compared to lean con-
trols, indicating an altered inflammatory response.37 Deficiency
of CD4 T-cells has been associated with reduced adipose tis-
sue inflammation and enhanced insulin sensitivity, suggesting a
role of CD4 in adipose tissue inflammation and transformation
to metabolic syndrome associated with obesity,37 pathways that
have been proposed in the development and uphold of an obese
HFpEF phenotype.6,17,26 However, it is not clear whether adipose
tissue inflammation is cause or causation of a systemic inflamma-
tory response observed in HFpEF patients.17 The uniquely higher
expression of CD4 in our HFpEF population with obesity suggests
effects that are above the levels that one would expect for mere
obesity.

Heart failure with preserved ejection fraction has been associ-
ated with increased circulating biomarkers that link both fibrosis
and inflammation (i.e. ST2, SPON-1)38 and recent studies have
shown that there is a specific subpopulation of HFpEF patients that
is marked by an inflammatory cluster.9,18 In this context, TRAIL-R2
has been a central protein among these inflammatory clusters.9

Inflammatory clusters were characterized by highest BMI values ..
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.. but in the absence of an obese control group it was not possi-

ble to distinguish from obesity-mediated inflammation.10 This is
likely to be observed in any disease population when just strati-
fied by BMI, and true inflammatory pathways that might only be
associated with a specific obese HFpEF phenotype would need
further confirmation. We were able to confirm the elevation of
TRAIL-R2 and were also able to link TRAIL-R2 to estimates of
increased LA pressure as described before among HFpEF patients.9

The high expression of inflammatory proteins in our cohort (CD4,
Gal-9 and TRAIL-R2) is in line with previous reports that have
constantly highlighted the important role of systemic inflammation
in increased myocardial collagen deposition, resulting in decreased
ventricular compliance.39 Alterations in TRAIL-R2, CD4 and ADM
have been described in HFpEF patients before,9 suggesting an asso-
ciation between systemic inflammation and volume expansion,40

with patients that show highest values in those three proteins likely
sharing the worst prognosis. In fact, the crucial role of inflammation
and volume expansion especially among HFpEF patients with obe-
sity is underlined by the fact that out of the five proteins uniquely
higher in these patients, only proteins linked to inflammation (CD4)
and volume expansion (ADM) were associated with impaired out-
come. This provides a potential rationale for the therapy of these
patients with sodium–glucose co-transporter 2 inhibitors, as they
might attenuate visceral fat and systemic inflammation, limit car-
diac fibrosis and reduce renal tubular sodium reabsorption, three
potential hallmarks of obese HFpEF.41

Given the nature of proximity extension assays, the current
study cannot provide generally applicable cut-off values for iden-
tified biomarkers for clinical routine.16 The observed linear asso-
ciation with disease severity and outcomes allows for some inter-
pretation of biomarker levels even in absence of established cut-off
values. However, the role of those biomarkers when measured in
clinical routine remains to be determined. Further, most of the
identified markers show at least some association to pericardial
fat, which is increased in HFpEF patients,42 investigating this associ-
ation might further facilitate the understanding of the obese HFpEF
phenotype.

Strengths and limitations
Strengths of our study include the prospective, large cohort which
is comprehensively phenotyped and has a long-term follow-up sup-
ported by a validation cohort from a randomized controlled trial.
In contrast to many other cohorts comparing HFpEF patients with
healthy controls, our control cohort of no-HF patients consisted of
patients with elevated cardiovascular risk and an abundance of rele-
vant comorbidities, that however did not lead to the expression of
a HFpEF phenotype in this cohort. We were not only able to iden-
tify proteins associated with HFpEF but also with an obese HFpEF
phenotype and link these findings to disease severity as well as out-
comes. However, we did not include a cohort of patients with HF
with reduced ejection fraction and we cannot exclude that alter-
ations in the protein profile might be attributable to obese HF in
general rather than HFpEF in particular. Further, the analysis was

© 2021 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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limited to 91 proteins and larger mass spectrometry-based pro-
teomics might provide even further insights in the obese HFpEF
phenotype in future research.

In contrast to other studies, we also included pre-stage HFpEF
patients which might explain the relatively favourable outcome, as
compared to other studies that included HFpEF patients based
on previous HF hospitalizations, likely at a later stage of dis-
ease. We were able to validate our findings of differences in pro-
tein expression in HFpEF patients according to state of obesity
in a contemporary prospective cohort from a randomized clin-
ical trial focusing on HFpEF patients. However, the number of
patients with obesity-associated HFpEF was limited in the validation
cohort (n = 77) and our data are to be considered as hypothesis
generating.

Conclusion
In a large set of patients with HFpEF and no-HF we identified
proteins uniquely associated with an obese HFpEF phenotype and
validated these findings in an independent cohort. Those pro-
teins resemble the potentially relevant pathways of plasma volume
expansion (ADM), fibrosis (THBS2) and inflammation (Gal-9, CD4
and TRAIL-R2) and were linked to disease progression. Those
identified markers nourish our understanding of an obese HFpEF
phenotype and might lead to new insights in terms of prognostica-
tion as well as enhance our pathophysiological understanding.

Supplementary Information
Additional supporting information may be found online in the
Supporting Information section at the end of the article.
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