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Tree‑aggregated predictive 
modeling of microbiome data
Jacob Bien1, Xiaohan Yan2, Léo Simpson3,4 & Christian L. Müller4,5,6*

Modern high‑throughput sequencing technologies provide low‑cost microbiome survey data across 
all habitats of life at unprecedented scale. At the most granular level, the primary data consist of 
sparse counts of amplicon sequence variants or operational taxonomic units that are associated with 
taxonomic and phylogenetic group information. In this contribution, we leverage the hierarchical 
structure of amplicon data and propose a data‑driven and scalable tree‑guided aggregation framework 
to associate microbial subcompositions with response variables of interest. The excess number of zero 
or low count measurements at the read level forces traditional microbiome data analysis workflows to 
remove rare sequencing variants or group them by a fixed taxonomic rank, such as genus or phylum, 
or by phylogenetic similarity. By contrast, our framework, which we call trac (tree‑aggregation 
of compositional data), learns data‑adaptive taxon aggregation levels for predictive modeling, 
greatly reducing the need for user‑defined aggregation in preprocessing while simultaneously 
integrating seamlessly into the compositional data analysis framework. We illustrate the versatility 
of our framework in the context of large‑scale regression problems in human gut, soil, and marine 
microbial ecosystems. We posit that the inferred aggregation levels provide highly interpretable taxon 
groupings that can help microbiome researchers gain insights into the structure and functioning of the 
underlying ecosystem of interest.

Microbial communities populate all major environments on earth and significantly contribute to the total plan-
etary biomass. Current estimates suggest that a typical human-associated microbiome consists of ∼ 1013  bacteria1 
and that marine bacteria and protists contribute to as much as 70% of the total marine  biomass2. Recent advances 
in modern targeted amplicon and metagenomic sequencing technologies provide a cost effective means to get a 
glimpse into the complexity of natural microbial communities, ranging from marine and soil to host-associated 
 ecosystems3–5. However, relating these large-scale observational microbial sequencing surveys to the structure 
and functioning of microbial ecosystems and the environments they inhabit has remained a formidable scientific 
challenge.

Microbiome amplicon surveys typically comprise sparse read counts of marker gene sequences, such as 16S 
rRNA, 18S rRNA, or internal transcribed spacer (ITS) regions. At the most granular level, the data are sum-
marized in count or relative abundance tables of operational taxonomic units (OTUs) at a prescribed sequence 
similarity level or denoised amplicon sequence variants (ASVs)6. The special nature of the marker genes enables 
taxonomic  classification7–10 and phylogenetic tree  estimation11, thus allowing a natural hierarchical grouping of 
taxa. This grouping information plays an essential role in standard microbiome analysis workflows. For example, 
a typical amplicon data preprocessing step uses the grouping information for count aggregation where OTU or 
ASV counts are pooled together at a higher taxonomic rank (e.g., the genus level) or according to phylogenetic 
 similarity12–16. This approach reduces the dimensionality of the data set and avoids dealing with the excess 
number of zero or low count measurements at the OTU or ASV level. In addition, rare sequence variants with 
incomplete taxonomic annotation are often simply removed from the sample.

This common practice of aggregating to a fixed taxonomic or phylogenetic level and then removing rare 
variants comes with several statistical and epistemological drawbacks. A major limitation of the fixed-level 
approach to aggregation is that it forces a tradeoff between, on the one hand, using low-level taxa that are too 
rare to be informative (requiring throwing out many of them) and, on the other hand, aggregating to taxa that 
are at such a high level in the tree that one has lost much of the granularity in the original data. Aggregation to a 
fixed level attempts to impose an unrealistic “one-size-fits-all” mentality onto a complex, highly diverse system 
with dynamics that likely vary appreciably across the range of species represented. A fundamental premise of 
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this work is that the decision of how to aggregate should not be made globally across an entire microbiome data 
set a priori but rather be integrated into the particular statistical analysis being performed. Many factors, both 
biological and technical, contribute to the question of how one should aggregate: biological factors include the 
characteristics of the ecosystem under study and the nature of the scientific question; technical aspects include 
the abundance of different taxa, the available quality of the sequencing data—including sequencing technology, 
sample sequencing depth, and sample size—all of which may affect the ability to distinguish nearby taxa.

Another important factor when considering the practice of aggregating counts is that standard amplicon 
counts only carry relative (or “compositional”) information about the microbial abundances and thus require 
dedicated statistical treatment. When working with relative abundance data, the authors  in17–19 posit that counts 
should be combined with geometric averages rather than arithmetic averages. The common practice of perform-
ing arithmetic aggregation of read counts to some fixed level before switching over to the geometric-average-
based compositional data analysis workflow is unsatisfactory since the “optimal” level for fixed aggregation is 
likely data-dependent, and the mixed use of different averaging operations complicates interpretation of the 
results.

To address these concerns, we propose a flexible, data-adaptive approach to tree-based aggregation that fully 
integrates aggregation into a statistical predictive model rather than relegating aggregation to preprocessing. 
Given a user-defined taxon base level (by default, the OTU/ASV level), our method trac (tree-aggregation of 
compositional data) learns dataset-specific taxon aggregation levels that are optimized for predictive regression 
modeling, thus making user-defined aggregation obsolete. Using OTU/ASVs as base level, Fig. 1A illustrates the 
typical aggregation-to-genus level approach whereas Fig. 1B shows the prediction-dependent trac approach. 
The trac method is designed to mesh seamlessly with the compositional data analysis framework by combining 
log-contrast  regression20 with tree-guided regularization, recently put forward  in21. Thanks to the convexity of 
the underlying penalized estimation problem, trac can deliver interpretable aggregated solutions to large-scale 
microbiome regression problems in a fast and reproducible manner.

We demonstrate the versatility of our framework by analyzing seven representative regression problems on 
five datasets covering human gut, soil, and marine microbial ecosystems. Figure 1C summarizes the seven sce-
narios in terms of size of the microbial datasets and the average number of taxonomic aggregation levels selected 
by trac-inferred in the respective regression tasks. For instance, for the prediction of sCD14 concentrations 
(an immune marker in HIV patients) from gut microbiome data, trac selects, on average (over ten random 
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C: trac (a = 1) selected taxa
Data n p Kingdom Phylum Class Order Family Genus Species OTU

Gut (HIV): sCD14 152 539 0.6 1.0 0.0 0.5 2.8 1.9 0.1 0.0
Gut (AGP): BMI 6266 1387 0.9 2.2 1.2 4.1 13.3 14.6 5.4 72.6
Central Park Soil: pH 580 3379 1.0 2.0 3.2 2.1 1.8 0.1 0.0 0.0
Central Park Soil: Mois 580 3379 0.8 2.9 1.3 1.5 0.7 0.3 0.0 0.0
Fram Strait (PA): Leucine 26 3320 0.0 0.7 1.0 0.6 1.7 0.0 0.0 0.0

Fram Strait (FL): Leucine 25 4510 0.0 0.0 1.8 0.2 0.1 0.0 0.0 0.0
Ocean (TARA): Salinity 136 8916 0.9 1.4 2.6 0.8 0.9 0.3 0.0 0.0

Figure 1.  Illustration of fixed level and trac-based taxon aggregation. The trees represent the available 
taxonomic grouping of 16 base level taxa at the leaves (here OTU or ASV). (A) Arithmetic aggregation of OTUs/
ASVs to a fixed level (genus rank). All taxon base level counts are summed up to the respective parent genus. (B) 
trac’s flexible tree-based aggregation in which the choice of what level to aggregate to can vary across the tree 
(e.g., two OTUs/ASVs, two species, one genus, and one family). The aggregation is based on the geometric mean 
of OTU/ASV counts and determined in a data-adaptive fashion with the goal of optimizing to the particular 
prediction task. (C) Summary statistics of standard trac-inferred aggregation levels on all seven regression 
tasks. The Data column denotes the respective regression scenario (study name and outcome of interest), n the 
number of samples, and p the number of base level taxa (OTUs) in the data. The values in the taxonomic rank 
columns (Kingdom, Phylum, etc.) indicate the average number of taxa selected on that level by trac  in the 
respective regression task. Averages are taken over ten random training/out-of-sample test data splits.
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training/test experiments), more taxa at the family level than any other taxonomic level, while it selects no taxa 
at the class or OTU level. By contrast, for the prediction of pH in the Central Park Soil data, class level taxa are 
selected more on average than any other level. This highlights the considerable departure from a typical fixed-
level aggregation when prediction is the goal. Furthermore, the variability across the seven scenarios suggests 
that different amounts of aggregation may be warranted in different data sets.

Our trac framework complements other statistical approaches that make use of the available taxonomic 
or phylogenetic structure in microbial data analysis. For example,22 uses phylogenetic information in the popu-
lar unifrac metric to measure distances between microbial compositions. The authors  in23–26 combine tree 
information with the idea of “balances” from compositional data  analysis18 to perform phylogenetically-guided 
factorization of microbiome data. Others have included the tree structure in linear mixed  models27,28, use phylo-
genetic-tree-based regression for detecting evolutionary shifts in trait  evolution29, and integrate tree-information 
into regression models for microbiome  data30,31.

Along with our novel statistical formulation, we offer an easy-to-use and highly scalable software framework 
for simultaneous taxon aggregation and regression, available in the R package trac at https:// github. com/ jacob 
bien/ trac. The R package trac also includes a fast solver for standard sparse log-contrast  regression15 to facilitate 
comparative analyses and a comprehensive documentation and workflow vignette. All data and scripts to fully 
reproduce the results in this manuscript are available on Zenodo at https:// doi. org/ 10. 5281/ zenodo. 47345 27.

We next introduce trac’s mathematical formulation and discuss the key statistical and computational com-
ponents of the framework. We also give an overview of the microbial data set collection and the comparative 
benchmark scenarios. To give a succinct summary of the key aspects of trac modeling on microbiome data, we 
will present and discuss three of the seven regression scenarios in detail. The other scenarios are available in the 
Supplementary Material. We conclude the study by highlighting key observations and provide recommendations 
and viable extensions of the trac framework.

Materials and methods
Modeling strategy. Let y ∈ R

n be n observations of a variable we wish to predict and let X ∈ R
n×p
+  be a 

matrix with Xij giving the number of (amplicon) reads assigned to taxon j in sample i. The total number of reads 
∑

j Xij in sample i is a reflection of the sequencing process and therefore should not be interpreted as providing 
meaningful information about the biological sample itself. This observation has motivated the adoption of com-
positional data methods, which ensure that analyses depend only on relative abundances. Following the foun-
dational work  in20, one appropriate model for regression with relative abundance data is the log-contrast model 
where the outcome of interest is modeled as linear combinations of log-ratios (i.e., log-contrasts) of relative 
abundance features. For high-dimensional microbiome data, the authors  in15 propose solving an ℓ1-penalized 
regression estimator that includes a zero-sum constraint on the coefficients, the so-called sparse log-contrast 
model. Writing log(X) for the matrix with ijth entry log(Xij) , their estimator is of the form

Here, L(r) = (2n)−1�r�2 is the squared error loss and P(β) = �β�1 is the ℓ1  penalty32. The zero-sum con-
straint ensures that this model is equivalent to a log-contrast  model33 and invariant to sample-specific scaling. To 
understand the intuition behind the sparse log-contrast model, imagine that βj and βk are the only two nonzero 
coefficients. In such a case, the zero-sum constraint implies that predictions will be based on only the log-ratio 
of these two taxa. This can be seen by noting that βj = −βk , and so our model’s prediction for observation i 
would be given by the following:

Thus, using a log has the effect of turning differences into ratios. In addition, the zero-sum constraint pro-
vides invariance to sample-specific scaling: Replacing X by DX , where D is an arbitrary diagonal matrix, leaves 
Eq. (1) unchanged:

The choice of the ℓ1 penalty was motivated  in15 by the high dimensionality of microbiome data and the desire 
for parsimonious predictive models. However, such a penalty is not well-suited to situations in which large num-
bers of features are highly  rare21, a well-known feature of amplicon data. A common remedy, also adopted  in15, is 
to aggregate taxa at the base level, e.g., OTUs or ASVs, to the genus level and then to screen out all but the most 
abundant genera. Figure 1A depicts this standard practice: taxonomic (or phylogenetic) information in the form 
of a tree T  is used to aggregate data, usually in an arithmetic manner (i.e. by summing), to a fixed level of the tree.

Our goal is to make aggregation more flexible (as illustrated in Fig. 1B), to allow the prediction task to inform 
the decision of how to aggregate, and to do so in a manner that is consistent with the log-contrast framework 
introduced above. A key insight is that aggregating features can be equivalently expressed as setting elements 
of β equal to each other. For example, suppose we partition the p base level taxa into K groups G1, . . . ,GK and 
demand that β be constant within each group. Doing so yields K aggregated features. If all of the βj in group Gk 
are equal to some common value γk , then

(1)minimizeβ∈Rp L
(

y − log(X)β
)

+ �P(β) s.t. 1Tp β = 0.

[log(X)β]i = βj log(Xij)+ βk log(Xik) = βj log(Xij)− βj log(Xik) = βj log(Xij/Xik).

[ log(DX)β]i =

p
∑

j=1

log(DiiXij)βj =

p
∑

j=1

[

log(Dii)βj + log(Xij)βj
]

= 0+ [log(X)β]i .

https://github.com/jacobbien/trac
https://github.com/jacobbien/trac
https://doi.org/10.5281/zenodo.4734527
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Thus, we are left with a linear model with K aggregated features, each being proportional to the log of the 
geometric mean of the base level taxa counts.

Associating the elements of β with the leaves of T  , the above insight tells us that if our estimate of β is constant 
within subtrees of T  , then that corresponds to a regression model with tree-aggregated features. In particular, 
each subtree with constant β-values will correspond to a feature, which is the log of the geometric mean of the 
counts within that subtree. The trac estimator uses a convex, tree-based penalty PT (β) for the penalty in Eq. (1) 
that is specially designed to promote β to have this structure that is based on subtrees of T  . The mathematical 
form of PT (β) is given in Supplementary Material B. There, we show that the trac estimator reduces to solving 
the optimization problem:

where geom(X;T ) ∈ R
n×(|T |−1) is a matrix where each column corresponds to a non-root node of T  and con-

sists of the geometric mean of all base level taxa counts within the subtree rooted at u. Comparing this form of 
the trac optimization problem to Eq. (1) reveals an alternate perspective: trac can be interpreted as being 
like a sparse log-contrast model but instead of the features corresponding to base level taxa, they correspond 
to the geometric means of non-root taxa in T  (i.e., X is replaced by geom(X;T ) ). This also facilitates model 
interpretability since we can directly combine positive and negative predictors into pairs of log-ratio predictors. 
For example, if taxa αu > 0 and αv < 0 are the only nonzero coefficients, then our predictions would be based on

The particular choice of penalty is a weighted ℓ1-norm. While the trac package allows the user to specify 
general choices of weights wu > 0 , a convenient and interpretable strategy is to set weights to be an inverse 
power of the number of leaves in the subtree rooted at u, wu = |Lu|

−a . The scalar parameter a ∈ R controls the 
overall aggregation strength, with a = 1 being the default setting in trac. If the user decreases a, trac favors 
aggregations at a lower level of the tree. For a sufficiently negative, trac admits solutions equivalent to a sparse 
log-contrast model without aggregation since only leaves (with |Lu| = 1 ) will remain unaffected by the weight 
scaling. The regularization parameter � , on the other hand, is a positive number determining the overall tradeoff 
between prediction error on the training data and how much aggregation should occur. By varying � , we can 
trace out an entire solution path α̂(�) , from highly sparse solutions (large � ) to more dense solutions involving 
many taxa (small � ). This “aggregation path” can itself be a useful exploratory tool in that it provides an ordering 
of the taxa as they enter the model.

Computation, model selection, and prediction. Using trac  in practice requires the efficient and 
accurate numerical solution of the convex optimization problem, specified in Eq. (2), across the full aggregation 
path. We experimented with several numerical schemes and found the path algorithm  of34 particularly well-
suited for this task. The trac R package internally uses the path algorithm implementation from the c-lasso 
Python  package35, efficiently solving even high-dimensional trac problems. The trac package also provides 
a fast implementation of sparse log-contrast  regression15 for model comparison. The R package reticu-
late36 is instrumental in connecting trac with the underlying Python library. The R packages phyloseq37, 
ggplot238, ape39, igraph40, and ggtree41 are used for operations on tree structures and visualization.

To find a suitable aggregation level along the solution path, we use cross validation (CV) with mean squared 
error to select the regularization parameter � ∈ [�min, �max] for all the results presented in this paper. In particu-
lar, we perform 5-fold CV with the “one-standard-error rule” (1SE)42, which identifies the largest � whose CV 
error is within one standard error of the minimum CV error. This heuristic purposely favors models that involve 
fewer taxa and are therefore easier to interpret. (We also use the 1SE rule to select � for the sparse log-contrast 
model.) The parameter a is a user-defined control parameter and not subject to a model selection criterion. Hav-
ing solved the trac optimization problem and chosen a value of the tuning parameter ( ̂�chosen ), we can predict 
the response value at a new sample. Given a new vector of abundances x̃ ∈ R

p
+ , we predict the response to be

Due to trac’s sparsity penalty, in general only a small number of coefficients will be non-zero, and thus the 
predictions will depend on only a small number of taxas’ geometric means.

Data collection. We assembled a collection of five publicly available and previously analyzed datasets, span-
ning human gut, soil, and marine ecosystems (see also Data column in Fig. 1C). All datasets, except for Tara, 
consist of 16S rRNA amplicon data of Bacteria and Archaea in the form of OTU count tables, taxonomic classifi-
cations, and measured covariates, as provided in the original publications. For ease of interpretability, we leverage 
the taxonomic tree information rather than phylogeny in our aggregation framework. To investigate potential 
human host-microbiome interactions, we re-analyze two human gut datasets, one cohort of HIV patients (Gut 

�

j

βj log(Xij) =

K
�

k=1

γk





�

j∈Gk

log(Xij)



 =

K
�

k=1

γk|Gk| · log



(
�

j∈Gk

Xij)
1/Gk



.

(2)minimizeα∈R|T |−1 L
(

y − log(geom(X;T ))α
)

+ �

∑

u∈T −{r}

wu|αu| s.t. 1|T |−1
Tα = 0,

log

[

geom(X;T )u

geom(X;T )v

]

.
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[HIV]), available  in43, comprising p = 539 OTUs and n = 152 samples, and the other a subset of the American 
Gut Project data (Gut (AGP))5, provided  in44, comprising p = 1387 OTUs present in at least 10% of the n = 6266 
samples. To study niche partitioning in terrestrial ecosystems, we use the Central Park soil  dataset45, as provided 
 by23, which consists of p = 3379 OTUs and n = 580 samples with a wide range of soil property measurements. 
For marine microbial ecosystems, we consider a sample collection from the Fram Strait in the North  Atlantic46, 
available at https:// github. com/ edfad eev/ Bact- comm- PS85. The data set consists of n = 26 samples for p = 3320 
OTUs in the particle-associated size class, and n = 25 samples for p = 4510 OTUs in the free-living size class. 
The second marine dataset is the Tara global surface ocean water sample  collection3, available at http:// ocean- 
micro biome. embl. de/ compa nion. html, which comprises metagenome-derived OTUs (mOTUs). In Tara, each 
of the p = 8916 mOTUs considered here is present in at least 10% of the n = 136 samples. All data and analysis 
scripts are available in fully reproducible R workflows at https:// github. com/ jacob bien/ trac- repro ducib le. Since 
trac  can operate on any taxon base level, we provide all data sets both in the form of the original (m)OTU 
base level as well as in arithmetically aggregated form on higher-order ranks, i.e., species, genus, family, order, 
class, and phylum. This facilitates straightforward method comparison across different base level aggregations.

Method comparison and model quality assessment. To provide a comprehensive model perfor-
mance evaluation and to highlight the flexibility of the trac modeling framework, we consider the following 
benchmark scenarios. Firstly, we consider three different regression models. We choose the sparse log-contrast 
regression  model15 as the standard baseline of performing regression on compositional data and can be consid-
ered as a limiting case of trac. In addition, we consider trac with two different aggregation parameters a. The 
setting a = 1 is referred to as standard trac. The setting a = 1/2 is referred to as weighted trac and tends to 
favor aggregations closer to the leaf level. Secondly, to assess the influence of arithmetic aggregation to a fixed 
level, e.g., the genus level, we compare the performance of all regression models for three different input base 
levels: OTU, genus, and family level.

To assess how well a log-contrast or trac model generalizes to “unseen” data, we randomly select 2/3 of the 
samples in each of the considered datasets for model training and selection. On the remaining 1/3 of the samples, 
we compute out-of-sample test mean squared error as well as the Pearson correlation between model predictions 
and actual measurements on the test set. While the out-of-sample test error serves as a key quantity to assess 
model generalizability, we also record overall model sparsity, measured in terms of number of aggregations (or 
taxa for sparse log-contrast models) in the trained model. Model sparsity serves to measure how “interpretable” 
a model is. Finally, we repeat all analysis on ten random training/test splits of the data to measure average test 
error and model sparsity. To ease interpretability, we analyze the trained models derived from split 1 in greater 
detail throughout the next section and detail the biological significance of the derived regression models.

Results and discussion
We next highlight key results of the trac framework for three of the seven regression scenarios described 
above on three different microbiome datasets. The first scenario considers the prediction of an immune marker 
(soluble sCD14) in HIV patients from microbiome data. In this scenario, we detail the behavior of a typical 
trac  aggregation path and the model selection process. Furthermore, we compare the performance of trac  
models at different taxon base levels (OTU, genus, and family level) and aggregation weights ( a ∈ {1/2, 1} ) with 
standard sparse log-contrast models and analyze the resulting taxa aggregations. In the second scenario, we apply 
trac  to predict pH concentrations in Central Park soil from microbial abundances and compare the resulting 
aggregations to known associations of pH and microbial taxa. The last scenario considers salinity prediction in 
the global ocean from Tara mOTU data. Further trac  prediction scenarios are available in theSupplementary 
Material, including Body Mass Index (BMI) predictions on the American Gut Project Data, soil moisture pre-
diction in Central Park soil, and primary productivity prediction from marine microbes in two different size 
fractions in the North Atlantic Fram Strait.

Immune marker sCD14 prediction in HIV patients. Infection with HIV is often paired with additional 
acute or chronic inflammation events in the epithelial barrier, leading to disruption of intestinal function and the 
microbiome. The interplay between HIV infection and the gut microbiome has been posited to be a “two-way 
street”47: HIV-associated mucosal pathogenesis potentially leads to perturbation of the gut microbiome and, 
in turn, altered microbial compositions could result in ongoing disruption in intestinal homeostasis as well as 
secondary HIV-associated immune activation and inflammation.

Here, we investigate one aspect of this complex relationship by learning predictive models of immune mark-
ers from gut amplicon sequences.  While48 were among the first to provide evidence that gut microbial diversity 
is a predictor of HIV immune status (as measured by CD4+ cell counts), we consider soluble CD14 (sCD14) 
measurements in HIV patients as the variable to predict and learn an interpretable regression model from gut 
microbial amplicon data. sCD14 is a marker of microbial translocation and has been shown to be an independent 
predictor of mortality in HIV  infection49.

Following43, we analyze an HIV cohort of n = 152 patients where sCD14 levels (in pg/ml units) and fecal 
16S rRNA amplicon data were measured. Using as base level all available p = 539 bacterial and archaeal OTUs, 
we first illustrate the typical trac prediction and model selection outputs with default weight parameter a = 1 
on the first (of overall ten) training/test splits in Fig. 2. In Fig. 2A, we visualize the solution of the α coefficients 
associated with each aggregation along the regularization path. The vertical lines indicate the aggregations that 
were selected via cross-validation (CV) with the minimum mean squared error (CV best, dotted line) and one-
standard-error rule (1SE rule, dashed line) (see Fig. 2B). On the test data, we highlight the relationship between 
test prediction performance of the trac models versus the number of inferred aggregations (Fig. 2D). Models 

https://github.com/edfadeev/Bact-comm-PS85
http://ocean-microbiome.embl.de/companion.html
http://ocean-microbiome.embl.de/companion.html
https://github.com/jacobbien/trac-reproducible
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between five and 28 aggregations show excellent performance on the test set. trac with the 1SE rule identified a 
parsimonious model with aggregation to five main taxa (Fig. 2E): the kingdom Bacteria, phylum Actinobacteria 
and the family Lachnospiraceae are negatively associated, and the family Ruminococcaceae and the genus Bac-
teroides are positively associated with sCD14 counts, thus resulting in a trac model with three log-contrasts.

From a biological perspective, this trac analysis suggests a strong role of the Ruminococcaceae to Lachno-
spiraceae family ratio and, to a lesser extent, the Ruminococcaceae to Actinobacteria ratio in predicting mucosal 
disruption (as measured by sCD14). This follows from observing the large positive α coefficient associated with 
Ruminococcaceae and the large negative α coefficients associated with Lachnospiraceae and Actinobacteria 
(and recalling the interpretation of the trac output in terms of log-ratios). The protective or disruptive roles of 
Ruminococci or Lachnospiraceae in HIV patients is typically considered to be highly species-specific. Moreover, 
few consistent microbial patterns are known that generalize across  studies50. For instance,51 report high variability 
and diverging patterns of the differential abundances of individual OTUs belonging to the Ruminococcaceae and 
Lachnospiraceae family in HIV-negative and HIV-positive participants. Our model posits that, on the family 
level, consistent effects of these two families are detectable in amplicon data. This also suggests that, with the 
right aggregation level, a re-analysis of recent HIV-related microbiome data may, indeed, reveal reproducible 
patterns of different taxon groups in HIV infection.
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Kingdom Phylum Class Order Family Genus Species OTU α

Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae 2221.75
68.4461-eaecaripsonhcaLselaidirtsolCaidirtsolCsetucimriFairetcaB
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Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 286.80

Figure 2.  Overview of trac aggregation and model selection with standard weighting a = 1 on the sCD14 
data. (A) Varying the trac regularization parameter � produces a solution (aggregation) path. Each colored 
line corresponds to a distinct taxon, showing its α coefficient value as the tuning parameter � increases. The 
larger � is, the more coefficients are set to 0, leading to a more parsimonious model. The dotted and dashed 
vertical lines mark the �-values selected by the CV best and 1SE rule, respectively. (B) Illustration of the cross-
validation (CV) procedure. Mean (and standard error) CV error vs. � path with selected � values at best CV 
error (dotted vertical line) or with the 1SE rule (dashed vertical line). (C) The actual vs. predicted values of 
sCD14 on the test set (1SE rule in red, CV best in blue). The Pearson correlation of trac predictions on the 
test set is 0.37 with the CV best solution and 0.23 with the CV 1SE rule, respectively. (D) Error on the test set vs. 
number of selected aggregations. (E) The trac model selected with the 1SE rule comprises five taxa across four 
levels, listed in the bottom table (see Fig. 3A for tree visualization of the aggregations). The column labeled α 
gives the nonzero coefficient values, which are in the same units as the sCD14 response variable.



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14505  | https://doi.org/10.1038/s41598-021-93645-3

www.nature.com/scientificreports/

To quantify the effect of taxon base level and aggregation weight scaling a, we re-analyze the data at OTU, 
genus, and family base level and compare trac models to sparse log-contrast models at the respective base level. 
The latter approach thus reflects the default mode of analysis, proposed  in15, where sparse log-contrast modeling 
on fixed genus aggregations was performed. Figure 3 visualizes the estimated trac  aggregations ( a ∈ {1, 1/2} ) 
and sparse taxa on the taxonomic tree of the sCD14 data.

Figure 3A,B show the estimated models with OTUs as taxon base level, Fig. 3C,D with family base level. 
Figure 3A highlights the previously discussed five aggregations from Fig. 2E (Bacteria, Ruminococcaceae, Lach-
nospiraceae, Actinobacteria, and Bacteroides), found with standard trac (a = 1 ), by coloring the respective 
branches of the corresponding full taxonomic tree. We observe that the selected OTUs of the sparse log-contrast 
model (highlighted as black dots) cover each of the trac aggregations, including two OTUs in the phylum 
Actinobacteria, two OTUs in the family Ruminococcaceae, and one OTU in Lachnospiraceae family (see Suppl. 
Table 7 for the selected coefficients). Figure 3B highlights how weighted trac with a = 1/2 results in predictive 
models that can represent a sort of compromise between both standard trac and sparse log-contrast compo-
nents. For instance, weighted trac still comprises the Ruminococcaceae family, the Actinobacteria phylum, 
and the Bacteroides genus but also shares four OTUs with the sparse log-contrast model. This exemplifies the 
flexibility of the trac framework in fine-tuning predictive models to the “right” level of aggregation. We observe 
a similar but less pronounced effect of the weighting when using aggregated family counts as taxon base level 
(Fig. 3C,D). The trac models comprise three and five aggregations, respectively, with the Actinobacteria phy-
lum common to both. The sparse log-contrast model comprises six families, three of which are covered by the 
weighted trac model (two families in the Actinobacteria phylum and the Enterobacteriaceae family).
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Figure 3.  Taxonomic tree visualization of trac aggregations in four selected scenarios using sCD14 data 
(training/test split 1). Each tree represents the taxonomy of the p = 539 OTUs. Colored branches highlight the 
estimated trac taxon aggregations. The black dots mark the selected taxa of the respective sparse log-contrast 
model. The outer rim represents the value of β coefficients in the trac  model from Eq. (1). (A) Standard 
trac (a = 1 ) with OTUs as taxon base level selects five aggregations. (B) Weighted trac (a = 1/2 ) with OTU 
base level selects eleven aggregations, including six on the OTU level. Four of these OTUs were also selected 
by the sparse log-contrast model which comprises nine OTUs in total (black dots) (see Suppl. Tables 6 and 
7 for the selected coefficients). (C) Standard trac (a = 1 ) with family base level selects three aggregations. 
(D) Weighted trac (a = 1/2 ) with family as taxon base level selects five aggregations, including one family 
(Enterobacteriacaeae) shared with the sparse log-contrast model when also applied at the family base level (see 
Suppl. Tables 10 for the six selected families).
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To compare the different statistical models in terms of interpretability and prediction quality, we report the 
sparsity level and the out-of-sample prediction errors, averaged over ten different training/test splits, in Table 1. 
We observe that for the sCD14 data set, standard trac with OTU base levels delivers the sparsest (on average, 
seven aggregations) and most predictive solution (average test error 6.3e+06), followed by standard trac on the 
family level (average test error 6.5e+06). The sparse log-contrast model with genus base level has considerably 
reduced prediction capability (average test error 7.1e+06). On this data set, weighted trac  ( a = 1/2 ) models 
show the expected intermediate properties between sparse log-contrast and standard trac solutions.

Predicting central park soil pH concentration from microbiome data. We next perform trac pre-
diction tasks on environmental rather than host-associated microbiome data. We first consider soil microbial 
compositions since they are known to vary considerably across spatial scales and are shaped by myriads of biotic 
and abiotic factors. Using univariate regression models, the authors  in52 found that soil habitat properties, in 
particular pH and soil moisture deficit (SMD), can predict overall microbial “phylotype” diversity. For instance, 
using n = 88 soil samples from North and South America, the authors  in53 showed that soil pH concentrations 
are strongly associated with amplicon sequence compositions, as measured by pairwise unifrac distances. 
Moreover, they found that soil pH correlated positively with the relative abundances of Actinobacteria and Bac-
teroidetes phyla, negatively with Acidobacteria, and not at all with Beta/Gammaproteobacteria ratios.

Here, we use trac on the Central Park soil data collection comprising n = 580 samples and p = 3379 
bacterial and archaeal  OTUs23,45 to provide a refined analysis of the relationship between soil microbiome and 
habitat properties. Rather than looking at the univariate correlative pattern between soil properties and phyla, 
we build multivariate models that take soil pH as the response variable of interest and optimize taxa aggrega-
tions using trac and sparse log-contrast models. The predictive analysis for soil moisture is relegated to the 
Supplementary Materials.

For pH prediction, standard trac gives an interpretable model with six aggregated taxonomic groups (see 
Fig. 4A): the two phyla Bacteroidetes and Verrucomicrobia and the class Acidobacteria-6 were positively associ-
ated, whereas the order Acidobacteriales, the class Gammaproteobacteria, and the overall kingdom of Bacteria 
(compared to Archaea) were negatively associated with pH (see bottom table in Fig. 4). We can thus associate 
a log-contrast model with three log-ratios of aggregated taxonomic groups with soil pH in Central Park. The 
overall Pearson correlation between the trac predictive model and the training data was 0.68. On the test 
data, the model still maintained a high correlation of 0.65. With the standard caveat that regression coefficients 
do not have the same interpretation (or even necessarily have the same sign) as their univariate counterparts, 
our model also supports a positive relationship between the Bacteroidetes phylum and pH and gives refined 
insights into the role of the Acidobacteria phylum. The model posits that the class Acidobacteria-6 is positively 
related and the order Acidobacteriales (in the Acidobacteriia class) is negatively related with pH. The authors 
 in23 observed similar groupings in their phylofactorization of the Central Park soil data. There, the classes Aci-
dobacteria-6 and Acidobacteriia belonged to different “binned phylogenetic units” whose relative abundances 
increased and decreased along the pH gradient, respectively. Finally, the phylum Verrucomicrobia and the class 
Gammaproteobacteria, included in our model, have been reported to be highly affected by pH with several spe-
cies of Gammaproteobacteria particularly abundant in low pH  soil54.

In contrast to the sCD14 data analysis, weighted trac  ( a = 1/2 ) delivers a considerably more fine-grained 
model with 23 aggregations, including 13 on the OTU level. While the Acidobacteria-6 class is still selected as a 
whole, weighted trac picks specific OTUs and families in the Gammaproteobacteria class. Similar behavior is 
observed for the Acidobacteriales order and the Bacteroidetes phylum. Moreover, novel orders, families, genera, 
and OTUs from the Bacteria kingdom are selected. Four OTUs are shared with the sparse log-contrast model 
which selects 21 OTUs overall.

To compare the models in terms of interpretability and prediction quality, we report in Table 2 average 
out-of-sample prediction errors and sparsity levels at three different base levels using ten different training/
test splits. We observe that for the Central Park soil data set, standard trac with OTU base levels delivers the 
sparsest solutions (on average, ten aggregations), followed by weighted trac on the family level (on average, 
15 aggregations). The sparse log-contrast models deliver the densest models (26–33, on average). All models are 
comparable in terms of out-of-sample test error (0.38–0.40).

Global predictive model of ocean salinity from Tara data. Integrative marine data collection efforts 
such as Tara  Oceans55 or the Simons CMAP (https:// simon scmap. com) provide the means to investigate ocean 
ecosystems on a global scale. Using Tara’s environmental and microbial survey of ocean surface  water3, we next 
illustrate how trac can be used to globally connect environmental covariates and marine microbiome data. As 

Table 1.  Average out-of-sample test errors (rounded average model sparsity in parenthesis) for 
trac (a ∈ {1, 1/2} ) and sparse log-contrast models, respectively. Each row considers a different base level 
(OTU, genus, and family). Each number is averaged over ten different training/test splits of the sCD14 data.

Base level p trac (a = 1) trac (a = 1/2) Sparse log-contrast

OTU 539 6.3e+ 06 (7) 6.7e+ 06 (9) 6.8e+ 06 (8)

Genus 282 6.8e+ 06 (7) 7.1e+ 06 (8) 7.1e+ 06 (9)

Family 112 6.5e+ 06 (4) 6.5e+ 06 (5) 6.6e+ 06 (7)

https://simonscmap.com
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an example, we learn global predictive models of ocean salinity from n = 136 samples and p = 8916 miTAG 
 OTUs56. Even though salinity is thought to be an important environmental factor in marine microbial ecosys-
tems, existing studies have investigated the connection between the microbiome and salinity gradients mainly 
on a local marine scale, in particular estuaries.

Standard trac ( a = 1 ) identifies four taxonomic aggregations (see Fig. 5A), the kingdom Bacteria and the 
phylum Bacteroidetes being negatively associated and the class Alphaproteobacteria being strongly positively 
and Gammaproteobacteria being moderately positively associated with marine salinity.

Consistent with this trac model, a marked increase of Alphaproteobacteria with increasing salinity was 
observed in several estuary  studies57,58. In a global marine microbiome meta-analysis59, Spearman rank correla-
tions between relative abundances of microbial clades and several physicochemical water properties, including 
salinity, were reported, showing four out of five orders in the Bacteroidetes phylum to be negatively correlated 
with salinity. However, three out of four orders belonging to Gammaproteobacteria were negatively correlated 
with salinity, suggesting that the standard trac model does not universally agree with standard univariate 
assessments. However, as shown in Fig. 5B, weighted trac (a = 1/2 ) reveals a more fine-grained taxon aggre-
gation, selecting the Halomonadaceae family and the Marinobacter genus in the phylum Gammaproteobacteria 
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Figure 4.  Taxonomic tree visualization of trac aggregations ( a ∈ {1, 1/2} using the Central Park soil data 
(training/test split 1). Each tree represents the taxonomy of the p = 3379 OTUs. Colored branches highlight 
the estimated trac taxon aggregations. The black dots mark the selected taxa of the sparse log-contrast 
model. The outer rim represents the value of β coefficients in the trac model from Eq. (1). (A) Standard 
trac (a = 1 ) with OTUs as taxon base level selects six aggregations. (B) Weighted trac (a = 1/2 ) with OTU 
base level selects 28 aggregations, including 13 on the OTU level. Four of these OTUs are also selected by the 
sparse log-contrast model which comprises 21 OTUs in total (black dots) (see Suppl. Tables 15 and 16 for the 
selected coefficients). (C) The table lists the α coefficients associated with Eq. (2) for the trac (a = 1 ) model 
corresponding to the tree shown in (A). These values are in the same units as the pH response variable.

Table 2.  Average out-of-sample test errors (rounded average model sparsity in parenthesis) for 
trac (a ∈ {1, 1/2} ) and sparse log-contrast models, respectively. Each row represents the results for base level 
OTU, genus, and family. Each value is averaged over ten different training/test splits of the Central Park soil 
data.

Base level p trac (a = 1) trac (a = 1/2) Sparse log-contrast

OTU 3379 0.40 (10) 0.39 (18) 0.39 (33)

Genus 2779 0.40 (13) 0.38 (22) 0.39 (26)

Family 1492 0.39 (10) 0.39 (15) 0.40 (29)
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with negative α coefficients and a Gammaproteobacteria OTU (OTU 520, order E01-9C-26 marine group) with 
positive α coefficients, respectively (see also Supplementary Table 23). Likewise, out of the nine OTUs selected 
by the sparse log-contrast model (black dots in Fig. 5A,B), four out of six selected Gammaproteobacteria OTUs 
have negative coefficients (including OTU 520), and two OTUs have positive coefficients.

In terms of model performance, the standard trac model shows good global predictive capabilities with an 
out-of-sample test error of 1.99 (on training/test split 1). We observe, however, that high salinity outliers located 
in the Red Sea (Coastal Biome) and the Mediterranean Sea (Westerlies Biome) and a low salinity outlier (far 
eastern Pacific fresh pool south of Panama) are not well captured by the model (see Supplementary Figure 5 for 
a scatter plot of measured vs. predicted salinity). Weighted trac (a = 1/2 ) and the sparse log-contrast models 
outperform standard trac on the salinity prediction task with an out-of-sample test error (on split 1) of 1.94 
and 1.52, respectively.

This boost in prediction quality is further confirmed by the average out-of-sample prediction errors across 
all ten training/test splits and three base levels (see Table 3). Sparse log-contrast models on the OTU and Genus 
base level perform best (average test error 1.3 and 1.4, respectively), followed by weighted trac  on Genus 
level (1.5). However, standard trac models are considerably sparser (six to seven aggregations) compared to 
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Figure 5.  Taxonomic tree visualization of trac aggregations (OTUs as taxon base level, a ∈ {1, 1/2} for 
salinity prediction using Tara data (training/test split 1). Each tree represents the taxonomy of the p = 8916 
miTAG OTUs. Colored branches highlight the estimated trac taxon aggregations. The black dots mark 
the selected taxa of the sparse log-contrast model. The outer rim represents the value of β coefficients in the 
trac model from Eq. (1). (A) Standard trac (a = 1 ) selects four aggregations on the kingdom, phylum, 
and class level. (B) Weighted trac (a = 1/2 ) selects ten aggregations across all taxonomic ranks, including a 
single OTU (OTU520). This OTU is also selected by the sparse log-contrast model which comprises nine OTUs 
in total (black dots) (see Suppl. Table 18 for the selected coefficients). Both trac models select the phylum 
Bacteroidetes and the Alphaproteobacteria class. (C) The table lists the α coefficients associated with Eq. (2) 
for the trac (a = 1 ) model corresponding to the tree shown in ( A). These values are in the same units as the 
salinity response variable.

Table 3.  Average out-of-sample test errors (rounded average model sparsity in parenthesis) for 
trac (a ∈ {1, 1/2} ) and sparse log-contrast models, respectively. Each row represents the results for base level 
OTU, genus, and family and the corresponding dimensionality of the base level. Each value is averaged over 
ten different training/test splits of the Tara data.

Base level p trac (a = 1) trac (a = 1/2) Sparse log-contrast

OTU 8916 2.1 (7) 1.8 (14) 1.3 (24)

Genus 4220 2.0 (7) 1.5 (14) 1.4 (34)

Family 1869 2.1 (6) 1.7 (10) 1.6 (13)
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log-contrast models (13–24 taxa). Weighted trac models represent a good trade-off between predictability and 
interpretability, selecting ten to fourteen taxa, on average.

Conclusions
Finding predictive and interpretable relationships between microbial amplicon sequencing data and ecological, 
environmental, or host-associated covariates of interest is a cornerstone of exploratory data analysis in microbial 
biogeography and ecology. To this end, we have introduced trac, a scalable tree-aggregation regression frame-
work for compositional amplicon data. The framework leverages the hierarchical nature of microbial sequencing 
data to learn parsimonious log-ratios of microbial compositions along the taxonomic or phylogenetic tree that 
best predict continuous environmental or host-associated response variables. The trac method is applicable 
to any user-defined taxon base level as input, e.g., ASV/OTU, genus, or family level, and includes a scalar tun-
ing parameter a that allows control of the overall aggregation granularity. As shown above, this allows seamless 
testing of a continuum of models to a data set of interest, with prior approaches to sparse log-contrast modeling 
modeling as special limit  cases15,43,60. The framework, available in the R package trac and  Python35, shares simi-
larities with ideas from tree-guided, balance modeling of compositional  data18,23,24, albeit with a stronger focus 
on finding predictive relationships and emphasis on fast computation thanks to the convexity of the formulation 
and the underlying efficient path algorithm.

Our comprehensive benchmarks and comparative analysis on host-associated and environmental microbi-
ome data revealed several notable observations. Firstly, across almost all tested taxon base levels and methods, 
standard trac (a = 1 ) resulted in the most parsimonious models and revealed data-specific taxon aggrega-
tions comprising all taxonomic orders. This facilitated straightforward model interpretability despite the high-
dimensionality of the data. For instance, on the sCD14 data, the standard trac model with OTU base level 
asserted a particularly strong predictive role of the Ruminococcaceae/Lachnospiraceae family ratio for sCD14, 
thus generating a testable biological hypothesis. Likewise, trac analysis on environmental microbiomes in 
soil and marine habitats consistently provided parsimonious taxonomic aggregations for predicting covariates 
of interest. For instance, Alpha- and Gammaproteobacteria/Bacteroidetes ratios well-aligned with sea surface 
water salinity on a global scale, reminiscent of the ubiquitous Firmicutes/Bacteroidetes ratio in the context of 
the gut microbiome and  obesity61,62.

Secondly, arithmetic aggregation of OTUs to a higher taxonomic base level prior to trac  or sparse log-
contrast modeling did not result in significant predictive performance gains. In fact, using OTUs as base level, at 
least one of the three statistical methods showed superior test error performance while maintaining a high level 
of sparsity. These results suggest that a user may safely choose the highest level of resolution of the data (e.g., 
mOTUs, OTUs, or ASVs) in (weighted) trac models without sacrificing prediction performance.

Thirdly, while standard trac models always showed good predictive performance on out-of-sample test 
data, our comparative and average analysis indicated that weighted trac and sparse log-contrast models can 
outperform the parsimonious trac models in terms of test error, particularly on environmental microbiome 
data. For instance, on Central Park soil data, we observed moderate performance gains using weighted trac, 
and on marine data (see Extended Results in the Supplementary Materials for the Fram Strait dataset), sparse 
log-contrast models showed, on average, the best predictive performance. These results add a valuable piece of 
information to the ongoing debate about the usefulness of incorporating phylogenetic or taxonomic information 
into statistical modeling. For example, the authors  in63 convincingly argue that incorporating such information 
provides no gains in microbial differential abundance testing scenarios.

We posit that, in the context of statistical regression, full comparative trac analyses like the ones presented 
here, can immediately determine in a concrete and objective way whether phylogenetic or taxonomic informa-
tion is useful for a particular prediction task on the data set of interest.

The trac framework naturally lends itself to several methodological extensions that are easy to implement 
and may prove valuable in microbiome research. Firstly, as apparent in the gut microbiome context, inclusion of 
additional factors such as diet and life style would likely improve prediction performance. This can be addressed 
by combining trac with standard (sparse) linear regression to allow the incorporation of (non-compositional) 
covariates into the statistical model (see, e.g.,64). Secondly, while we focused on predictive regression modeling of 
continuous outcomes, it is straightforward to adopt our framework to classification tasks when binary outcomes, 
such as, e.g., case vs. control group, or healthy vs. sick participants, are to be predicted. For instance, using the 
(Huberized) square hinge loss (see, e.g.,65) as objective function L(·) in Eq. (2) would provide an ideal means to 
handle binary responses while simultaneously enabling the use of efficient path algorithms  (see35 and references 
therein). Thirdly, due to the compositional nature of current amplicon data, we presented trac in the common 
framework of log-contrast modeling. However, alternative forms of tree aggregations over compositions are pos-
sible, for instance, by directly using the relative abundances as features rather than log-transformed quantities. 
Tree aggregations would then amount to grouped relative abundance differences and not log-ratios, thus resulting 
in a different interpretation of the estimated model features.

In summary, we believe that our methodology and its implementation in the R package trac, together with 
the presented reproducible application workflows, provide a valuable blueprint for future data-adaptive aggre-
gation and regression modeling for microbial biomarker discovery, biogeography, and ecology research. This, 
in turn, may contribute to the generation of new interpretable and testable hypotheses about host-microbiome 
interactions and the general factors that shape microbial ecosystems in their natural habitats.
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