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Abstract

Motivation: Unknown parameters of dynamical models are commonly estimated from experimental data. However,
while various efficient optimization and uncertainty analysis methods have been proposed for quantitative data,
methods for qualitative data are rare and suffer from bad scaling and convergence.

Results: Here, we propose an efficient and reliable framework for estimating the parameters of ordinary differential
equation models from qualitative data. In this framework, we derive a semi-analytical algorithm for gradient calcula-
tion of the optimal scaling method developed for qualitative data. This enables the use of efficient gradient-based
optimization algorithms. We demonstrate that the use of gradient information improves performance of optimiza-
tion and uncertainty quantification on several application examples. On average, we achieve a speedup of more
than one order of magnitude compared to gradient-free optimization. In addition, in some examples, the gradient-
based approach yields substantially improved objective function values and quality of the fits. Accordingly, the pro-
posed framework substantially improves the parameterization of models from qualitative data.

Availability and implementation: The proposed approach is implemented in the open-source Python Parameter
EStimation TOolbox (pyPESTO). pyPESTO is available at https:/github.com/ICB-DCM/pyPESTOQO. All application

examples and code to reproduce this study are available at https://doi.org/10.5281/zenod0.4507613.

Contact: jan.hasenauer@uni-bonn.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Systems biology models based on ordinary differential equations
(ODEs) have enabled a profound understanding of many biological
processes. Application areas include the study of signal transduction,
gene regulation and metabolism (see, e.g. Bachmann et al., 2011;
Frohlich et al., 2018; Intosalmi et al., 2016; Ozbudak et al., 2004).
The ODE models employed in these and other applications com-
monly comprise parameters, such as reaction rate constants or initial
concentrations of biochemical species, which cannot be measured
directly and therefore have to be inferred from experimental data
(Mitra and Hlavacek, 2019). This is achieved by optimizing the
agreement of the model simulation with experimental data, e.g. by
minimizing the sum of squared distances or by maximizing a likeli-
hood function. Various optimization methods have been developed
to solve parameter estimation problems. This includes multi-start
local optimization methods, global optimization methods and hy-
brid optimization methods (see Villaverde et al., 2018 for detailed a
discussion). Several empirical studies (Raue et al., 2013; Schilte
et al., 2018; Villaverde et al., 2018) have shown that optimization

©The Author(s) 2021. Published by Oxford University Press.

methods which use the gradient of the objective function with
respect to the parameters tend to be more efficient than gradient-
free optimization methods. Yet, while gradient calculation for
objective functions using quantitative data is well established
(Frohlich ez al., 2017; Raue et al., 2013; Sengupta et al., 2014),
respective tools for qualitative data are missing.

A spectrum of experimental setups and techniques provide quali-
tative observations, meaning that no exact quantitative relation to
the concentration e.g. of biochemical species is available (Pargett
and Umulis, 2013). Examples include imaging data for certain stain-
ings (Brooks et al., 2012; Pargett et al., 2014), Forster resonance en-
ergy transfer (FRET) data (Birtwistle ez al., 2011) or phenotypic
observations (Chen et al., 2004). Although qualitative measure-
ments do not provide numerical values, they contain valuable infor-
mation to infer parameters (Pargett and Umulis, 2013). Therefore,
several tailored parameter estimation approaches have been devel-
oped: (i) Toni et al. (2011) used simple distance functions and
employed approximate Bayesian computing to explore the
parameter space. (ii) Oguz et al. (2013) optimized the number of
qualitative observations that were correctly captured by the model.
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(iii) Mitra et al. used qualitative observations as static penalty func-
tions (Mitra et al., 2018, 2019) and proposed a statistically moti-
vated objective function (Mitra and Hlavacek, 2020). (iv) Pargett
et al. (2014) employed the concept of the optimal scaling approach
(introduced by Shepard, 1962), which is based on finding the best
possible quantitative representation (so-called surrogate data) of the
qualitative observations. This is based on a hierarchical optimiza-
tion problem, where in an outer optimization loop the model param-
eters are estimated, and in an inner optimization loop the optimal
surrogate data is calculated. The approaches (i)—(iv) facilitate the ex-
traction of information about the model parameters from qualitative
data. Yet, the objective functions are either intrinsically discontinu-
ous or an analytical formulation for the objective function gradient
was unknown. Accordingly, only gradient-free optimization meth-
ods could be employed.

Here, we derive formulas for semi-analytical calculation of
the gradients of the objective function arising in the optimal
scaling approach. This allows for the use of gradient-based
optimization in the outer loop (which optimizes the model
parameters), and complements our previous work (Schmiester
et al., 2020) on the reformulation of the inner loop (which
optimizes the surrogate data). We evaluate our gradient-based
framework on several application examples and compare it to
gradient-free optimization. We show that the proposed method
yields accurate gradients, substantially accelerates parameter
estimation and profile calculation and often yields improved final
objective function values.

2 Materials and methods

2.1 Mathematical modeling of biological processes
We consider ODE models

.’if(t, 9) = f(x(tv 0)70)7 x(t070) = xO(H) (1)

for the dynamics of the concentrations of biochemical species,
x(t,0) € R™. The vector field f : R™ x R" — R describes the tem-
poral evolution of the modeled species. The unknown model param-
eters are denoted by 0 € R™ and the initial states at time point #, are
given by x((0). The total numbers of state variables and unknown
parameters are denoted by 7, and ny, respectively.

The state variables x(¢, 0) can be linked to experimental data by
introducing an observation function 4 : R™ x R" — R, which maps
the 7, state variables to an observable, y(z, 0) € R, via

y(¢,0) = h(x(2,0),0).

Note that we consider here the case of a single observable to sim-
plify the notation. The general case is captured in the Supplementary
Section S2.

Quantitative data provide information about the observable
y(¢,0). Yet, the measurements are usually subject to measurement
errors, which are often assumed to be i.i.d. additive Gaussian noise.
In this case, the data ¥ can be linked to the observables by

yi=yti.0)+te, i=1...m

with measurement noise & ~ N(0,6?), in which o; is the standard
deviation for the ith observation and 7, denotes the number of time
points. Alternative noise models can be used depending on the meas-
urement characteristics (see discussion in Maier et al., 2017).
Qualitative data do not provide information on the values of the
observable, but rather on the ordering of different datapoints.
Following the notation from Schmiester et al. (2020), we denote a
qualitative readout as z(¢,0) € R. For these readouts no exact quan-
titative relation to y(¢,0) is known and only monotonicity in the
mapping between y(z,0) and z(¢,0) can be assumed. A qualitative
observation provides the ordering of two readouts. It is possible that
these observations are indistinguishable (z; ~ z;), or that one observ-
able is clearly larger or smaller (z;{>, < }z;). We group the different

indistinguishable qualitative measurements in 7, different categories
which are denoted by Cy, k =1,... 1, i.e. 2i,2j € Cp = zi = zj. We
assume in the following that the categories are ordered as
Ci <...<Cy,.

2.2 Parameter estimation using qualitative data

In this study, we build upon the optimal scaling approach for par-
ameter estimation using qualitative data (Pargett et al., 2014;
Schmiester et al., 2020). The optimal scaling approach introduces
surrogate data y,, which are the best quantitative representations of
the qualitative measurements z;. Therefore, for some parameter vec-
tor 0, the surrogate data y; aim to describe the model simulation
y(#, 0) optimally, while fulfilling the ordering of the qualitative cate-
gories (Fig. 1A). To this end, we introduce intervals [I, #,] for each
category C, with lower and upper bounds I, and #;. The intervals
are ordered, u;, < I, and the surrogate datapoints can be freely
placed within the corresponding interval. As the bounds of the inter-
vals and the surrogate data are a priori unknown, they are subject to
optimization. Using a weighted sum of squared distances function,
the corresponding optimization problem is

mlnylu{] 7Zw, y(t;, ))2}

st lgy < ¥ < up),i=1,.
tp < lppr k= 1-~ *17

(2)

in which k(i) is the index of the category of the surrogate datapoint
y; and w; are datapoint-specific weights. The weights are usually
chosen such that the objective function value is independent of the
scale of the simulation (Pargett et al., 2014; Schmiester et al., 2020).
The first inequality constraint of (2) guarantees that the surrogate
datapoints are placed inside the respective interval, and the second
inequality constraint assures that the ordering of the categories is
fulfilled.

To estimate the unknown model parameters 6, the surrogate
data optimization (2) can be nested into the model parameter opti-
mization (Fig. 1B), yielding the hierarchical optimization problem

mmozwz ¥(t:,0))* 3)

s.t. (¥,1, u) are a solution to (2).

Therefore, in each iteration of the outer optimization (of the
model parameters 0), the inner constrained optimization problem
(2) (for the surrogate data and category bounds) has to be solved.
We have previously shown that the inner optimization problem can
be simplified to improve efficiency and robustness by only estimat-
ing upper bounds # and determining / and y analytically (Schmiester
et al., 2020). However, for the derivation of the gradient computa-
tion algorithm introduced in the next section we will consider the
full optimization problem (2).

For ease of notation, we rewrite the optimization problem in
matrix-vector notation. For this, we denote the collection of all inner
optimization variables by & = (y I,u)T € R™ and the vector of simu-
lations by &(0) = (y(0),0, 0)" € R which is filled with zeros such
that ¢ and ¢ have the same dimension. Here, n: = 1, + 2n,, is the
number of inner optimization variables. With this, we can rewrite the
optimization problem (3) as a hierarchical problem of the form

mingJ(£(6), " (6)) (4)

s.t. E*(f)) = argminé J(¢(0), )
s.t. CE <0, ()

in which &(0) is the optimal value of the inner optimization for a
given 0. Note that, because the optimal solution to the inner opti-
mization problem (5) depends on the model parameters 0, the opti-
mal surrogate data & is directly dependent on 6. The objective
function is given by
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Fig. 1. Illustration of the optimal scaling approach. (A) Qualitative data and model simulation are integrated by introducing intervals for the qualitative categories C, which
have to be optimized to minimize the difference to the model simulation. Surrogate data (y) can then be placed optimally inside the intervals [/, u]. (B) Model parameters 0 are
updated iteratively during parameter estimation. For each trial parameter vector, the model output y is simulated. Then, the surrogate data is optimized and used to compute

the objective function J and, if required by the employed optimizer, gradients dJ /d0

160, 8) = (2 - 0) W (E - 2).

The matrix C € R"*™ encodes the inequality constraints of the
inner problem, with the total number of constraints 7., and the
weight matrix W is given by

diag(w) 0

WZ( 0 0

) € R™X™,

W is augmented with zeros such that the bounds / and # do not
contribute to the objective function J and the dimensions of W and
C are consistent, which is necessary for the following calculations.
An illustrating example of the reformulation is given in the
Supplementary Section S3.

2.3 Gradient computation for the optimal scaling

objective function

In this section, we derive an algorithm to calculate the gradients of
the optimal scaling objective function, based on ideas from the field
of bi-level optimization (Fiacco, 1976; Kolstad and Lasdon, 1990).
We are interested in calculating the derivative of the objective func-
tion | with respect to the model parameters 0, evaluated at the opti-
mal surrogate data & (0), which is given by

d _ Ay )
@léw),%‘(ﬂ)_ 35' ¢ 90 P
+a—l\ M ©

O £(0).€ (0) 00

All parts of (6) except for ' (0)/00 can be easdy calculated (see
Supplementary Section S1 for details). 9 we introduce
the Lagrangian function £(&, i) = J(£(0), &) + ,uTCg, with Lagrange
multipliers 1 € R™. The necessary first order optimality conditions

of problem (5) for a given 6 are then given by the Karush-Kuhn-
Tucker conditions (Boyd and Vandenberghe, 2004)

% .. T T
VAUE O),u0) =2(2'0) - &0)) W) C=0 ()

1(0)C:E (0) =0 (8)
GEW® <0 9)
w(0) >0 (10)

fori=1,...,n., where C; is the ith row of C. Given the optimal val-
ues of the inner optimization variables & (6), the Lagrange multi-
plier u can be calculated by solving (7)—(10). To obtain 9" (0)/00,
we calculate the derivative of the optimality conditions (7) and (8)
w.r.t. 0;, which results in

o* T
¢ (0 dE0
250 -5) W
I (0)
90;

o 9E(0)
Ctg (0) + lu‘l(e)ct 007

=0.

This yields a linear system of equations that needs to be solved
for every parameter 0;:

a—g* ¢
( 2w CTW ) 86i _ Zwafé (11)
diag(1)C diag(CE)) | op o)

a0,

where we omitted the dependency of y, & and & on 6 for simplicity
of presentation. After solving (11), we can calculate the gradients of
the objective function w.r.t. the model parameters 6 using equation (6).
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To summarize, the gradient computation scheme consists of the fol-
lowing steps:

1. Simulate the ODE (1) to obtain &() and 2.
Calculate optimal surrogate data y and category bounds /, # by
solving (2) or a reformulation of this problem (Schmiester ez al.,
2020).

3. Solve the optimality conditions (7)-(10) for the Lagrange multi-
plier u. i

4. Solve the linear system of Equations (11) to obtain %.

5. Evaluate the gradient % of the objective function using
Equation (6).

In practice, it is sometimes preferable to choose weights, that are
dependent on the parameters 6 or the simulation &. In addition, min-
imal sizes on the intervals s(0, £(0)) < u, — I, and on the gaps be-
tween the intervals g(0, £(0)) < l.1 — up, which can also depend
on 0 and ¢, can be imposed. Assuming that g(0, £(0)), s(0, ¢(0)) and
W(0,£(0)) are differentiable functions, similar formulas for gradient
computation can be derived (see Supplementary Section S1).
Collecting minimal interval gaps g and interval sizes s in the vector
d, yielding the inequality constraints C¢ + d(0,£(0)) < 0, we obtain
the linear system of equations

¢
( 2W cr ) ‘0;
diag(n)C diag(CS +d)/ | ou
% (12)
o0& OW o&  OW\ -«
Zwa_()/_2<8_fa_0,+8_0;>(é =)

. od 0¢  od
—diag(u) (&007 + 80,)

The linear systems (11) and (12) are sparse and can be solved ef-
ficiently. These systems can be solved and the gradients can be calcu-
lated for arbitrary parameter vectors as long as the solution of the
ODE model is available.

2.4 Implementation

We implemented the gradient calculation method in the Python
Parameter EStimation TOolbox (pyPESTO) (Schilte et al., 2020).
The qualitative data can be defined using an extension to the PEtab
format, which is a standardized format for the definition of param-
eter estimation problems (Schmiester et al., 2021). Model simulation
was carried out using the AMICI toolbox (Fréhlich et al., 2020),
which internally interfaces the Sundials solver CVODES
(Hindmarsh et al., 2005). Parameter estimation was performed
using multi-start local optimization with 500 starts per model and
method. To guarantee comparability, optimizations were started
from the same initial parameters for each method. For gradient-free
optimization we used the Powell algorithm implemented in the
SciPy package (Jones et al., 2001), which performed well among
SciPy’s gradient-free optimizers in a previous study using the opti-
mal scaling approach (Schmiester et al., 2020). For gradient-based
optimization we used SciPy’s L-BFGS-B algorithm, which is the

default optimizer in pyPESTO. For more details on the implementa-
tion, we refer to the Supplementary Section S4.

3 Results

3.1 Model overview

To analyze the gradient algorithm and compare it to gradient-free
optimization, we considered six models. We included one toy model
and five larger application examples. An overview of the models and
datasets used for parameter estimation is given in Table 1.

T1 is a small model used for illustration. Models M1-MS5 are
published models with experimental data and describe different bio-
logical processes. They are taken from a collection of parameter esti-
mation problems in the PEtab format, which is based on the
benchmark collection by Hass et al. (2019). The models comprise
different numbers of datapoints and unknown parameters and were
originally calibrated on quantitative measurements. These quantita-
tive measurements were converted to qualitative observations based
on their ordering, where we assumed that measurements are indis-
tinguishable, if their numeric values are equal. In addition, we
assumed that data was comparable within an observable but not
across observables, leading to one optimal scaling problem per ob-
servable that needed to be solved.

3.2 Semi-analytical approach yields accurate gradients
As the gradient computation algorithm involves numerically solving
a linear system of equations, we first evaluated the accuracy of the
obtained solution. We considered the model T1 and compared the
semi-analytical gradients with gradients obtained using a finite dif-
ference approach at different parameter vectors (Fig. 2A). The ana-
lysis revealed that for all tested parameters the approaches yielded
almost identical gradients (with absolute differences < 107°). We
additionally compared computation times of finite differences and
our semi-analytical gradient algorithm for models M1-MS5, which
showed that finite differences require substantially more computa-
tion time (Supplementary Fig. S1). Therefore, we restrict ourselves
to gradient computations using the semi-analytical approach in the
following analysis.

3.3 Gradient information increases optimizer efficiency
To illustrate the differences of gradient-free and gradient-based opti-
mization, we estimated parameters for both optimizers starting from
the same initial parameters. As the model T1 only contains two
parameters, we inspected the whole objective function landscape
and the respective optimizer trajectories (Fig. 2B and C). While the
gradient-free optimizer used a rather naive updating scheme (Fig.
2B) that often moved along sub-optimal directions, the gradient-
based optimizer moved towards the optimal point within a few iter-
ations (Fig. 2C), indicating a potential advantage of using gradient-
based optimizers. Figure 2B and C revealed flat regions in the object-
ive function. We additionally computed the landscapes of the gra-
dients to show that they are correctly calculated close to zero in
these areas (Supplementary Fig. S5).

To assess the performance of gradient-based and gradient-free
optimization in a realistic setting, we performed multi-start local op-
timization for the application examples M1-MS35. The results show

Table 1. Key numbers of the different considered models and datasets used for parameter estimation

Model No. of No. of No. of No. of No. of Description Reference
states parameters observables datapoints categories
T1 6 2 2 18 2x3 RAF inhibition Mitra et al. (2018)
M1 7 9 1 23 19 Infectious diseases dynamics Rahman et al. (2016)
M2 8 6 3 48 3x16 STATS dimerization Boehm et al. (2014)
M3 8 18 1 58 43 Transcriptional regulation Elowitz and Leibler (2000)
M4 14 18 8 205 6-38 IL13-induced signaling Raia et al. (2011)
MS 6 12 8 72 9-11 RAF-MEK-ERK signaling Fiedler et al. (2016)
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Fig. 2. (A) Absolute gradients of the two parameters of model T1 evaluated at 2500 uniformly sampled parameter vectors using the semi-analytical approach and central finite
differences. (B and C) Objective function landscape and optimizer trajectories of a gradient-free (B) and a gradient-based (C) optimizer
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Fig. 3. Optimization results for all models using gradient-free and gradient-based optimization for 500 local optimizations. (A) Computation times until the optimizer termi-
nates per local optimization. (B) Number of function evaluations per local optimization. (C) Converged starts per hour. A start is considered converged, if the absolute differ-
ence to the overall best value is less than 107 (see Supplementary Fig. S2 for results using different thresholds). (D) Waterfall plots for all five considered models using
gradient-free and gradient-based optimization. Best 200 starts out of a total of 500 are shown. See Supplementary Figure S3 for results of all starts

considerably reduced computation times of the gradient-based opti-
mization for all models (Fig. 3A). Depending on the considered
model, the median CPU times are reduced by 1-2 orders of
magnitude.

As illustrated in Figure 2, the gradient-based optimizer used a
more intelligent updating scheme during optimization, resulting in
reduced numbers of objective function evaluations. The reduction in
function evaluations could also be observed for all employed models

(Fig. 3B). Even though a single evaluation is more costly when gra-
dients need to be calculated (Supplementary Fig. S1), the reduced
number of necessary evaluations outweighs this, explaining the
improved computation times.

In addition to the computation times, we also incorporated the
final objective function values into our analysis by considering the
number of local optimization runs which achieved values close to
the overall best value (Fig. 3C). This revealed substantially improved
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efficiency of the gradient-based optimizer for all models. This result
could be observed independent of the threshold for convergence to
the optimal point (Supplementary Fig. S2). The improved efficiency
of the gradient-based optimizer could be observed even for the mod-
els M2 and M3, for which the gradient-free optimizer found the op-
timal value more often (Fig. 3D). A possible explanation for the
sometimes larger number of converged starts observed for gradient-
free optimization methods could be flat regions in the objective
function. This would result in a vanishing gradient, which in turn
could lead to a termination of the gradient-based optimization.

3.4 Gradient-based optimization yields improved model
fits

The waterfall plots show that the gradient-based optimization
yielded equal (M1, M2 and M5) or even better (M3 and M4) final
objective function values compared to gradient-free optimization
(Fig. 3D and Supplementary Fig. S3). We simulated the models for
which larger differences in the best obtained objective function val-
ues were observed to analyze if the different parameters resulted in
substantial differences in the model fits. Especially for model M3 we
observed a better representation of the data with the parameters
from gradient-based optimization (Fig. 4). Indeed, only the parame-
ters obtained using the gradient-based optimization correctly cap-
tured the oscillations of the measurements.

For the model M4, we also observed smaller improvements in
the model fits for some observables, when using the parameters
obtained from gradient-based optimization (Supplementary Fig. $4).
The improved objective function values are likely owing to the
additional information coming from the gradient that helps the
optimizer move towards an optimal point, in particular for high-
dimensional problems. Indeed, the models M3 and M4, were this
improvement was observed, are the problems with the largest
number of estimated parameters.

3.5 Gradient-based approach facilitates uncertainty

quantification

Qualitative data is often considered to be less informative than
quantitative measurements. As this can result in reduced parameter
identifiability, it is even more important to assess the uncertainties
associated with the estimated parameters when using qualitative
measurements. For uncertainty analysis, we used objective function
ratio profiles analogously to profile likelihoods in the case of a likeli-
hood function (Raue et al., 2009). While the objective function dif-
ferences in the profiles cannot easily be interpreted statistically, they
can still be valuable to indicate uncertainties of the estimated param-
eters. As a proof of concept, we calculated objective function pro-
files for the model M2 (Fig. 5A). The gradient-based approach
yielded mostly smooth profiles indicating that several parameters
could be well identified using the qualitative dataset. In contrast, the
gradient-free approach resulted in several discontinuities in the

profiles probably caused by impaired optimization. This shows that
only the gradient-based approach was able to yield meaningful pro-
files for this model. In addition to the improved profiles, the
gradient-based approach required on average an order of magnitude
less computation time than the gradient-free optimizer (Fig. 5B).

4 Discussion

Qualitative data can contain valuable information for parameter es-
timation but current methods to integrate such data are computa-
tionally demanding and more efficient algorithms are required.
Here, we developed a framework for semi-analytical computation of
gradients for the optimal scaling approach. We validated the accur-
acy of the obtained gradients by comparing them to finite differences
and assessed the advantage of using gradient information on five ap-
plication examples by performing optimization with a gradient-free
and a gradient-based algorithm. This revealed speedups of more
than one order of magnitude using the gradient-based approach. In
addition, the gradient-based algorithm resulted in equal or even
improved final objective function values and model fits. The
gradient-based approach was further used to reliably calculate ob-
jective function profiles to assess the uncertainty of parameter esti-
mates when using qualitative data.

A linear system needs to be solved for every parameter to obtain
the gradients of the optimization problem. As this is the most time
consuming part during gradient computation, more efficient
approaches could further decrease computation times. The compu-
tation time could for instance be reduced by splitting it into active
and inactive constraints (Kolstad and Lasdon, 1990) or by parallel-
izing gradient computation over the parameters. Complementary to
this, it remains open whether—similar to other hierarchical opti-
mization approaches (Schmiester ef al., 2019) — adjoint sensitivity
analysis can be used to further accelerate optimization (Frohlich
et al., 2017). Another possible extension would be the derivation of
second-order derivatives that could be used for parameter estimation
and profile calculation (Stapor et al., 2018).

The application examples considered here were all based on syn-
thetic qualitative data by transforming real quantitative measure-
ments to qualitative observations based on their ordering. The
application to real-world qualitative data, as given e.g. in Mitra
et al. (2018) and Pargett et al. (2014), is left for future work. For
this, it will often be advantageous to combine qualitative and quan-
titative measurements. In Mitra et al. (2018) it has been shown, that
complementing quantitative data with qualitative data can improve
parameter identifiability. This can in principle be done by formulat-
ing a similar objective function for quantitative data by replacing
the surrogate data with the measured quantitative values. As the gra-
dient for quantitative data can easily be calculated, an overall ob-
jective function value and gradient can be obtained by summing up
the respective values for qualitative and quantitative data. The inte-
gration of both datatypes could further be improved by defining a
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parameter

proper likelihood function, which seems to be problematic in the op-
timal scaling approach. A likelihood function for qualitative data
would also facilitate the use of Bayesian problem formulations,
which are not feasible with the here considered objective function.

In conclusion, we developed a framework to compute gradient
information for parameter estimation problems that include qualita-
tive data and showed that it substantially improves computational
efficiency. The open-source implementation of the approach we pro-
vide will facilitate reusability and might improve the usage of quali-
tative data for the parameterization of quantitative models.
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