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Abstract
Nonalcoholic fatty liver disease (NAFLD) is a very common 
hepatic pathology featuring steatosis and is linked to obe-
sity and related conditions, such as the metabolic syndrome. 
When hepatic steatosis is accompanied by inflammation, 
the disorder is defined as nonalcoholic steatohepatitis 
(NASH), which in turn can progress toward fibrosis develop-
ment that can ultimately result in cirrhosis. Cells of innate 
immunity, such as neutrophils or macrophages, are central 
regulators of NASH-related inflammation. Recent studies uti-
lizing new experimental technologies, such as single-cell 
RNA sequencing, have revealed substantial heterogeneity 
within the macrophage populations of the liver, suggesting 
distinct functions of liver-resident Kupffer cells and recruited 
monocyte-derived macrophages with regards to regulation 
of liver inflammation and progression of NASH pathogene-
sis. Herein, we discuss recent developments concerning the 
function of innate immune cell subsets in NAFLD and NASH.

© 2021 The Author(s)
Published by S. Karger AG, Basel

Introduction: NAFLD and NASH

Nonalcoholic fatty liver disease (NAFLD) is the most 
frequent chronic liver pathology in developed countries 
[1]. The prevalence of NAFLD is approximately 25%; 
however, this prevalence is likely underestimated due to 
the absence of symptoms and lack of noninvasive diag-
nostic tools [2]. NAFLD affects up to 70% of type 2 dia-
betes patients [3, 4] and is present in the majority of obese 
individuals subjected to weight loss surgery [5, 6]. There-
fore, NAFLD can be contemplated as the liver component 
of the metabolic syndrome [7]. Given that obesity, meta-
bolic syndrome, and diabetes have reached a pandemic 
state, and that nonalcoholic steatohepatitis (NASH) is an 
increasing etiology for liver transplantation, it can be eas-
ily reasoned and forecasted that the prevalence of NAFLD 
will further increase [8, 9].

NAFLD is hallmarked by hepatic steatosis without ex-
cessive alcohol intake and in the absence of other poten-
tial causes of fat accumulation in the liver, such as infec-
tions (specifically viral hepatitis), medication-related ste-
atosis, or hepatic autoimmune pathologies [10]. In 
approximately 20–30% of NAFLD patients, the disease 
progresses from simple steatosis to NASH [11]. NASH is 
characterized by necro-inflammation and ballooning of 
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hepatocytes; NASH may progress in a subset of patients 
toward development of fibrosis that can further lead to 
cirrhosis and liver failure, as well as hepatocellular carci-
noma [12–14]. NAFLD may predispose to hepatocellular 
carcinoma even in the absence of cirrhosis and is a con-
tinuously increasing cause for liver transplantation [2, 8, 
15–17]; in the United States, it is projected that NAFLD 
will likely become the main indication for liver trans-
plantation in the near future [18]. The extent and sig-
nificance of NAFLD as a health burden become even 
more obvious when considering the absence of approved 
treatments despite multiple ongoing clinical trials [19, 
20].

During NASH, associated with obesity-related meta-
bolic dysregulation, the expanded adipose tissue displays 
chronic low-grade inflammation and is a source for adi-
pokines, such as leptin, and inflammatory cytokines, such 
as TNF or IL-6 [21]. Additionally, the obese adipose tis-
sue releases free fatty acids (FFAs) into the circulation, 
which promotes ectopic fat deposition in the liver [21]. 
Fat accumulation in hepatocytes results in lipotoxicity, 
mitochondrial dysfunction, reactive oxygen species 
(ROS) generation, and endoplasmic reticulum stress [22]. 
In addition, NASH is associated with gut microbiota dys-
biosis, and a dysfunctional gut barrier with enhanced per-
meability, resulting in the secretion of pro-inflammatory 
factors in the portal circulation that contribute to hepatic 
inflammation [23]. Pro-inflammatory cytokines, lipotox-
icity, and gut-derived bacterial products promote activa-
tion of liver-resident macrophages, designated Kupffer 
cells (KCs), and recruitment of inflammatory macro-
phages [24]. Activation of innate immunity drives further 
hepatic infiltration and accumulation of inflammatory 
cells, thereby exacerbating liver inflammation and dam-
age [25]. This inflammation-related pathological cascade 
leads to hepatic stellate cell (HSC) activation and their 
fibrogenic differentiation, culminating in liver fibrosis. 
Importantly, activated HSCs may further aggravate in-
flammation, thereby facilitating a vicious circle of inflam-
mation and fibrosis, which can promote progression to 
cirrhosis [26].

In summary, understanding the molecular mecha-
nisms triggering inflammation during NASH develop-
ment and progression is a major research aim and focus 
of extensive investigations [25, 27–30]. Given the central 
role of innate immunity in NAFLD pathogenesis, the 
present article focuses on the role of neutrophils, macro-
phages, and KCs in the context of NAFLD and NASH 
development and progression.

The Role of Neutrophils in NAFLD

Being the most abundant leukocytes in human blood 
and the first responders to pathogen invasions, acute in-
flammation, or injury, neutrophils are principal players 
of the innate immune response [31–33]. Despite their ex-
tensively studied contribution in the context of acute ster-
ile injury of the liver [34–37], less is known about their 
involvement in the metabolically induced chronic scenar-
io of NAFLD.

In NAFLD patients, neutrophils are present in the por-
tal inflammatory infiltrate and represent a source of pro-
inflammatory IL-17 in progressed NASH; additionally, 
their number increases with NASH-related liver fibrosis 
[38]. Moreover, neutrophil abundance correlates with the 
degree of steatosis and neutrophils are often associated 
with steatotic hepatocytes in human NASH [39]. An ele-
vation of the neutrophil-to-lymphocyte ratio in periph-
eral blood of human NAFLD patients has been suggested 
as a noninvasive marker for NASH and liver fibrosis se-
verity [40]. In an attempt to clarify if neutrophil recruit-
ment is a mere indication of the extent of liver damage or 
if it causally contributes to hepatocyte cytotoxicity and 
necro-inflammation, neutrophils were depleted, by using 
an antibody against Ly6G, in different murine models of 
NAFLD. Neutropenic mice were protected from both 
high-fat diet (HFD)-induced and methionine-choline-
deficient (MCD) diet-induced steatohepatitis [41, 42]. 
The MCD diet induces steatosis, steatohepatitis, and fi-
brosis already after a few weeks [43]. On the other hand, 
the work of Calvente and colleagues [44] highlighted that 
neutrophils are also critical for the resolution of liver in-
flammation in a mouse NASH model based on MCD diet.

Several publications have underlined the potential role 
of neutrophil-derived factors in NAFLD progression. To 
immobilize and neutralize extracellular microbes, neu-
trophils release neutrophil extracellular traps (NETs), 
web-like structures comprising decondensed chromatin, 
nuclear, and granule proteins, in a process of self-induced 
death called NETosis [45]. Recently, a role of NETs in 
NAFLD progression was proposed. Elevated levels of my-
eloperoxidase (MPO)-DNA complexes, a NET biomark-
er, were found in the serum of NASH patients; addition-
ally, neutrophil infiltration and NETosis were shown to 
promote NAFLD progression to hepatocellular carcino-
ma in mice [46]. Disrupting NET formation via deoxyri-
bonuclease treatment or using peptidyl arginine deami-
nase type IV-deficient mice inhibited NASH-related can-
cer development [46]. Furthermore, the importance of 
NETs in promoting inflammation during early stages of 
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murine NASH was confirmed by Zhao and colleagues 
[47] using deoxyribonuclease administration in a model 
in which mice were fed a methionine-choline-deficient 
and a high-fat diet. These authors also showed that  
NETosis is activated in mouse fatty livers via S1P receptor 
2 signaling [47].

Neutrophil activation and NETosis result in the re-
lease of granule proteins, key activators of the innate im-
mune response [48]. Among others, neutrophil elastase 
(NE) participates in the generation of NETs, cathelicidins 
interact with and modulate toll-like receptor (TLR) acti-
vation, bactericidal/permeability-increasing protein ex-
erts antimicrobial activity, whereas MPO stored in azuro-
philic granules, is a lysosomal enzyme with bactericidal 
activity that promotes ROS generation [49–52]. There is 
a consistent body of literature investigating the role of 
MPO in NAFLD. MPO levels are elevated in the circula-
tion and in livers of NASH subjects compared to patients 
with simple steatosis and correlates with severity of liver 
inflammation [39]. Circulating neutrophils isolated from 
NASH patients are more prone to generate ROS than 
neutrophils from healthy subjects [53]. Whether the en-
hanced preparedness for ROS generation of neutrophils 
from NASH patients indicates the involvement of trained 
innate immunity, a form of innate immune memory, 
which can lead to increased inflammatory responses of 
innate immune cells, including neutrophils [54–56], in 
NASH pathogenesis remains to be elucidated. In a similar 
context, intracellular ROS generation may also promote 
migration and activation of human HSCs/myofibro-
blasts, thereby contributing to liver damage and fibrosis 
[57]. Importantly, MPO-triggered oxidative stress may 
result in increased DNA damage and accumulation of ge-
nomic mutations that increase the risk of malignant 
transformation and hepatocellular carcinoma develop-
ment in NAFLD patients [58]. MPO may also participate 
in a neutrophil-HSC cross talk in NASH. Specifically, he-
patic MPO is increased in NAFLD livers and MPO inac-
tivation protects mice from NASH development, HSC ac-
tivation, and fibrogenesis; in turn activated HSC-derived 
GM-CSF and IL-15 may enhance neutrophil survival, and 
thereby contribute to a feed-forward loop connecting 
perpetuation of liver inflammation and fibrosis [59–61].

The release of neutrophil granule contents into the liv-
er extracellular matrix has been studied extensively in the 
context of hepatic injury and NASH pathogenesis [48]. 
Human neutrophil peptides (HNPs) also known as 
α-defensins, are a major microbicidal component of neu-
trophils. Treating human HSCs with HNP-1 in vitro in-
creases their proliferation. Consistently, transgenic over-

expression of HNP-1 promotes HSC proliferation and 
liver fibrosis in mouse NASH triggered by feeding with a 
choline-deficient, L-amino acid-defined diet [62]; the cho-
line-deficient, L-amino acid-defined diet is a frequently 
used diet that induces steatohepatitis and fibrosis [43]. 
Circulating levels of NE, proteinase 3, and lipocalin 2 
(LCN2) are increased in patients with NASH [63–66]. 
Consistently, a treatment with sivelestat, an NE inhibitor, 
ameliorated inflammation, and liver damage during 
NASH in APOE−/− mice fed with high-fat, high-cholester-
ol diet [42]. Moreover, NE secretion has been linked to 
insulin resistance. Treatment of primary mouse and hu-
man hepatocytes with NE directly degrades insulin recep-
tor substrate-1, thereby increasing insulin resistance [67]. 
Pharmacological and genetic inactivation of NE mitigates 
liver insulin resistance and hepatic steatosis in obese mice 
[67, 68]. Additionally, NE and proteinase 3 may also pro-
mote HFD-triggered NAFLD pathogenesis, via their pro-
pensity to enzymatically activate IL-1β [69, 70]. Ye et al. 
[65] showed that neutrophil-derived LCN2 is increased in 
circulation and liver of mice subjected to 2 diet-induced 
NASH models, the MCD and the high-fat, high-cholester-
ol dietary models. LCN2 promotes the expression of the 
CXCR2 chemokine receptor and drives macrophage ac-
cumulation in the liver via a neutrophil-dependent mech-
anism. Consequently, deficiency of LCN2 protects mice 
from NASH development while chronic infusion of re-
combinant LCN2 enhances inflammation and liver dam-
age [65]. Taken together, NETosis and the release of neu-
trophil-derived granule proteins resulting upon neutro-
phil activation may participate in the development of 
NASH and hepatic fibrosis and could be considered as a 
potential pharmacological target in future preclinical and 
clinical studies.

The Role of KCs and Monocyte-Derived Macrophages 
in NAFLD

KCs, the liver-resident macrophages, are yolk sac-de-
rived, self-renewing macrophages located inside the he-
patic sinusoids, in close proximity with endothelial cells 
[71–75]. C-Type Lectin Domain Family 4 Member F 
(CLEC4F) has been identified as a KC-specific marker 
[76, 77]; additionally, T-cell immunoglobulin and mucin 
domain containing 4 (TIM4, a receptor mediating effero-
cytosis of apoptotic cells [78], is also a marker of KCs [77, 
79, 80]. Several studies suggest a critical regulatory par-
ticipation of KCs in human NASH. Increased numbers of 
KCs/macrophages have been observed in liver biopsies of 
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NASH patients, positively correlating with NAFLD dis-
ease severity; moreover, KCs and macrophages may form 
hepatic “crown-like structures” in NASH; crown-like 
structures represent macrophage aggregates surrounding 
steatotic hepatocytes that usually contain large lipid drop-
lets [81, 82]. Enhanced numbers of portal macrophages 
are found at the early stages of human NASH, preceding 
subsequent inflammatory events [38]. In addition to KCs 
that are F4/80hi and CD11bint, recruited CD11bhigh mono-
cyte-derived macrophages (MoMFs) have also been im-
plicated in NAFLD and NASH development and progres-
sion [24, 83]. In a series of studies in rodents subjected to 
different diet-induced NASH models, global depletion of 
KCs and macrophages via clodronate liposomes or gado-
linium chloride protected against the development of ste-
atosis, necro-inflammation, and fibrosis, hence suggest-
ing that liver KCs/macrophages are a component of 
NASH pathogenesis [84–91].

The mechanisms underlying the role of KCs and mac-
rophages in NASH are multifaceted. Hepatic macro-
phages/KCs may be activated by FFAs originating from 
the obese adipose tissue, in a manner that involves TLR 
signaling; in this regard, palmitate and TLR2 may col-
laborate to induce KC/macrophage inflammasome acti-
vation, while palmitate interacts with the TLR4/MD2-
complex stimulating ROS generation in inflammatory 
macrophages [21, 92–94]. Additionally, trans-fatty acids 
and peroxidized lipids derived from an unbalanced diet 
can promote activation of KCs [95, 96]. In experimental 
models leading to NAFLD/NASH, including genetic de-
ficiency of leptin in ob/ob mice or feeding a HFD fol-
lowed by carbon tetrachloride administration to induce 
steatohepatitis, the adipocytokine leptin, deriving from 
the obese adipose tissue, stimulates KC production of 
pro-inflammatory and pro-fibrogenic cytokines [97–99]. 
At the same time, the decreased levels of adiponectin in 
obesity promote steatohepatitis in mice, as adiponectin 
exerts anti-inflammatory actions on KCs [100, 101].

NASH is also associated with altered gut microbiota 
composition and related elevated intestinal barrier per-
meability; in this context, bacteria or their products, such 
as endotoxin, may reach the liver via the portal circula-
tion and contribute to KC/macrophage activation [102]. 
Bacterial lipopolysaccharide (LPS) and bacterial DNA in-
teract with TRL4 and TLR9, respectively, thereby pro-
moting pro-inflammatory and pro-fibrotic activity in 
KCs/macrophages in rodent NASH models; consistently, 
in humans with NAFLD, TLR4 expression correlated 
with portal inflammation and fibrosis [86, 103–106]. 
Once activated, KCs may contribute to steatosis develop-

ment by regulating hepatocyte lipid metabolism. Stien-
stra et al. [107] showed that KCs stimulate fat accumula-
tion in hepatocytes by reducing their fatty acid oxidation 
via IL-1β-dependent suppression of peroxisome prolifer-
ator-activated receptor α activity. Moreover, TNF is in-
volved in mediating the KC-dependent impaired fatty 
acid oxidation and enhanced triglyceride accumulation, 
as shown in rat KC-hepatocyte co-cultures using antibod-
ies blocking TNF [84].

During hepatic steatosis, excessive lipid metabolism in 
hepatocytes and increased oxidative stress further rein-
force KC activation and inflammation development; a 
major lipotoxic molecule in the context of NASH is free 
cholesterol [108]. In both NASH patients and mouse 
models, KCs form crown-like structures, similar to those 
present in the inflamed adipose tissue [82, 109, 110]; such 
crown-like structures surround dying steatotic hepato-
cytes, which contain cholesterol crystals [111]. KCs en-
gulf modified lipids, for instance, oxidized low-density 
lipoproteins, mainly via CD36 and scavenger receptor A, 
and become pro-inflammatory lipid-laden “foamy cells”; 
in this context, NLRP3 inflammasome stimulation by 
cholesterol crystals may represent a mechanism underly-
ing KC activation [112–116]. Interestingly, cholesterol-
loaded KCs are more prone to produce inflammatory cy-
tokines and chemokines in response to LPS stimulation 
[117]. Whether this may reflect innate immune memory 
in KCs has not been addressed; however, oxidized low-
density lipoproteins can induce innate immune memory 
in macrophages [118]. The combined effect of lipotoxic-
ity and inflammation during steatohepatitis results in he-
patocyte damage and necroptosis, which in turn further 
perpetuates KC/macrophage pro-inflammatory activa-
tion, hence, representing a possible feed-forward loop in 
NASH development [119].

Engulfment of hepatocyte-derived apoptotic bodies by 
KCs promotes the production of death ligands and TNF 
[120]. Dying hepatocytes release damage-associated mo-
lecular patterns (DAMPs) capable of enhancing inflam-
mation by activating their respective pattern recognition 
receptors on KCs and by driving recruitment of inflam-
matory cells, such as monocytes and neutrophils [121]. 
Along this line, microparticles containing the DAMP mi-
tochondrial DNA, deriving from steatotic hepatocytes, 
activate a pro-inflammatory response in KCs/macro-
phages in a TLR9-dependent manner, as shown in a 
mouse HFD model [122]. Another DAMP released from 
damaged hepatocytes is extracellular adenosine triphos-
phate [123]. In in vitro studies, adenosine triphosphate 
contributed to LPS-induced IL-6 secretion by mouse KCs 
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[123]. Thus, DAMPs derived from hepatocyte death may 
potentiate hepatic inflammation in NASH.

Activation of resident KCs/macrophages in the liver 
and increased production of pro-inflammatory factors 
promotes the recruitment and accumulation of nonresi-
dent inflammatory cells to the liver, such as B lymphocytes, 
T lymphocytes, neutrophils, and monocytes, the latter giv-
ing rise to macrophages [90, 91, 117, 120, 124]. Chemo-
kines produced by activated KCs regulate the recruitment 
of inflammatory cells; among them, C-C motif ligand 2 
(CCL2) plays a crucial role in NASH development. In diet-
induced NASH models in mice, CCL2 interacting with its 
cognate receptor CCR2 facilitates the accumulation of  
Ly6Chi monocytes in the liver [90, 91]. These infiltrating 
monocytes give rise to a distinct recruited hepatic macro-
phage population, MoMFs [124]. MoMFs originate from 
bone marrow hematopoietic cells and differ phenotypical-
ly from KCs [125]. Morinaga et al. [124] showed that the 
MoMFs infiltrating the steatotic liver of obese mice had 
higher expression of CCR2 but lower expression of CCL2 
than KCs. Increased abundance of CCR2-expressing 
MoMFs was also identified in human NAFLD [126]. This 
infiltrating population is distinct from resident KCs and its 
abundance in the liver of patients correlates with severity 
of NASH and the stage of fibrosis [126]. In the recovery 
phase of carbon tetrachloride-induced fibrosis in mice, 
macrophages promote matrix degradation and repair 
[127]. Alternatively activated KCs/macrophages with an 
anti-inflammatory phenotype may promote apoptosis in 
M1-polarized pro-inflammatory KCs/macrophages, and 
thereby limit NAFLD-related liver injury in mice [128].

The mostly studied pro-inflammatory cytokines pro-
duced by liver KCs/macrophages during NASH are TNF 
[90, 129, 130] and IL-1β, the latter deriving from cas-
pase-1 activation [131]. Macrophage-derived TNF and 
IL-1β may promote survival of activated HSCs in a man-
ner that involves actions of the nuclear factor-kappaB, 
while TNF stimulates expression of tissue inhibitor of 
metalloproteinase 1 in HSCs as well, as shown in mouse 
models [132, 133]. Activated KCs/macrophages may also 
promote HSC transdifferentiation into collagen-secret-
ing pro-fibrotic myofibroblast-like cells via TGF-β1 se-
cretion, thereby aggravating hepatic fibrosis [134–136]. 
Interestingly, activin-A, a member of the TGF-β family, 
stimulates expression of TNF and TGF-β1 in mouse KCs 
thereby reinforcing the paracrine cross talk of KCs with 
HSCs [134]. Together, the interaction of KCs/macro-
phages with HSCs may promote NASH-related hepatic 
fibrosis contributing to progression of steatohepatitis to-
ward liver cirrhosis.

Recent utilization of RNA sequencing and single-cell 
RNA sequencing techniques allowed a better investiga-
tion and understanding of the properties of distinct he-
patic macrophage populations and resulted in functional 
diversification between KCs and MoMFs [137, 138]. Us-
ing a Western diet mouse model, Krenkel et al. [138] 
identified in NASH-livers expansion of MoMFs charac-
terized by a unique inflammatory phenotype. Xiong et al. 
[139] identified a NASH-specific macrophage subset 
highly expressing triggering receptors expressed on my-
eloid cells 2 (TREM2). This population was designated as 
NASH-associated macrophages and is present both in 
human and mouse NASH [139]. Moreover, TREM2 also 
characterizes the lipid-associated macrophages (LAMs) 
of the adipose tissue in obesity [140]. A TREM2+CD9+ 
subpopulation of macrophages was also discovered in hu-
man NASH and named scar-associated macrophages due 
to their pro-fibrogenic phenotype [141]. Furthermore, 
recent studies demonstrated that KC numbers decrease 
in the NAFLD/NASH liver of mice and are replaced by 
recruited MoMFs of hematopoietic origin [142, 143]. In 
mice fed with a Western diet, high in fat, cholesterol, and 
sugar, liver-infiltrated MoMFs comprised 2 subpopula-
tions, of which one is reminiscent of KCs and the other 
had LAM-like properties [143]. The latter population was 
characterized by osteopontin expression and was pre-
dominantly present in hepatic regions displaying fibrosis 
and low KC abundance [143]. Another study confirmed 
that TIM4-positive and CLEC4F-positive KCs are re-
duced, while abundance of infiltrated TIM4-negative 
MoMFs increases in the liver of mice upon NAFLD in-
duction with a high-fat, high-sucrose-diet [79]. A subset 
within these recruited MoMFs expressed Trem2 and oth-
er markers of LAMs, such as Cd63, Cd9, and Gpmnb; an-
other transitional subpopulation expressed Cx3cr1 and 
Ccr2 and were designated C-LAMs. LAMs and C-LAMs 
were localized primarily in macrophage aggregates and 
crown-like structures of the NASH liver and might oper-
ate in a fashion that protects against NASH-related fibro-
sis [79]. A further recent mouse study identified a mono-
cyte-derived KC population with decreased self-renewal 
and a pro-inflammatory phenotype that aggravates liver 
injury during NASH [144]. Despite the heterogeneity in 
markers and nomenclature, it can be stated that MoMFs 
play a significant role in NASH progression by promoting 
inflammation in a multitude of likely synergistically act-
ing ways, including production of chemokines, cytokines, 
or ROS, although, as recently suggested, MoMF-derived 
LAMs may also protect against fibrosis [79, 141, 144–
147].
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Additionally, under certain circumstances, cells of 
hematopoietic origin, specifically monocytes derived 
from the bone marrow, may contribute to the replenish-
ment of the KC niche giving rise to self-renewing and 
fully differentiated KCs [77, 148]. Upon acute depletion 
of KCs in mice, recruited macrophages acquired KC 
identity in a manner requiring Notch, TGF-β and liver-
X-receptor signaling [149]. Consistently, a parallel 
study demonstrated that early TNF- and IL-1-depen-
dent inflammatory signaling following KC depletion in 
mice activated HSCs and the endothelium to upregulate 
adhesion receptors and chemokines, thereby triggering 
monocyte recruitment. Recruited monocytes, in turn, 
gave rise to new KCs associated with induction of liver-

X-receptor α expression, stimulated by interaction with 
HSCs and endothelial cells and involvement of NOTCH 
and bone morphogenetic protein (BMP) signaling 
[150].

Taking the aforementioned recent studies into ac-
count, it can be stated that bone marrow-derived MoMFs 
seemingly play an important pathogenic role in NASH, 
including promotion of inflammation and fibrosis; on the 
other hand, KCs may be more important in liver homeo-
stasis [72, 125]. In fact, recent studies that identified 
markers distinguishing KCs and MoMFs also suggest that 
NASH-associated pathogenic functions that were previ-
ously ascribed to activated KCs may rather be mediated 
by recruited MoMFs. Additionally, in contrast to previ-

Fig. 1. Role of innate immune cells in NASH. KCs, characterized 
by TIM4 and CLEC4F expression, exert a homeostatic function in 
the healthy liver. However, during NASH development, KCs can 
be activated by circulating FFAs and cytokines deriving from the 
inflamed obese adipose tissue, dysbiotic microbiota-derived 
PAMPs, and DAMPs released from damaged hepatic cells. Acti-
vated KCs contribute to hepatic steatosis by modulating hepato-
cyte lipid metabolism. Moreover, activated KCs propagate the in-
flammatory response by secreting TNF and CCL2, thereby pro-
moting CCR2-dependent recruitment of monocytes to the liver. 
Infiltrated monocytes can give rise to pro-inflammatory MoMFs 
contributing to NASH progression and fibrogenesis. A scar-asso-
ciated TREM2+CD9+ subpopulation of MoMFs that may also pro-
duce osteopontin promotes HSC survival and activation. In this 
context, TNF, IL-1β, and TGF-β1 derived from activated KCs/
macrophages contribute to HSC activation. In crown-like struc-
tures, surrounding dying hepatocytes, TREM2+CD9+ MoMFs may 
facilitate the clearance of dying steatotic hepatocytes and might 

thereby also exert protective functions in NASH-related fibrosis. 
Neutrophils are also recruited to the liver and accumulate in the 
chronically inflamed tissue in NASH. NETosis and neutrophil ac-
tivation, resulting in the release of granule proteins, such as NE, 
MPO, and LCN2, can promote hepatic steatosis, exacerbation of 
inflammation and fibrosis. For details and relevant references, see 
the Text. KC, Kupffer cell; HSC, hepatic stellate cell; aHSC, acti-
vated HSCs; LSEC, liver sinusoidal endothelial cells; MoMF, 
monocyte-derived macrophages; NEU, neutrophils; FFAs, free 
fatty acids; DAMPs, damage-associated molecular patterns; 
PAMPs, pathogen-associated molecular patterns; NE, neutrophil 
elastase; MPO, myeloperoxidase; LCN2, lipocalin 2; OPN, osteo-
pontin; TREM2, triggering receptors expressed on myeloid cells 2; 
TGF-β1, transforming growth factor-beta 1, TNF, tumor necrosis 
factor; IL-1β, interleukin 1 beta; CCL2, chemokine (C-C motif) 
ligand 2; CCR2, C-C chemokine receptor type 2; CLEC4F, C-Type 
Lectin Domain Family 4 Member F; TIM4, T-cell immunoglobulin 
and mucin domain containing 4.
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ously prevailing ideas that both KC and MoMF numbers 
increase during NASH, recent studies have changed our 
view by suggesting that enhanced MoMF infiltration may 
be accompanied by a reduction of KCs in different mod-
els of dietary NASH and that NASH is linked with a dys-
function of KC homeostasis [79, 144, 151]. In conclusion, 
due to their central role in regulating steatosis, inflamma-
tion, and fibrosis in NASH pathogenesis, macrophages 
may represent therapeutic targets for NASH develop-
ment and progression.

Conclusions and Future Perspectives

Animal models and clinical studies have shown a crit-
ical role of cells of the innate immunity, particularly my-
eloid cells, such as neutrophils or MoMFs in initiation 
and propagation but also modulation and amelioration of 
hepatic inflammation in the context of NASH develop-
ment, progression, and resolution [41, 42, 72, 79, 127, 
141, 143] (Fig. 1). Therefore, myeloid cells and products 
thereof might represent potential therapeutic targets and 
noninvasive markers for assessing disease severity. How-
ever, due to their dual role in both contributing to and 
protecting against NASH pathogenesis, it is important to 
be able to target distinct myeloid cell subsets with patho-
logical or pro-resolving properties specifically.

In recent years, advances in single-cell RNA sequenc-
ing allowed to explore the heterogeneity of MoMFs and 
KCs revealing the limitations and inadequacy of previ-
ously used markers. Novel markers and pathogenic play-
ers were identified in the context of NASH by character-
izing distinct hepatic macrophage subpopulations on the 
basis of their transcriptional signatures [138, 139, 141]. 
Widely used traditional markers, such as CD68, F4/80 or 
CD11b, are clearly not sufficient to distinguish between 
resident and bone marrow-derived macrophages; novel 
markers, such as CLEC4F and TIM4, have been identi-
fied for KCs [77, 79, 80] or TREM2 and CD9 for inflam-
matory and pro-fibrotic MoMFs [141]. Due to these re-
cent findings, researchers have shifted their focus from 
KCs to recruited MoMFs. Along this line, inhibiting the 
chemokine-dependent infiltration of monocytes seems 
like a promising therapeutic strategy. CCR2 and CCR5 
are key players in the monocyte/macrophage and leuko-
cyte trafficking, and cenicriviroc, a dual CCR2–CCR5 
antagonist, ameliorated steatohepatitis, and fibrosis in 
different diet-induced mouse models of NASH [126]. 
Moreover, in a phase II b study, twice as many patients 
treated for 1 year with cenicriviroc presented fibrosis re-

duction when compared with the placebo group [152] 
and a phase III trial is in progress in NASH patients with 
stage F2 or F3 fibrosis [153]. Furthermore, Cenicriviroc 
is also tested in combination with Tropifexor, an agonist 
of the bile acid receptor, farnesoid X activated receptor 
[154]. Future studies utilizing innovative methodologies, 
such as single-cell RNA sequencing, and focusing on spe-
cific cellular subsets will help elucidate the exact role of 
different innate immune cell subsets in the complex 
pathophysiology of NASH and will likely provide novel 
therapeutic targets.
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