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Abstract

Vertebral labelling and segmentation are two fundamental tasks in an automated spine processing

pipeline. Reliable and accurate processing of spine images is expected to benefit clinical decision support

systems for diagnosis, surgery planning, and population-based analysis of spine and bone health. How-

ever, designing automated algorithms for spine processing is challenging predominantly due to considerable

variations in anatomy and acquisition protocols and due to a severe shortage of publicly available data.

Addressing these limitations, the Large Scale Vertebrae Segmentation Challenge (VerSe) was organised in

conjunction with the International Conference on Medical Image Computing and Computer Assisted Inter-

vention (MICCAI) in 2019 and 2020, with a call for algorithms tackling the labelling and segmentation of

vertebrae. Two datasets containing a total of 374 multi-detector CT scans from 355 patients were prepared

and 4505 vertebrae have individually been annotated at voxel level by a human-machine hybrid algorithm

(https://osf.io/nqjyw/, https://osf.io/t98fz/). A total of 25 algorithms were benchmarked on these

datasets. In this work, we present the results of this evaluation and further investigate the performance

variation at the vertebra level, scan level, and different fields of view. We also evaluate the generalis-

ability of the approaches to an implicit domain shift in data by evaluating the top-performing algorithms

of one challenge iteration on data from the other iteration. The principal takeaway from VerSe: the

performance of an algorithm in labelling and segmenting a spine scan hinges on its ability to correctly

identify vertebrae in cases of rare anatomical variations. The VerSe content and code can be accessed at:

https://github.com/anjany/verse.

Note:

This is a pre-print of the journal article published in Medical Image Analysis. If you wish to cite

this work, please cite its journal version available here: https://doi.org/10.1016/j.media.2021.

102166. This work is available under CC-BY-NC-ND license.

1. Introduction

The spine is an important part of the musculoskeletal system, sustaining and supporting the body and

its organ structure while playing a major role in our mobility and load transfer. It also shields the spinal

cord from injuries and mechanical shocks due to impacts. Efforts towards quantification and understanding

of the biomechanics of the human spine include quantitative imaging (Löffler et al., 2020a), finite element
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modelling (FEM) of the vertebrae (Anitha et al., 2020), alignment analysis (Laouissat et al., 2018) of the

spine and complex biomechanical models (Oxland, 2016). Biomechanical alterations can cause severe pain

and disability in the short term, and can demonstrate worse consequences in the long term, e.g. osteoporosis

leads to an 8-fold higher mortality rate (Cauley et al., 2000). In spite of their criticality, spinal pathologies

are often under-diagnosed (Howlett et al., 2020; Müller et al., 2008; Williams et al., 2009). This calls

for computer-aided assistance for efficient and early detection of such pathologies, enabling prevention or

effective treatment.

Vertebral labelling and vertebral segmentation are two fundamental tasks in understanding spine image

data. Labelled and segmented spines have diagnostic implications for detecting and grading vertebral frac-

tures, estimating the spinal curve, and recognising spinal deformities such as scoliosis and kyphosis. From a

non-diagnostic perspective, these tasks enable efficient biomechanical modelling, FEM analysis, and surgical

planning for metal insertions. Vertebral labelling can be performed quickly by a medical expert, on smaller

datasets, as it follows clear rules (Wigh, 1980). But, manually segmenting them is unfeasible owing to the

time required for annotating large structures (e.g. 25 objects of interest with a size of ∼ 104 voxels each).

Moreover, the complex morphology of the vertebra’s posterior elements combined with lower scan resolu-

tions prevents a consistent and accurate manual delineation. Automating these tasks also involves multiple

challenges: highly varying fields of view (FoV) across datasets (unlike brain images), large scan sizes, highly

correlating shapes of adjacent vertebrae, scan noise, different scanner settings, and multiple anomalies or

pathologies being present. For example, the presence of vertebral fractures, metal implants, cement, or

transitional vertebrae should be considered during algorithm design. Fig. 1 illustrates this diversity using

the scans included in the Large Scale Vertebrae Segmentation Challenge (VerSe).

1.1. Terminology

In this section, we introduce three spine-processing terms frequently used in this work: localisation,

labelling, segmentation. As used in the rest of the work: Localisation is the task of detecting a 3D coordinate

on the vertebra and labelling is the task of detecting a 3D coordinate on the vertebra as well as identifying

the vertebrae. Specifically, labelling superscribes localisation by assigning a 3D coordinate as well as a

class to the vertebra (C1-C6, T1-T13, L1-L5, as well as T13 and L6). Unless mentioned otherwise, spine

segmentation is a voxel-level, multi-class annotation problem, where in each vertebra level has a defined class

label (e.g. C1→1, C2→2, T1→8 etc.). It can now be seen that once a vertebra is segmented, its labelling

and localisation is implied.

1.2. Prior Work

Spine image analysis has received subsistence attention from the medical imaging community over the

years. Although computed tomography (CT) is a preferred modality for studying the ‘bone’ part of a spine
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due to high bone-to-soft-tissue contrast, there are several prior works on the tasks of labelling and segmenting

the spine using multiple modalities in addition to CT such as magnetic resonance imaging (MRI), and 2D

radiographs. There are works tackling segmentation (most of which inherently include vertebral labelling),

and those tackling labelling specifically from a landmark-detection perspective.

1.2.1. Vertebral Segmentation

Traditionally, vertebral segmentation was performed using model-based approaches, which loosely in-

volve fitting a shape prior to the spine and deforming it so that it fits the given spine. The incorporated

shape priors range from geometric models (Štern et al., 2011; Ibragimov et al., 2014, 2017), deformed with

Markov random fields (MRF) (Kadoury et al., 2011, 2013), statistical shape models (Rasoulian et al., 2013;

Pereañez et al., 2015; Castro-Mateos et al., 2015), and active contours (Leventon et al., 2002; Athertya &

Kumar, 2016). There are also intensity-based approaches such as level sets (Lim et al., 2014) and a pri-

ori variational intensity models (Hammernik et al., 2015). Landmark frameworks tackling fully automated

vertebral labelling and segmentation from a shape-modelling perspective exist (Klinder et al., 2009; Korez

et al., 2015).

With the increased adoption of machine learning in image analysis, works incorporating significant data-

based learning components have been proposed. Suzani et al. (2015a) propose using a multi-layer perceptron

(MLP) to detect the vertebral bodies and employ deformable registration for segmentation. Similar in

philosophy, Chu et al. (2015) propose random forest regression for locating and identifying the vertebrae

followed by segmentation performed using random forest classification at a voxel level. Incorporating deep

learning, Korez et al. (2016) learn vertebral appearances using 3D convolutional neural networks (CNN) and

predict probability maps, which are then used to guide the boundaries of a deformable vertebral model.

The recent advent of deep learning in image analysis and increased computing capabilities have led

to works wherein deformable shape modelling and/or vertebral identification was replaced by data-driven

learning of the vertebral shape using deep neural networks. Sekuboyina et al. (2017a) perform a patch-based

binary segmentation of the spine using a U-Net (Ronneberger et al., 2015) (or a fully convolutional network,

FCN) followed by denoising the spine mask using a low-resolution heat map. Sekuboyina et al. (2017b)

propose two neural networks for vertebral segmentation in the lumbar region. First, an MLP learns to regress

the localisation of the lumbar region, following which a U-Net performs multi-class segmentation. Improving

on this, Janssens et al. (2018) replace the MLP with a CNN, thus performing multi-class segmentation

of lumbar vertebrae with two successive CNNs. Lessmann et al. (2018) propose a two-staged iterative

approach, wherein the first stage involves identifying and segmenting one vertebra after another at a lower

resolution, followed by a second CNN to refine the lower-resolution masks. Building on this, Lessmann

et al. (2019) proposed a single-stage FCN which iteratively regresses the vertebrae’s anatomical label and

segments it. Once the entire scan is segmented, the vertebral labels are adjusted using a maximum likelihood
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approach. Approaching the problem from the other end, Payer et al. (2020) propose a coarse-to-fine approach

involving three stages, spine localisation, vertebra labelling, and vertebrae segmentation, all three utilising

purposefully designed FCNs. Note that (Payer et al., 2020) and (Lessmann et al., 2019) are included in this

VerSe benchmark.

1.2.2. Vertebral Labelling

Similar to the segmentation works discussed above, classical works on vertebral labelling also involve

deformable shape or pose models (Ibragimov et al., 2015; Cai et al., 2015). Learning from data, Major et al.

(2013) landmark point using probabilistic boosting trees followed by matching local models using MRFs.

As such, works transitioned towards incorporating machine learning using hand-crafted features. Glocker

et al. (2012, 2013) employ context features to regress vertebral centroids using regression forests and MRFs.

Bromiley et al. (2016) use Haar-like features to identify vertebrae using random forest regression voting.

Similarly, Suzani et al. (2015b) employ an MLP to regress the centroid locations. With the incorporation

of the ubiquitous CNNs, Chen et al. (2015) proposed a joint-CNN as a combination of random forests for

candidate selection followed by a CNN for identifying the vertebrae. Forsberg et al. (2017) employ CNNs

to detect the vertebrae followed by labelling them using graphical models.

Going fully convolutional and regressing on input-sized heatmap responses instead of directly learning

the centroid locations (which is a highly non-linear mapping), Yang et al. (2017a,b) propose DI2IN, an FCN,

for heatmap regression of the vertebral centroids at lower resolution, followed by correction using message

passing and recurrent neural networks (RNN) respectively. Utilising a single network termed Btrfly-Net,

Sekuboyina et al. (2018, 2020) propose labelling sagittal and coronal maximum intensity projections (MIP)

of the spine, reinforced by a prior learnt using a generative adversarial network. Using a three-staged

approach, Liao et al. (2018) combine a CNN with a bidirectional-RNN to label and then fine-tune network

predictions. Handling close to two hundred landmarks, Mader et al. (2019) use multistage, 3D CNNs to

regress heatmaps followed by fine-tuning using regression trees regularised by conditional random fields.

Payer et al. (2019) propose a two-stream architecture called spatial-configuration net for integrating global

context and local detail in one end-to-end trainable network. With a similar motivation of combining long-

range and short-range contextual information, Chen et al. (2019) propose combining a 3D localising network

with a 2D labelling network.

1.3. Motivation

Recent spine-processing approaches discussed above are predominantly data-driven, thus requiring an-

notated data to either learn from (e.g. neural network weights) or to tune and adapt parameters (e.g. active

shape model parameters). In spite of this, publicly available data with good-quality annotations is scarce.

Eventually, the algorithms are either insufficiently validated or validated in private datasets, preventing a
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Figure 1: Example scan slices from the VerSe datasets, labelled clockwise. In addition to the wide variation in the fields of

view, we illustrate with fractured vertebrae (B, J), metal insertions (C), cemented vertebrae (G), transitional vertebrae (L6

and T13 in D and I respectively), and a noisy scan (K).

Table 1: Comparing VerSe with other publicly available, annotated CT datasets. In ‘Annotations’, L and S refer to annotations

concerning the labelling (3D centroid coordinates) and segmentation tasks (voxel-level labels), respectively.

Dataset #train #test Annotations

CSI-Seg 2014 (Yao et al., 2012) 10 10 S

CSI-Label 2014 (Glocker et al., 2012) 242 60 L

Dataset-5 (Ibragimov et al., 2014) 10 – S (Lumbar)

xVertSeg 2016 (Korez et al., 2015) 15 10 S (Lumbar)

VerSe 2019 80 80 L + S

VerSe 2020 103 216 L + S

fair comparison. SpineWeb1, an archive for multi-modal spine data, lists a total of four CT datasets with

voxel-level or vertebra level annotations: CSI2014-Seg (Yao et al., 2012, 2016), xVertSeg (Korez et al., 2015),

Dataset-5 (Ibragimov et al., 2014), and CSI2014-Label (Glocker et al., 2012). Table 1 provides an overview

of these public datasets. Except Dataset-5, all datasets were released as part of segmentation and labelling

challenges organised as part of the computational spine imaging (CSI) workshop at MICCAI. CSI2014-Seg

and Label were made publicly available in conjunction with MICCAI 2014 and xVertSeg with MICCAI

2016. Credit is due to these incipient steps towards open-sourcing data, which have yielded interest in

spine processing. A significant portion of the work detailed in Sec. 1.2 is benchmarked on these datasets.

1spineweb.digitalimaginggroup.ca
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However, much is to be desired in terms of data size and data variability. The largest spine CT dataset with

voxel-level annotations to date consists of 25 scans, with lumbar annotations only. CSI-Label, even though

it is a collection of 302 scans with high data variability, is collected from a single centre (Department of

Radiology, University of Washington), possibly inducing a bias.

With the objective of addressing the need for a large spine CT dataset and to provide a common

benchmark for current and future spine-processing algorithms, we prepared a dataset of 374 multi-detector,

spine CT (MDCT) scans (an order of magnitude (∼20 times) increase from the prior datasets) with vertebral-

level (3D centroids) and voxel-level annotations (segmentation masks). This dataset was made publicly

available as part of the Large Scale Vertebrae Segmentation challenge (VerSe), organised in conjunction

with MICCAI 2019 and 2020. In total, 160 scans were released as part of VerSe‘19 and 355 scans for

VerSe‘20, with a call for fully automated and interactive algorithms for the tasks of vertebral labelling and

vertebral segmentation.

As part of the VerSe challenge, we evaluated twenty-five algorithms (eleven for VerSe‘19, thirteen for

VerSe‘20, and one baseline). This work presents an in-depth analysis of this benchmarking process, in

addition to the technical aspects of the challenge. In summary, the contribution of this work includes:

• A brief description of the setup for the VerSe‘19 and VerSe‘20 challenges (Sec. 2)

• A summary of the three top-performing algorithms from each iteration of VerSe, along with a descrip-

tion of the in-house, interactive spine processing algorithm utilised to generate the initial annotation.

(Sec. 3)

• Performance overview of the participating algorithms and further experimentation provide additional

insights into the algorithms. (Sec. 4)

2. Materials and challenge setup

2.1. Data and annotations

The entire VerSe dataset consists of 374 CT scans made publicly available after anonymising (including

defacing) and obtaining an ethics approval from the institutional review board for the intended use. The

data was collected from 355 patients with a mean age of ∼ 59(±17) years. The data is multi-site and was

acquired using multiple CT scanners, including the four major manufacturers (GE, Siemens, Phillips and

Toshiba). Care was taken to compose the data to resemble a typical clinical distribution in terms of FoV,

scan settings, and findings. For example, it consists of a variety of FoVs (including cervical, thoraco-lumbar

and cervico-thoraco-lumbar scans), a mix of sagittal and isotropic reformations, and cases with vertebral

fractures, metallic implants, and foreign materials. Fig. 1 illustrates this variability in the VerSe dataset.

Refer to Löffler et al. (2020b); Liebl et al. (2021) for further details on the data composition.
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Table 2: Data split and additional details concerning the two iterations of VerSe. Scan split indicates the split of the data into

training/Public test/Hidden test phases. Cer, Tho, and Lum refer to the number of vertebrae from the cervical, thoracic, and

lumbar regions, respectively. Note that of the 300 patients in VerSe‘20, 86 patients are from VerSe‘19, resulting in the total

patients not being an ad hoc sum of the two iterations. VerSe‘19 data can be identified by its image ID being less than 500.

(Overlap is not absolute owing to the difference in the objectives of the two challenge iterations.)

VerSe Patients Scans Scan split Vertebrae (Cer/Tho/Lum)

2019 141 160 80/40/40 1725 (220/884/621)

2020 300 319 113/103/103 4141 (581/2255/1305)

Total 355 374 141/120/113 4505 (611/2387/1507)

The dataset consists of two types of annotations: 1) 3D coordinate locations of the vertebral centroids

and 2) voxel-level labels as segmentation masks. Twenty-six vertebrae (C1 to L5, and the transitional T13

and L6) were considered for annotation with labels from 1 to 24, along with labels 25 and 28 for L6 and

T13, respectively. Note that partially visible vertebrae at the top or bottom of the scan (or both) were

not annotated. Annotations were generated using a human-hybrid approach. The initial centroids and

segmentation masks were generated by an automated algorithm (details in Sec. 3) and were manually and

iteratively refined. Initial refinement was performed by five trained medical students followed by further

refinement, rejection, or acceptance by three trained radiologists with a combined experience of 30 years

(ML, HL, and JSK). All annotations were finally approved by one radiologist with 19 years of experience in

spine imaging (JSK).

2.2. Challenge setup

VerSe was organised in two iterations, first at MICCAI 2019 and then at MICCAI 2020 with a call

for algorithms tackling vertebral labelling and segmentation. Both the iterations followed an identical

setup, wherein the challenge consisted of three phases: one training and two test phases. In the training

stage, participants have access to the scans and their annotations, on which they can propose and train

their algorithms. In the first test phase, termed Public in this work, participants had access to the

test scans on which they were supposed to submit the predictions. In the second test phase, termed

Hidden, participants had no access to any test scans but were requested to submit their code in a docker

container. The dockers were evaluated on hidden test data, thus disabling re-training on test data or

fine-tuning via over-fitting. Information about the data and its split across the two VerSe iterations is

tabulated in Table 2. All the 374 scans of VerSe dataset and their annotations are now publicly

available, 2019: https://osf.io/nqjyw/ and 2020: https://osf.io/t98fz/. We have also open-

sourced the data processing and the evaluation scripts. All VerSe-content is accessible at

https://github.com/anjany/verse
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2.3. Evaluation metrics

In this work, we employ four metrics for evaluation, two for the task of labelling and two for the task of

segmentation. Note that the evaluation protocol employed for ranking the challenge participants builds on

the one presented in this work. Please refer to Appendix A for an overview of the former.

Labelling. To evaluate the labelling performance, we compute the Identification Rate (id.rate) and lo-

calisation distance (dmean): Assuming a given scan contains N annotated vertebrae and denoting the true

location of the ith vertebra with xi and it predicted location with x̂i, the vertebra i is correctly identified if

x̂i is the closest landmark predicted to xi among {xj∀j in 1, 2, ..., N} and the Euclidean distance between

the ground truth and the prediction is less than 20 mm, i.e. ||x̂i − xi||2 < 20 mm. For a given scan, id.rate

is then defined as the ratio of the correctly identified vertebrae to the total vertebrae present in the scan.

Similarly, the localisation distance is computed as dmean = (
∑N

i=1 ||x̂i− xi||2)/N , the mean of the euclidean

distances between the ground truth vertebral locations and their predictions, per scan. Typically, we report

the mean measure over all the scans in the dataset. Note that our evaluation of the labelling tasks slightly

deviates from its definition in (Glocker et al., 2012), where id.rate and dmean are computed not at scan-level

but at dataset level.

Segmentation. To evaluate the segmentation task, we choose the ubiquitous Dice coefficient (Dice) and

Hausdorff distance (HD). Denoting the ground truth by T and the algorithmic predictions by P , and

indexing the vertebrae with i, we compute the mean Dice score across the vertebrae as follows:

Dice(P, T ) =
1

N

N∑
i=1

2|Pi ∩ Ti|
|Pi|+ |Ti|

. (1)

As a surface measure, we compute the mean Hausdorff distance over all vertebrae as:

HD(P, T ) =
1

N

N∑
i=1

max

{
sup
p∈Pi

inf
t∈Ti

d(p, t), sup
t∈Ti

inf
p∈Pi

d(p, t)

}
, (2)

where Pi and Ti denote the surfaces extracted from the voxel masks of the ith vertebra and d(p, t) = ||p−t||2,

i.e a Euclidean distance between the points p and t on the two surfaces.

Outliers. In multi-class labelling and segmentation, there will be cases where the prediction of an algorithm

will contain fewer vertebrae than the ground truth. In such cases, dmean and HD are not defined for

the missing vertebrae. For the sake of analysis in this work, we ignore such vertebrae while computing the

averages. This way, we still get a picture of the algorithm’s performance on the rest of the correctly predicted

vertebrae. The missing vertebrae are anyway clearly penalised by the other two metrics, viz. id.rate and

Dice.
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Figure 2: Our interactive spine-processing pipeline: Schematic of the semi-automated and interactive spine processing

pipeline developed in-house. The bold lines indicate automated steps. The dotted lines indicate a possibly interactive step.

3. Methods

In this section, we present Anduin, our spine processing framework that enabled the medical experts to

generate voxel-level annotations at scale. Then, we present details of select participating algorithms.

3.1. Anduin: Semi-automated spine processing framework

Anduin is a semi-automated, interactive processing tool developed in-house, which was employed to

generate the initial annotations for more than 4000 vertebrae. It is a three-staged pipeline consisting of:

1) Spine detection, performed by a light-weight, FCN predicting a low-resolution heatmap over the spine

location, 2) Vertebra labelling, based on the Btrfly Net (Sekuboyina et al., 2018) architecture working on

sagittal and coronal MIPs of the localised spine region, and finally, 3) Vertebral segmentation, performed

by an improved U-Net (Ronneberger et al., 2015; Roy et al., 2018) to segment vertebral patches, extracted

at 1mm resolution, around the centroids predicted by the preceding stage. Fig. 2 gives a schematic of the

entire framework. Importantly, the detection and labelling stages offer interaction, wherein the user can

alter the bounding box predicted during spine detection as well as the vertebral centroids predicted by the
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Figure 3: The three processing stages in Payer C. for localisation, identification, and segmentation of vertebrae.

labelling stage. Such human-in-loop design enabled the collection of accurate annotations with minimal

human effort. We made a web-version of Anduin publicly available to the research community that can be

accessed at anduin.bonescreen.de. Refer to Appendix B for further details on Anduin (at the time of

this work) such as network architecture, training scheme, and post-processing steps. Furthermore, without

human-interaction, Anduin is fully automated. We include this version of Anduin in the benchmarking

process as ‘Sekuboyina A.’. We note that since the ground-truth segmentation masks are generated with

Anduin-predictions as initialisation, there exists a bias. However, the bias is not as strong for the labelling

task as the centroid annotations are sparse and have a high intra- and inter-rater variability.

3.2. Participating methods

Over its two iterations, VerSe has received more than five hundred data download requests. Forty teams

uploaded their submissions onto the leaderboards. Of these, eleven and thirteen teams were evaluated for

VerSe‘19 and VerSe‘20, respectively. Table 3 provides a brief synopsis of all the participating teams.

Below, we present the algorithms proposed by the best and the second-best-performing teams in each

iteration of the challenge. Appendix C provides the details of the remaining algorithms.

Payer C. et al.: Vertebrae localisation and segmentation with SpatialConfiguration-net and U-net [VerSe‘19]

Vertebrae localisation and segmentation are performed in a three-step approach: spine localisation,

vertebrae localisation and identification, and finally binary segmentation of each located vertebra (cf. Fig.

3). The results of the individually segmented vertebrae are merged into the final multi-label segmentation.

xi
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Table 3: Brief summary of the participating methods in VerSe benchmark, ordered alphabetically according to referring

author.

Team / Ref. Author Method Features

V
e
r
S
e
‘1

9

zib / Amiranashvili T.
Multi-stage, shape-based approach. Multi-label segmentation with arbitrary labels for vertebrae. Unique label

assignment for based on shape templates. Landmark positions are derived as centres of fitted model.

christoph / Angermann C.

Single-staged, slice-wise approach. One 2.5D U-Net (Angermann et al., 2019) and two 2D U-Nets are employed.

The first network generates 2D projections containing 3D information. Then, one 2D U-Net segments the

projections, one segments the 2D slices. Labels are obtained as centroids of segmentations.

brown / Brown K.
A 3D bounding box around the vertebra is predicted by regressing on a set of canonical landmarks. Each

vertebra is segmented using a residual U-Net and labelled by registering to a common atlas.

iflytek / Chen M.
A three-staged approach. Spine localisation and multi-label segmentation are based on a 3D U-Net. Using the

predicted segmentation mask, the third stage employs a RCNN-based architecture to label the vertebrae.

yangd05 / Dong Y.
Single-staged approach. A 3D U-Net based on neural-architecture search is employed to segment vertebrae as

26-class problem. Vertebral-body centre are located using iterative morphological erosion.

huyujin / Hu Y.
Single-staged, patch-based approach. Based on the nnU-Net (Isensee et al., 2019). All three networks are used:

a 3D-UNet at high resolution, a 3D U-Net at low resolution, and a 2D U-Net.

alibabadamo / Jiang T.

Single-staged approach, employing a V-Net (Milletari et al., 2016) backbone with two heads, one for binary-

segmentation and the other for vertebral-labelling. Vertebrae C2, C7, T12, and L5 are identified and the rest

are inferred from these.

lrde / Kirszenberg A.

Multi-stage, shape-based approach. A combination of three 2D U-Nets generate 3D binary mask of spine.

Anchor points on a skeleton obtained from this mask are used for template matching. Five vertebrae are

chosen for matching, and one with highest score is chosen as a match.

diag / Lessmann N.

Single-staged, patch-based approach. A 3D U-Net (Lessmann et al., 2019) iteratively identifies and segments

the bottom-most visible vertebra in extracted patches, eventually crawling the spine. An additional network is

trained to detect first cervical and thoracic vertebrae.

christian payer / Payer C.

Multi-staged, patch-wise approach. A 3D U-Net regresses a heatmap of the spinal centre line. Individual vert-

ebrae are localized and are identified with the SpatialConfig-Net (Payer et al., 2020). Each vertebra is then

independently segmented as a binary segmentation.

init / Wang X.
Multi-staged-approach. A single-shot 2D detector is utilised to localise the spine. A modified Btrfly-Net

(Sekuboyina et al., 2018) and a 3D U-Net are employed to address labelling and segmentation respectively.
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/ Chen D.

Multi-staged, patch-based approach. A 3D U-Net coarsely localises the spine. Then, a U-Net performs binary

segmentation, patchwise. Lastly, a 3D Resnet-model identifies the vertebral class taking the vertebral mask

and CT-image segmented vertebra.

carpediem / Hou F.
Multi-staged approach. First, the spine position is located with 3D U-Net. Second the vertebrae are labelled

in the cropped patches. Lastly, U-Net segments individual vertebrae from background using centroids labels.

poly / Huang Z.
Single-staged, patch-based approach. A U-Net with feature-aggregation and squeeze & exictation module is

proposed.Contains two task-specific heads, one for vertebrae labelling and the other for segmentation.

lrde / Huỳnh L. D.
A single model with two-stages, a Mask-RCNN-inspired model incorporating RetinaNet is proposed. First

stage detects and classifies vertebral RoIs. Second stage outputs a binary segmentation for each of the RoIs.

ubmi / Jakubicek R.

Multi-staged, semi-automated approach (Jakubicek et al., 2020). Stages include: spine-canal tracking,

localising and labelling the inter-vertebral disks, and then labelling the vertebrae. Segmentation is based on

graph-cuts.

htic / Mulay S. Single-staged approach. A 2D Mask R-CNN withcomplete IoU loss performs slice-wise segmentation.

superpod / Netherton T. J.
Multi-staged approach. Combines a 2D FCN for coarse spinal canal segmentation, a multi-view X-Net

(Netherton et al., 2020) for labelling, and a U-Net++ architecture for vertebral segmentation.

rigg / Paetzold J. A naive 2D U-Net performs multi-class segmentation of sagittal slices.

christian payer / Payer C.

Similar to Payer C.’s 2019 submission. Different from it, Markov Random fields are employed for post-

processing the localisation stage’s output. Additionally, appropriate floating-point optimisation of network

weights scans into patches.

fakereal / Xiangshang Z.
Both tasks are handled individually. A modified Btrfly-Net (Sekuboyina et al., 2018) detects vertebral key

points. An nnU-Net (Isensee et al., 2019) performs multi-class segmentation.

sitp / Yeah T.
Two-staged approach containing two 3D U-Nets. First one performs coarse localisation of the spine

at low-resolution. Second one performs multi-class segmentation of the vertebra at a higher resolution.

aply / Zeng C.
Multi-staged approach. First stage detects five key-points on the spine using a HRNet. Second,

improved Spatialconfig-Net (Payer et al., 2019) performs the labelling. Segmentation is now a binary problem.

jdlu / Zhang A.

A four-step approach. A patch-based V-Net is used to regress the spine center-line. A key-point localization V-

Net predicts potential vertebral candidates. A three-class vertebrae segmentation network obtains main class of

each vertebrae. Final labels are obtained using a rule-based postprocessing.
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Spine Localisation. To localise the approximate position of the spine, a variant of the U-Net was used to

regress a heatmap of the spinal centreline, i.e. the line passing through vertebral centroids, with an `2

loss. The heatmap of the spinal centreline is generated by combining Gaussian heatmaps of all individual

landmarks. The input image is resampled to a uniform voxel spacing of 8 mm and centred at the network

input.

Vertebra Localisation & Identification. The SpatialConfiguration-Net (Payer et al., 2020) is employed to

localise centres of the vertebral bodies. It effectively combines the local appearance of landmarks with their

spatial configuration. Please refer to (Payer et al., 2020) for details on architecture and loss functions. Every

input volume is resampled to have a uniform voxel spacing of 2 mm, while the network is set up for inputs

of size 96 × 96 × 128. As some volumes have a larger extent in the cranio-caudal axis and do not fit into

the network, these volumes are processed as follows: During training, sub-volumes are cropped at a random

position at the cranio-caudal axis. During inference, volumes are split at the cranio-caudal axis into multiple

sub-volumes that overlap for 96 pixels and processed them one after another. Then, the network predictions

of the overlapping sub-volumes are merged by taking the maximum response over all predictions.

Final landmark positions are obtained as follows: For each predicted heatmap volume, multiple local

heatmap maxima are detected that are above a certain threshold. Then, the first and last vertebrae that

are visible on the volume are determined by taking the heatmap with the largest value that is closest to

the volume top or bottom, respectively. The final predicted landmark sequence is then the sequence that

does not violate the following conditions: consecutive vertebrae may not be closer than 12.5 mm and further

away than 50 mm, and a subsequent landmark may not be above a previous one.

Vertebra Segmentation. To create the final vertebrae segmentation, a U-Net is set up with a sigmoid cross-

entropy loss for binary segmentation to separate individual vertebrae. The entire spine image is cropped to

a region around the localised centroid such that the vertebra is in the centre of the image. Similarly, the

heatmap image of the vertebral centroid is also cropped from the prediction of the vertebral localisation

network. Both the cropped vertebral image and vertebral heatmap are used as an input for the segmentation

network. Both input volumes are resampled to have a uniform voxel spacing of 1 mm. To create the final

multi-label segmentation result, the individual predictions of the cropped inputs are resampled back to the

original input resolution and translated back to the original position.

Lessmann et al.: Iterative fully convolutional neural networks [VerSe‘19]

The proposed approach largely depends on iteratively applied fully convolutional neural networks (Less-

mann et al., 2019). Briefly, this method relies on a U-net-like 3D network that analyses a 128 × 128 × 128

region of interest (RoI). In this region, the network segments and labels only the bottom-most visible ver-

tebra and ignores other vertebrae that may be (partly) visible within the RoI. The RoI is iteratively moved

over the image by placing it at the centre of the detected piece of the vertebra after each segmentation
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step. If only part of a vertebra was detected, moving the RoI to the centre of the detected fragment ensures

that a larger part of the vertebra becomes visible for the next iteration. Once the entire vertebra is visible

in the RoI, the segmentation and labeling results are stored in a memory component. This memory is a

binary mask that is an additional input to the network and is used by the network to recognise and ignore

already segmented vertebrae. By repeating the process of searching for a piece of vertebra and following

this piece until the whole vertebra is visible in the region of interest, all vertebrae are segmented and labeled

one after the other. When the end of the scan is reached, the predicted labels of all detected vertebrae are

combined in a global maximum likelihood model to determine a plausible labeling for the entire scan, thus

avoiding duplicate labels or gaps. Please refer to (Lessmann et al., 2019) for further details. Note that two

publicly available datasets were also used for training: CSI-Seg 2014 (Yao et al., 2012) and the xVertSeg

2016 datasets (Korez et al., 2015). The approach is supplemented with minor changes over (Lessmann et al.,

2019) so that: anatomical labelling of the detected vertebra is optimised by minimising a combination of `1

and `2 norms; the loss for the segmentation network is a combination of the proposed segmentation error

and a cross-entropy loss.

Rib Detection. In order to improve the labeling accuracy, a second network is trained to predict whether

a vertebra is a thoracic vertebra or not. As input, this network receives the final image patch in which a

vertebra is segmented and the corresponding segmentation mask as a second channel. The network has a

simple architecture based on 3× 3× 3 convolutions, batch normalisation and max-pooling. The final layer

is a dense layer with a sigmoid activation function. At inference time, the first thoracic vertebra and the

first cervical vertebra identified by this auxiliary network had a stronger influence on the label voting. Their

vote counted three times as much as that of other vertebrae.

Cropping at Inference. Note that if the first visible vertebra is not properly detected, the whole iterative

process might fail. Therefore, at inference time, an additional step is added which crops the image along the

z-axis in steps of 2.5% from the bottom if no vertebra was found in the entire scan. This helps in case the

very first, i.e. bottom-most, vertebra is only visible with a very small fragment. This small element might

be too small to be detected as a vertebra but might prevent the network from detecting any vertebra above

as the bottom-most vertebra.

Centroid Estimation. Instead of the vertebral centroids provided as training data, the centroids of the

segmentation masks were utilised to estimate the ‘actual’ centroids. This was done by estimating the offset

between the centroids measured from the segmentation mask (v̂i) and the expected centroids (vi). For every

vertebra individually, an offset (δ) was determined by minimising
∑

i v̂i − vi + δ.

Chen D. et al.: Vertebrae Segmentation and Localisation via Deep Reasoning [VerSe‘20]

The authors propose deep reasoning approach as a multi-stage scheme. First, a simple U-Net model with

a coarse input resolution identifies the approximate location of the entire spine in the CT volume to identify

xiv



the area of interest. Secondly, another U-Net with a higher resolution is used, zoomed in on the spinal

region, to perform binary segmentation on each individual vertebra (bone vs. background). Lastly, a CNN

is employed to perform multi-class classification for each segmented vertebra obtained from the second step.

The results of the classification and the segmentation are merged into the final multi-class segmentation,

which is then used to compute the corresponding centroids for each vertebra.

Spine Localisation. Considering the large volume of whole-body CT scan, the original CT image is down-

sampled to a coarse resolution and fed to a shallow 3D-UNet to identify the rough location of the visible

spine. The network has the following number of feature maps for both the sequential down and up sampling

layers: 8, 16, 32, 64, 128, 64, 32, 16, 8. This is similar to Payer C. et al.’s method for VerSe‘19 in Section

3.2. The authors replaced batch normalisation with instance normalisation and ReLU activation with leaky

ReLU (leak rate of 0.01), similar to Payer et al. (2020).

Vertebrae Segmentation. The authors train a 3D U-Net model to solely perform binary segmentation (verte-

brae bone vs. background) at a resolution of 1mm. Given the natural sequential structure of the vertebrae,

inspired by Lessmann et al. (2018), the authors train a model to perform an iterative vertebrae segmentation

process along the spine. That is, the model is given the mask of the previous vertebra and the CT scan as

input, and mask for the next vertebrae is predicted. The input is restricted to a a small-sized patch obtained

from the spine localisation step. A 3D U-Net with the following number of kernels for both the sequential

down and up sampling layers is used: 64, 128, 256, 512, 512, 512, 256, 128, 64.

Vertebrae Classification. A 3D ResNet-50 model is used to predict the class of each vertebra. As input, this

model takes the segmentation mask obtained in the vertebral segmentation step, as well as the corresponding

CT volume, and outputs a single class for the entire vertebrae. Given the prior knowledge of the anatomical

structure of the spine and its variations, it can be ensured that the predictions are anatomically valid.

Deep Reasoning Module Given the biological setting of this computer vision challenge, the task is very

structured and the proposed models use reasoning to leverage the anatomical structure and prior knowl-

edge. Using the Deep Reasoning framework (Chen et al., 2020), the authors were able to encode and

constrain the model to produce results that are anatomically correct in terms of the sequence of vertebrae,

as well as only produce vertebral masks that are anatomically possible.

Payer C. et al.: Improving Coarse to Fine Vertebrae Localisation and Segmentation with SpatialConfiguration-

Net and U-Net [VerSe‘20]

The overall setup of the algorithm stays the same as Payer et al.’s approach for VerSe‘19 (Payer et al.,

2020): a three-stage approach consisting of: spine localisation, vertebrae localisation and identification, and

finally binary segmentation of each located vertebra.

This approach, however, differs in its post-processing after the localisation and identification stage, due

to an increased variation in the VerSe‘20 data. For all vertebrae i ∈ {C1 ... L6}, the authors generate
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multiple location candidates and identify the ones that maximises the following function of the graph with

vertices V and edges E modelling an MRF,∑
i∈V
U
(
vki
)

+
∑
i,j∈E

P
(
vki , v

l
j

)
, (3)

where U describes the unary weight of candidate k of vertebrae i, and P describes the pairwise weight of

the edge from candidate k of vertebrae i to candidate l of vertebrae j. An edge from i to j exists in the

graph if vi and vj are possible subsequent neighbors in the dataset.

The unary terms are set to the heatmap responses plus a bias, i.e. u
(
vki
)

= λhki + b, where hki is the

heatmap response of the candidate k of vertebra i, b is the bias, and λ is the weighting factor. The pairwise

terms penalise deviations from the average vector from vertebrae i to j and are defined as

P
(
vki , v

l
j

)
= (1− λ)

1−
∣∣∣∣∣
∣∣∣∣∣2di,j − d

k,l
i,j

||di,j ||2

∣∣∣∣∣
∣∣∣∣∣
2
 , (4)

with di,j being the mean vector from vertebra i to j in the ground truth, dk,li,j being the vector from vki and

vlj , and || · || denoting the Euclidean norm.

The bias is set to 2.0 and also encourages the detection of vertebrae, for which the unary and pairwise

terms would be slightly negative. The weighting factor λ set 0.2 to encourage the MRF to more rely on the

direction information. For the location candidates of vertex vi, the authors take the local maxima responses

of the predicted heatmap with a heatmap value larger than 0.05. Additionally, as the authors observed

that the networks often confuse subsequent vertebrae of the same type, the authors add to the location

candidates of a vertebra also the candidates of the previous and following vertebrae of the same type. For

these additional candidates from the neighbors, heatmap response is penalised by multiplying it by a factor

of 0.1 such that the candidates from the actual landmark are still preferred. Function 3 is solved by creating

the graph and finding the shortest negative path from a virtual start to a virtual end vertex.

Another minor change involves usage of mixed-precision networks. The memory consumption of training

the networks is drastically reduced due to 16-bit floating-point intermediate outputs, while the accuracy of

the networks stays high due to the network weights still being represented as 32-bit floating-point values.

4. Experiments

In this section, we report the performance measures of the participating algorithms in the labelling

and segmentation tasks. Following this, we present a dissected analysis of the algorithms over a series of

experiments that help understand the tasks as well as the algorithms.

4.1. Overall performance of the algorithms

The overall performance of the evaluated algorithms for VerSe‘19 and ‘20 is reported in Tables 4a and 4b,

respectively. We report the mean and the median values of all four evaluation metrics, viz. identification rate
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Figure 4: Overall performance: Box plots comparing all the submissions on the four performance metrics. The plots also

show the mean (green triangle) and median (orange line) values of each measure. The two boxes for every team correspond to

the performance on the Public and Hidden data. Note that Dice and id.rate are on a scale of 0 to 1 while Hausdorff distance

(HD) and localisation distance (dmean) are plotted in mm.

xvii



Table 4: Benchmarking VerSe: Overall performance of the submitted algorithms for the tasks of labelling and segmentation

over the two test phases. The table reports mean and median (in brackets) measures over the dataset. The teams are ordered

according to their Dice scores on the Hidden set. Dice and id.rate are reported in % and dmean and HD in mm. ? indicates

that the team’s algorithm did not predict the vertebral centroids. * indicates a non-functioning docker container. † Jakubicek

R. submitted a semi-automated method for Public and a fully automated docker for Hidden.

Team

Labelling Segmentation

Public Hidden Public Hidden

id.rate dmean id.rate dmean Dice HD Dice HD

Payer C. 95.65 (100.0) 4.27 (3.29) 94.25 (100.0) 4.80 (3.37) 90.90 (95.54) 6.35 (4.62) 89.80 (95.47) 7.08 (4.45)

Lessmann N. 89.86 (100.0) 14.12 (13.86) 90.42 (100.0) 7.04 (5.3) 85.08 (94.25) 8.58 (4.62) 85.76 (93.86) 8.20 (5.38)

Chen M. 96.94 (100.0) 4.43 (3.7) 86.73 (100.0) 7.13 (3.81) 93.01 (95.96) 6.39 (4.88) 82.56 (96.5) 9.98 (5.71)

Amiranashvili T. 71.63 (100.0) 11.09 (4.78) 73.32 (100.0) 13.61 (4.92) 67.02 (90.47) 17.35 (8.42) 68.96 (91.41) 17.81 (8.62)

Dong Y. 62.56 (60.0) 18.52 (17.71) 67.21 (71.40) 15.82 (14.18) 76.74 (84.15) 14.09 (11.10) 67.51 (66.05) 26.46 (28.18)

Angermann C. 55.80 (57.19) 44.92 (15.29) 54.85 (57.18) 19.83 (16.79) 43.14 (43.44) 44.27 (35.75) 46.40 (47.98) 41.64 (36.27)

Kirszenberg A. 0.0 (0.0) 155.42 (126.24) 0.0 (0.0) 1000 (1000.0) 13.71 (0.01) 77.48 (86.83) 35.64 (0.09) 65.51 (60.27)

Jiang T. 89.82 (100.0) 7.39 (4.67) * * 82.70 (92.62) 11.22 (8.1) * *

Wang X. 84.02 (100.0) 12.40 (8.13) * * 71.88 (84.65) 24.59 (18.58) * *

Brown K. ? ? * * 62.69 (85.03) 35.90 (29.58) * *

Hu Y. ? ? ? ? 84.07 (91.41) 12.79 (11.66) 81.82 (90.47) 29.94 (20.33)

Sekuboyina A. 89.97 (100.0) 5.17 (3.96) 87.66 (100.0) 6.56 (3.6) 83.06 (90.93) 12.11 (7.56) 83.18 (92.79) 9.94 (7.22)

(a) VerSe‘19

Team

Labelling Segmentation

Public Hidden Public Hidden

id.rate dmean id.rate dmean Dice HD Dice HD

Chen D. 95.61 (100.0) 1.98 (0.65) 96.58 (100.0) 1.38 (0.59) 91.72 (95.52) 6.14 (4.22) 91.23 (95.21) 7.15 (4.30)

Payer C. 95.06 (100.0) 2.90 (1.62) 92.82 (100.0) 2.91 (1.54) 91.65 (95.72) 5.80 (4.06) 89.71 (95.65) 6.06 (3.94)

Zhang A. 94.93 (100.0) 2.99 (1.49) 96.22 (100.0) 2.59 (1.27) 88.82 (92.90) 7.62 (5.28) 89.36 (92.77) 7.92 (5.52)

Yeah T. 94.97 (100.0) 2.92 (1.38) 94.65 (100.0) 2.93 (1.29) 88.88 (92.93) 9.57 (5.43) 87.91 (92.76) 8.41 (5.91)

Xiangshang Z. 75.45 (92.86) 22.75 (5.88) 82.08 (93.75) 17.09 (4.79) 83.58 (92.69) 15.19 (9.76) 85.07 (93.29) 12.99 (8.44)

Hou F. 88.95 (100.0) 4.85 (1.97) 90.47 (100.0) 4.40 (1.97) 83.99 (90.90) 8.10 4.52 84.92 (94.21) 8.08 (4.56)

Zeng C. 91.47 (100.0) 4.18 (1.95) 92.82 (100.0) 5.16 (2.17) 83.99 (90.90) 9.58 6.14 84.39 (91.97) 8.73 (5.68)

Huang Z. 57.58 (62.5) 19.45 (15.57) 3.44 (0.0) 204.88 (155.75) 80.75 (88.83) 34.06 (27.36) 81.69 (89.85) 15.75 (11.58

Netherton T. 84.62 (100.0) 4.64 (1.67) 89.08 (100.0) 3.49 (1.6) 75.16 (86.74) 13.56 (6.8) 78.26 (87.44) 14.06 (7.05)

Huynh L. 81.10 (88.23) 10.61 (5.66) 84.94 (90.91) 10.22 (4.93) 62.48 (66.02) 20.29 (16.23) 65.23 (69.75) 20.35 (16.48)

Jakubicek R.† 63.16 (80.0) 17.01 (13.73) 49.54 (56.25) 16.59 (13.87) 73.17 (85.15) 17.26 (12.80) 52.97 (63.56) 20.30 (19.45)

Mulay S. 9.23 (0.0) 191.02 (179.26) * * 58.18 (64.96) 99.75 (95.60) * *

Paetzold J. ? ? ? ? 10.60 (4.79) 166.55 (265.16) 25.49 24.55 240.61 191.29

Sekuboyina A. 82.68 (93.75) 6.66 (3.87) 86.06 100.0 5.71(3.51) 78.05 (85.09) 10.99 (6.38) 79.52 (85.49) 11.61 (7.76)

(b) VerSe‘20

(id.rate) and localisation distance (dmean) for the labelling task and Dice and Hausdorff distance (HD) for

segmentation. Note that the algorithms are arranged according to their performance on the corresponding

challenge leaderboards. Of the evaluated algorithms in VerSe‘19, the highest id.rate and Dice in the

Public phase were 96.9% and 93.0%, both by Chen M. On the Hidden data, these are 94.3% and 89.8%,

by Payer C. Similarly, for VerSe‘20, Chen D. achieved the highest mean id.rate and Dice on both the test
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Table 5: Mean performance (id.rate and Dice, in %) of all the evaluated algorithms in both the VerSe iterations. ‘Top-5’

indicates that the mean was computed on the five top-performing algorithms in that year’s leaderboard. ‘All’ considers all

submitted algorithms.

VerSe

Public Hidden

All Top-5 All Top-5

id
.r
a
te 2019 61.4±44.5 83.3±30.7 61.6±43.6 82.4±31.6

2020 72.5±39.3 93.9±21.0 68.6±42.1 94.4±17.5
D

ic
e 2019 71.2±33.7 82.5±25.9 71.3±32.6 78.9±28.4

2020 75.2±28.5 89.3±17.9 71.1±32.2 88.8±16.7

phases: 95.6% and 91.7% in Public and 96.6% and 91.2% in Hidden phase. Fig. 4 illustrates the mean

and other statistics pertaining to the algorithms’ performance as box plots for the four evaluation metrics.

Of importance: At least four methods in VerSe‘19 achieve a median id.rate of 100%. In VerSe‘20, this is

achieved by seven teams, a majority of the submissions.

Table 5 provides a bigger picture, reporting the mean performance of all the evaluated algorithms as well

as the five top-performing algorithms. In 2019, the performance of all methods (incl. Top 5) is consistent

between the Public and Hidden phases, except for a slight drop in Dice in 2019’s Hidden phase. However,

in 2020, we see that the mean performance of all teams drops, while that of only the top-5 stays relatively

consistent. Additionally, observe that the mean id.rate and Dice score increased from 2019 to 2020 (for

both All and Top-5 ). These observations can be attributed to: 1) Supervised algorithms fail to generalise to

out-of-distribution cases (L6 in VerSe‘19) when their percentage of occurrence in the dataset is consistent

with their low clinical prevalence. 2) With the availability of large, public data with an over-representation

of out-of-distribution cases (as in VerSe‘20), makes better algorithm design and learning feasible.

In Figs. 5 and 6, we show predictions of the algorithms on the best, median, and worst scans, ranked

by the average performance of all the algorithms on every scan. In VerSe‘19, the best scan, a lumbar

FoV, is segmented correctly by all the algorithms. The median scan, a thoracic FoV with a fracture, is

erroneously segmented by a few teams, due to mislabelling (Jiang T., Kirszenberg A., and Wang X.) or

stray segmentation (Angermann C., Brown K. and Dong Y.). The worst-case scan, interestingly, is an

anomalous one, wherein L5 is absent. Seemingly, the lumbar-sacral junction is a strong anatomical pointer

for labelling and hence almost every algorithm wrongly labels an L4 as an L5. Medical experts, on the other

hand, use the last rib (attached to T12) to identify the vertebrae and hence would arrive at the correct

spine labels. Similarly, in VerSe‘20, the best case is a lumbar scan. The median case is a thoracolumbar

scan with severe scoliosis. In spite of this, the majority of the algorithms identify and segment the scan

correctly. The worst case again occurs due to an anomaly at the lumbar-sacral junction, here due to the

presence of a transitional L6 vertebra. Interestingly, the semi-automated approach of Jakubicek R. succeeds

in identifying this anomaly correctly.
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Figure 5: VerSe‘19: Qualitative results of the participating algorithms on the best, median, and worst cases, determined using

the mean performance of the algorithms on all cases. We indicate erroneous predictions with arrows. A red arrow indicates

mislabelling with a one-label shift. From Brown K., the prediction for the worst case was missing.
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Figure 6: VerSe‘20: Qualitative results of the participating algorithms on the best, median, and worst cases, determined using

the mean performance of the algorithms on all cases. We indicate erroneous predictions with arrows. A red arrow indicates

mislabelling with a one-label shift
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Figure 7: Vertebra-wise and region-wise performance: Plot shows the mean labelling and segmentation performance

of the submitted algorithms at a vertebra level (left) and at a spine-region level (right), viz. cervical, thoracic, and lumbar

regions.

4.2. Vertebrae-wise and region-wise evaluation

In Fig. 7, we illustrate the mean labelling at segmentation capabilities of the submitted methods at a

vertebra-level and region-level (cervical, thoracic, and lumbar).

At a vertebra level, we observe a sudden performance drop in the case of transitional vertebrae (T13

and L6). Concerning L6, None of the methods in VerSe’19 identified the presence of L6. However, in

VerSe‘20, almost all algorithms identify at least a fraction of the L6 vertebrae. On the other hand, for

T13, except for Xiangshang Z., the identification rate widely varies between the Public and Hidden phases

for all teams.

Looking at the region-specific performance, VerSe‘19 shows a trend of performance-drop in the thoracic

region. This could be expected as mid-thoracic vertebrae have a very similar appearance, making them

indistinguishable without external anatomical reference. Of course, such a reference (as T12/L1 or C7/T1

junctions) was present in all scans, but apparently not considered by most algorithms. This drop is not

observed in VerSe‘20. We hypothesise this to be a consequence of better algorithm design because the
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(a) Performance at scan level (b) Effect of the field of view

Figure 8: (a) Fraction of scans, n, with an id.rate or Dice higher than a threshold, τ . The fraction is computed over scans in

both the test phases. Uninformative dockers with lines hugging the axes are not visualised (Kirszenberg A., Brown K., Mulay

S., and Paetzold J.). Hu Y. is not included in the id.rate experiment due to missing centroid predictions. (b) Performance

measures of scans grouped according to their field of view. Scans are binned into six categories of FoVs. Please refer to Sec. 4.4

for details.

condition of identifying transitional vertebrae required accurate identification at a local level and reliable

aggregation of labels at a global level. We further investigate this behaviour in the following sections.

4.3. Labelling and segmentation at a scan level

When an algorithm is deployed in a clinical setting, minimal manual intervention is desired. Therefore,

it is of interest to peruse the effort needed for correction. As a proxy, we analyse the number of scans in

the dataset that were successfully processed. We define success using a threshold τ , wherein a scan is said

to be successfully identified if its id.rate is above τid.rate. Similarly, successful segmentation is defined using

τDice. The fraction of scans successfully processed is denoted by n. In Fig. 8a, we show the behaviour of n

at varying thresholds. The best-case scenario for both the tasks is n = 1,∀τ . The methods in VerSe‘20 are

closer to this behaviour than VerSe‘19, the latter showing more spread over the grid. Especially, Chen D.,

Payer C., Zhang A., and Yeah T. perfectly identify (id.rate=100%) close to 90% of the scans. In 2019, this
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Table 6: Number of scans in each subset of VerSe with an id.rate or Dice score less than 5%. Reported values are

absolute number of scans from a maximum of: 40 scans each for VerSe‘19’s Public and Hidden sets, and 103 scans

each for VerSe‘20’s test sets.
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Public id.rate 0 3 1 6 3 2 38 3 3 – – 1 4 3 4 4 5 5 4 16 4 1 77 82 – 3

Dice 0 3 1 7 0 2 28 4 4 8 0 1 3 2 3 3 1 4 3 1 4 1 16 6 52 2

Hidden id.rate 0 2 4 8 1 4 40 – – – – 1 0 3 0 0 0 3 2 99 2 0 31 – – 3

Dice 0 3 5 7 0 1 14 – – – 1 1 0 3 0 0 1 3 3 0 2 0 23 – 6 1

number was closer to 80% for Chen M., Payer C., and Jiang T. Looking at the Dice curves in 2020, given

a vertebra is labelled correctly, its segmentation seems trivial, with the majority of the methods attaining

scores of 80-90% on at least 80% of the scans. In 2019, only three methods indicate this performance.

Looking specifically at ‘failed’ scans, we log the number of scans which resulted in less than 5% id.rate

or Dice in Table 6. When seen in tandem with Fig. 4, this table provides an idea of scan-level failures.

Interestingly, in VerSe‘20, numerous methods do not show absolute failure in the Hidden phase, e.g. Chen

D., Zhang A., Yeah T., and Huynh L.

4.4. Effect of field of view on performance

Delving deeper into the region-wise performance of the methods, we ask the question: What landmark

in a scan most aids labelling and segmentation?. For this, we identify four landmarks on the spine: the

cranium (if C1 exists), the cervico-thoracic junction (if C7 and T1 coexist), the thoraco-lumbar junction (if

T12/T13 and L1 coexist), and lastly the sacrum (if L5 or L6 exists). Based on this, we divide the scans into

six categories, namely:

1. C/T (+C1): Cranium and the cervico-thoracic junction are present. Thoraco-lumbar junction absent.

2. C/T (−C1): Cervico-thoracic junction present. Thoraco-lumbar junction absent.

3. T/L(+L5): Sacrum and the thoraco-lumbar junction are present. Cervico-thoracic junction absent.

4. C/T (−L5): Thoraco-lumbar junction present. Sacrum and cervico-thoracic junction absent.

5. C/T/L(+C1&L5): Full spines. Both cervico-thoracic and thoraco-lumbar junctions are present.

6. C/T/L(−C1/L5): Cervico-thoracic and thoraco-lumbar junctions are present. Either cranium or both

cranium and sacrum are absent. (VerSe did not contain any scan with cranium and without sacrum)

xxiv



Figure 9: Performance on transitional vertebrae: Dice scores of the VerSe‘20 algorithms computed on anatomically rare

scans with transitional vertebrae (?), i.e. T13 and L6, and the normal scans without them (�).

Note that in the categories above, L5 refers to the last lumbar vertebra, which could be L4 or L6 as well.

Fig. 8b shows an example of a full spine scan with crops that would fall into one of these categories. Once

every scan in the dataset is assigned the appropriate category, we compute the mean identification rate and

Dice score of every method for every category (cf. Fig. 8b). In VerSe‘19, we observe that scans with all

lumbar vertebra are easier to process compared to cervical ones (T/L or C/T/L with L5). For a similar

FoV, we see a large drop when cases do not contain L5 or C1. This shows the reliance of the VerSe‘19

methods on the cranium and sacrum. Interestingly, the reliance on L5 is not as drastic in VerSe‘20 (refer

to categories −C1&L5 and −L5). However, the cranium seems to still be a strong reference. Essentially, the

median segmentation performance (Dice) coefficient of the methods is ∼ 80% in thoracic and lumbar regions

for a variety of FoVs, where at least one of the four landmarks mentioned above is visible. Nonetheless, for

cervical (-thoracic) scans, there is room for improvement for FoVs without the cranium.

4.5. Performance on anatomically rare scans vs. normal scans

As stated earlier, VerSe‘20 was rich in rare anatomical anomalies in the form of transitional vertebrae,

viz. T13 and L6. In Fig 9, we illustrate the difference in performance of the submitted algorithms between

a normal scan and a scan with transitional vertebrae. As expected, we observe a superior performance on

normal anatomy when compared to that on rare anatomy. The difference in performance, however, is of

interest. In Public, Yeah T., Zhang A., and Zeng C. have a small drop in performance, with the first two

approaches showing a better performance on the rare cases compared to the two top performers, Payer C.

and Chen D. In Hidden, Payer C. does not show any drop in performance, and outperforms the rest on

the rare cases. Arguably, algorithms that either show a stable performance across anatomies or those that

identify (and skip processing) a rare case are preferred in a clinical routine.
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V‘19 approaches on V‘20 data

Payer C. 85.21

Lessmann N. 66.96

Chen M. 65.21

V‘20 approaches on V‘19 data

Chen D. 86.44

Payer C. 84.11

Zhang A. 85.42

Table 7: Mean Dice (%) of running the three

of the top-performing dockers of one VerSe

iteration on Hidden set of the other itera-

tion.

Figure 10: (Left) Teamwise overall Dice scores of the approaches from one VerSe

iteration run on the Hidden set of the other iteration. (Center and right) Mean

vertebrae-wise, and region-wise Dice scores of the same.

4.6. Generalisability of the algorithms

Owing to the Hidden test phase in both iterations of VerSe, we have access to the docker containers

that can be deployed on any spine scan. The only prerequisite for this being that the scan conforms to the

Hounsfield scale (as in VerSe data). Exploring the dockers’ ability at clinical translation, we deploy three

of the top-performing dockers of VerSe‘19 on the Hidden set of VerSe‘20, and vice versa. Table 7 and

Fig. 10 report the cross-iteration performance of these dockers.

Recall that the VerSe‘20 data has some overlap with VerSe‘19. Therefore, the approaches trained on

VerSe‘20 perform reasonably well on the VerSe‘19 data. There is a drop of ∼ 3%, which can be attributed

a domain shift between the datasets. Note that Payer C. and Zhang A. succeed in identifying L6, while

none of the methods in 2019 do, owing to the over-representation of L6 in VerSe‘20. This underpins our

motivation for the second VerSe iteration.

On the other hand, the setting of VerSe‘19 methods on VerSe‘20 data is more interesting. In addition

to a domain shift (due to multi-scanner, multi-centre data in 2020), there are also unseen anatomies. Un-

derstandably, we see a drop in performance for Lessmann N. and Chen M. Interestingly, the performance

drop is not as large for Payer C. This can be attributed to the way these approaches arrive at the final

labels. Lessmann N. depends on identifying the last vertebra. In cases with L6, this affects the entire scan.

We assume a similar behaviour for Chen M. In case of Payer C., the presence of L6 was not as detrimental,
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as the rest of the vertebrae were identified and segmented correctly and the final labels depended prediction

confidences during the post-processing stage. Vertebra T13, however, can be ignored due to its absence in

VerSe‘19.

5. Discussion

5.1. Algorithm design

In this section, we comment on the design of the submitted approaches. Brief descriptions of the eval-

uated algorithms are provided in Table 3, Sec. 3, and Appendix C. We look into the following design

decisions: pure deep-learning (DL) vs. hybrid models, 3D patch-based vs. 2D slice-wise approach, and a

single model vs. a multi-staged approach.

Deep learning vs. hybrid. Out of the twenty-four algorithms benchmarked in this work, twenty-one

are purely deep-learning-based, albeit with minor pre- (e.g. intensity-based filtering) and post-processing

components (e.g. connected components or morphological operations). Three algorithms: Amiranashvili T.,

Kirszenberg A, and Jakubicek R. employ statistical shape models. The first two approaches use such models

for identifying the vertebrae. The third approach uses it for segmentation using elastic registration. Un-

like learning-based approaches, atlases incorporate reliable prior information, thus preventing anatomically

implausible results. However, in this benchmark, we see a clear superiority of data-driven, DL approaches

compared to the hybrid ones. This is understandable, given the size of VerSe. Better integration of shape-

based and learning-based ones is of interest, thus enabling segmentation with anatomical guarantees.

3D patch-based vs. 2D slice-wise segmentation. Common among all the algorithms is the motivation

that a clinical spine scan’s size is large for current-generation GPU memory. We can draw two lines of

algorithms among the benchmarked ones: First, those performing 2D slice-wise segmentation (e.g. Anger-

mann C., Kirszenberg A., Mulay S., Paetzold J.). Second, which form the majority, are the approaches that

perform patch-wise segmentation in 3D using architectures such as 3D U-Net (Çiçek et al., 2016), V-Net

(Milletari et al., 2016), or nnU-Net (Isensee et al., 2019). The second category can further be split into

approaches performing multi-label segmentation, and those performing binary segmentation.

Observe that, in general, 3D processing is preferable naive 2D slice-wise segmentation. More so, when

compared to 2D slice-wise multi-label segmentation. This is expected because slice-wise processing, in spite

of offering a larger FoV and memory efficiency, ignores crucial 3D context for an anatomically large structure

such as a spine. Moreover, labelling the vertebrae becomes noisy as not every vertebra is visible in every slice.
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Single model vs. multi-staged. One principal categorisation of the benchmarked algorithms is into two

categories based on the number of stages they employ to tackle the tasks of labelling and segmentation, as

demonstrated by some representative algorithms listed below:

1. Single-stage: Lessmann N., Jiang T., Huang Z., and Huỳnh D.

2. Multi-staged: Chen D., Payer C., Zhang A., and Netherton T.

Typically, single-staged models work with 3D patches. The likes of Lessmann N. perform iterative

identification and segmentation and determine a label arrangement using maximum likelihood estimation.

Jiang T. and Huang Z. propose dedicated architectures with multiple heads, one each for the labelling

and segmentation tasks, thus exploiting their interdependency. nnU-Net or 3D-UNet-based multi-label

classification followed by final labelling is also a recurring theme.

On the other hand, numerous sequential frameworks have also been proposed. Payer C., for instance,

perform labelling and segmentation in three stages of localisation, then labelling, and finally binary verte-

bral segmentation. Zhang A. propose a four-stage approach involving spine-centerline detection, vertebral

candidate prediction, and a three-class segmentation of the localised spine. Following this, final labels are

identified based on certain spine-centric rules.

As evidenced by the performance, one cannot propose a ‘winner’ among the two categories. Both

categories equally span the upper regions of the leaderboards. The first category could possibly result in

numerous inferences of large patches per scan (resulting in longer inference times), while the second approach

could be prone to errors compounding from a preliminary stage of the sequence.

5.2. On rare anatomical variations: transitional vertebrae

VerSe‘19 included two cases with L6 in the train set, a proportion resembling its clinical occurrence. We

observed that almost every algorithm fails to segment the one L6 in the Hidden set. A major motivation for

the second iteration of VerSe, was hence, to increase number of anatomically anomalous cases. VerSe‘20

included six cases with T13 (2/2/2 in Train/Public/Hidden) and 47 cases with an L6 (15/15/17). The

effect of this increase in transitional vertebrae can be seen in Fig. 7, with L6 now being detected and

segmented, at least in some cases. Surprisingly, T13, if occurring only twice is successfully identified by

some methods. Note that Xiangshang Z. is the only approach that successfully identifies all T13 instances

in both test phases.

This contradictory behaviour of better performance of approaches in the case of T13 compared to L6, in

spite of higher numbers gives us some insights into the task at hand. For T13, the sequence of vertebral labels

gives a strong prior. In the case of L6, which itself acts as a strong prior due to the sacrum, its reliable

detection doesn’t seem as consistent. Hanaoka et al. (2017), for example, recognise this issue and work
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towards directly predicting such abnormal numbers. Nonetheless, the improved behaviour of the approaches

in such anatomical variations brings us closer to realising automated algorithms in clinical settings.

5.3. Limitations of our study

The scale, clinical similitude, data and anatomical variability are the strengths of the VerSe benchmark.

In this section, we identify some limitations of this study.

Foremost among the limitations is the lack of inter-rater annotations. Owing to the effort involved in

creating the voxel-level annotations for a multitude of vertebrae, the hierarchical process of okaying an

annotation, and the use of a machine in the annotation process, the decision of having multiple-raters was

delegated to future challenge iterations. This would eventually enable algorithms to predict uncertainty,

inter-rater variability studies, and learning annotator biases.

Putting aside the insufficiency of the Dice metric for evaluating segmentation performance (Taha &

Hanbury, 2015), the metrics in the spine literature have a major short-coming: one-label shift, where the

labels of the predicted mask are off by one label (cf. Fig. 6, Worst Case). One-label shift penalises the

current metrics more than label mixing, which results in unusable masks. The drastic drop in performance

of Chen M. between the Public and Hidden phases (Table 4a) was due to this issue. Therefore, research

towards better domain-specific evaluation metrics is of interest, more so for differentiable variants enabling

neural network optimisation.

6. Conclusions

The Large Scale Vertebrae Segmentation Challenge (VerSe) was organised in two iterations in con-

junction with MICCAI 2019 and 2020. VerSe, publicly made available 374 CT scans from 355 patients,

the largest spine dataset to date with accurate centroid and voxel-level annotations. On this data, twenty-

five algorithms (twenty-four participating algorithms, one baseline) are evaluated for the tasks of vertebral

labelling and segmentation. This work describes the challenge setup, summarises the baseline and the partic-

ipating algorithms, and benchmarks them with each other.The best algorithm in terms of mean performance

in VerSe’19 achieves identification rate of 94.25% and a Dice score of 89.80% (Payer C.) on the Hidden

test set. In VerSe’20, these numbers are 96.6% (id.rate) and 91.72% (Dice), achieved by Chen D. Based

on the statistical ranking method chosen for evaluating VerSe challenges, Payer C.’s approach led the

leaderboard due to its better and relatively consistent performance on healthy as well as the anatomically

rare cases.

Aimed at understanding the algorithms’ behaviour, we present an in-depth analysis in terms of the spine

region, fields of view, and manual effort. We make the following key observations: (1) The performance

of algorithms, on average, increased from VerSe‘19 to VerSe‘20, in spite of the data being more multi-

centred and anomalous, (2) Spine processing, for now, is better approached in 3D, either as large patches
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or in a appropriately designed sequence of stages, and (3) Transitional vertebrae (T13 and L6) can be effi-

ciently handled given sufficient data and post-processing. We hope that the VerSe dataset and benchmark

will enable researchers to contribute towards more accurate and reliable clinical translation of their spine

algorithms.

As stated, future directions could include the incorporation of multi-raters, inter-rater variability, and

spine-centred evaluation measures. Additionally, modelling the sacrum is of interest for load analysis.

Lastly, in spite of labelling and segmentation being inter-dependent, our motivation for having two tasks

was to enable participation in individual tasks. However, our experience shows this to be redundant.

Moreover, the VerSe challenges did not explicitly require the participating algorithms to be optimised for

run time. Including this as an objective could bring in added insights into algorithm design. We bring these

observations to the attention of future attempts at benchmarking.
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Ibragimov, B., Likar, B., Pernuš, F., & Vrtovec, T. (2014). Shape representation for efficient landmark-based segmentation in

3-d. IEEE Transactions on Medical Imaging, 33 , 861–874.
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vertebral bodies and processes using statistical shape decomposition and conditional models. IEEE transactions on medical

imaging, 34 , 1627–1639.

Rasoulian, A., Rohling, R., & Abolmaesumi, P. (2013). Lumbar spine segmentation using a statistical multi-vertebrae anatom-

ical shape+ pose model. IEEE transactions on medical imaging, 32 , 1890–1900.

Redmon, J., & Farhadi, A. (2016). Yolo9000: Better, faster, stronger.

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks.

arXiv preprint arXiv:1506.01497 , .

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In Medical

Image Computing and Computer-Assisted Intervention – MICCAI 2015 .

Roy, A. G., Navab, N., & Wachinger, C. (2018). Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional

xxxiii



networks. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 .

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M. et al.

(2015). Imagenet large scale visual recognition challenge. International journal of computer vision, 115 , 211–252.

Seim, H., Kainmueller, D., Heller, M., Lamecker, H., Zachow, S., & Hege, H.-C. (2008). Automatic segmentation of the pelvic

bones from ct data based on a statistical shape model. (pp. 93–100).
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Appendix A. Challenge Evaluation and Ranking

Appendix A.1. Statistical Tests & Points

In this technical report (Sec. 4), we reported four performance measures, id.rate, dmean, Dice, and

HD. However, recall from 2, that HD and dmean are undefined in the case of missing vertebral predictions.

Therefore, to rank the teams in VerSe‘19, the missing predictions for vertebrae were substituted by a

maximum Euclidean distance of 1000 mm for dmean and 100 mm for HD. Expecting more missed predictions

in VerSe’20, and in order to avoid inducing a bias due to such substitution, HD and dmean were not used

to rank the teams in VerSe‘20.

Once computing the performance measures, we compare them. Inspired by Maier-Hein et al. (2018) and

Menze et al. (2014), the comparison and ranking of the participating algorithms were based on a scheme

based on statistical significance. The value of the performance measure obtained from each scan in the

cohort was treated as a sample from a distribution and the Wilcoxon signed-rank test with a ‘greater’ or

‘less’ hypotheses testing (as appropriate for the performance metric) was employed to test the significance

of the difference in performance between a pair of participants. A p−value of 0.001 was chosen as the

threshold to ascertain a significant difference. Following this, a point was assigned to the better team. All

possible pairwise comparisons were performed for every performance measure. Each comparison awards a

point to a certain team unless the difference is not statistically significant. For every measure, the points are

aggregated at a team level and normalised with the total number of participating teams in the experiment

to obtain a score between 0 and 1.

Lastly, for every team, the normalised points across the measures are combined as described in the next

section, which describes particulars of point-computation for the ranking pertaining to the challenge.

The points scored by each team are reported in Tables A.8a and A.8b respectively. Illustrated in Figs.

A.11 and A.12 are the p–values of the significance as well as their binarised versions (thresholded at p = 0.001)

that ensue from the pairwise comparisons.

Appendix A.2. Final Ranking: Combining all the scores

Fig. A.13 illustrates how the performance of the algorithms over the multiple stages was combined to

construct one ranking scheme. Tables A.8a and A.8b also report the normalised points. The rationale in

choosing this presented scheme was as follows:

• dmean and HD, compared to id.rate and Dice, are weighted at a ratio of 1 : 2 in order to de-emphasise

the contribution of the upper bounds chosen on the former measures in case of missing predictions.

(This does not apply to VerSe‘20.)

• Hidden has twice the weight as Public as it was evaluated on a completely hidden dataset, thus

nullifying the chance of over-fitting or retraining on the test set.
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Figure A.11: VerSe‘19 points: Illustrating the p−value matrices and their binarised versions for every metric used.
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Figure A.12: VerSe‘20 points: Illustrating the p−value matrices and their binarised versions for every metric used.
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Figure A.13: Protocol for obtaining the final ranking: Flow diagram of the weights assigned to each stage of the VerSe

evaluation, in order to obtain the final point count.

• Lastly, the segmentation task has twice the weight of the labelling task as the latter can possibly be

a consequence of the former, as was the final goal of this challenge.

Appendix B. Description of Anduin

The Anduin framework was used to assist the data team in the creation of the ground truth. Please

refer to Löffler et al. (2020b) for an overview of annotation-creation for VerSe. Given the CT scan of a

spine, our framework aims to predict accurate voxel-level segmentation of the vertebrae by splitting the task

in to three sub-tasks: spine detection, vertebrae labelling, and vertebrae segmentation. In the following

section, the network architectures, loss functions, and training and inference details of each of these modules
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Table A.8: Point counts of the submitted approaches of (a) VerSe‘19 and (b) VerSe‘20, based on the proposed pairwise,

statistical comparison. * indicates a non-functioning docker container. † Jakubicek R. submitted a semi-automated method

for Public and a fully-automated docker for Hidden.

Team Normalised Points

Labelling Segmentation

Public Hidden Public Hidden

id.rate dmean id.rate dmean Dice HD Dice HD

Payer C. 0.691 3 7 3 5 8 8 5 5

Chen M. 0.597 5 7 2 4 10 8 3 4

Lessmann N. 0.496 3 1 4 3 4 5 3 5

Hu Y. 0.279 ? ? ? ? 4 4 3 3

Dong Y. 0.216 1 1 1 1 2 4 2 1

Amiranashvili T. 0.215 1 1 1 1 1 3 2 2

Jiang T. 0.140 3 5 * * 4 4 * *

Angermann C. 0.107 1 1 1 1 1 2 0 1

Wang X. 0.084 2 3 * * 2 3 * *

Brown K. 0.022 ? ? * * 1 1 * *

Kirszenberg A. 0.007 0 0 0 0 0 1 0 0

(a) VerSe‘19

Team Normalised Points

Labelling Segmentation

Public Hidden Public Hidden

id.rate id.rate Dice Dice

Payer C. 0.675 6 4 11 10

Chen D. 0.581 7 5 10 7

Yeah T. 0.453 6 5 7 5

Zhang A. 0.453 6 5 7 5

Hou F. 0.393 5 4 7 4

Zeng C. 0.333 6 4 5 3

Xiangshang Z. 0.316 2 2 6 4

Netherton T. 0.222 3 3 3 2

Huang Z. 0.171 1 0 4 2

Huynh L. 0.119 3 2 1 2

Jakubicek R.† 0.085 1 1 3 0

Mulay S. 0.017 0 * 1 *

Paetzold J. 0.0 ? ? 0 0

(b) VerSe‘20

is elaborated. Fig. 2 gives an overview of the proposed framework and Fig. B.14 details the architectures

of the networks employed in the three sub-tasks.

Appendix B.1. Notation.

The input CT scan is denoted by x ∈ Rh×w×d where h, w, and d are the height, width, and depth of

the scan respectively. The annotations available are, (1) the vertebral centroids, denoted by {µi ∈ R3} for

i ∈ {1, 2, . . . N}. These are used to construct the ground truth for the detection and labelling tasks, denoted

by yd and yl, respectively. (2) the multi-label segmentation masks, denoted by ys ∈ Zh×w×d.
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Figure B.14: Architectures: Detailed network architectures of the three stages in Anduin: the spine detection, vertebrae

labelling, and the vertebra segmentation stages.

xl



Appendix B.2. Spine Detection

To detect the spine, we propose a parametrically-light, 3D, FCN operating at an isotropic resolution of

4 mm. This network regresses a 3D volume consisting of Gaussians at the vertebral locations as shown in

Fig. B.14. The Gaussian heatmap is generated at a resolution of 1 mm with a standard deviation, σ = 8, and

then downsampled to a resolution of 4 mm. Additionally, spatial squeeze and channel excite blocks (SSCE)

are employed to increase the network’s performance-to-parameters ratio. Specifically, the probability of

each voxel being a spine voxel or a non-spine one is predicted by optimising a combination of `2 and binary

cross-entropy losses as shown:

Ldetect = ||yd − ỹd||2 −H (σ(yd), σ(ỹd)) (B.1)

where yd is constructed by concatenating the Gaussian location map with a background channel obtained

by subtracting the foreground from 1, ỹd denotes the prediction of whose foreground channel represents the

desired location map, and σ(·) and H(·) denote the softmax and cross-entropy functions.

Appendix B.3. Stage 2: Vertebrae Labelling

To label the vertebrae, we adapt and improve the Btrfly net (Sekuboyina et al., 2018, 2020) that works

on two-dimensional sagittal and coronal MIP. By virtue of the spine’s extent obtained from the previous

component, MIPs can now be extracted from a region focused on the spine, thus eliminating occlusions

from ribs and pelvic bones. Cropping the scans to the spine region also makes the input to the labelling

stage more uniform, thus improving the training stability. The labelling module works at 2 mm isotropic

resolution and is trained by optimizing the loss function that is a combination of the sagittal and coronal

components, Llabel = Lsag
label + Lcor

label, where the loss of each view is given by:

Lsag
label = ||ysag

l − ỹsag
l ||2 + ωH (σ(ysag

l ), σ( ỹsag
l )) , (B.2)

where ỹsag
l is the prediction of the net’s sagittal-arm of the Btrfly net and ω denotes the median frequency

weight map giving a higher weight to the loss originating from less frequent vertebral classes.

Appendix B.4. Stage 3: Vertebral Segmentation

Once the vertebrae are labelled, their segmentation is posed as a binary segmentation problem. This

is done by extracting a patch around each vertebral centroid predicted in the earlier stage and segmenting

the vertebra of interest. An architecture based on the U-Net working at a resolution of 1 mm is employed

for this task. Additionally, SSCE blocks are incorporated after every convolution and upconvolution block.

Importantly, as there will be more than one vertebra within a patch, a vertebra-of-interest (VOI) arm is

used to point the segmentation network to delineate the vertebra of interest. The VOI arm is an encoder

parallel to the image encoder as shown in Fig. B.14, processing a 3D Gaussian heatmap centred at the
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vertebral location predicted by the labelling stage. The feature maps of the VOI arm are concatenated to

those of the image encoder at every resolution. The segmentation network is trained using a standard binary

cross-entropy as a loss.

Algorithm 1: Pseudocode for inference on Anduin

Input: x, a 3D MDCT spine scan

Output: Vertebral centroids & segmentation masks

Detection

1 xd = resample to 4mm(x)

2 yd = predict spine heatmap(xd)

3 bb = construct bounding box(yd, threshold=Td)

4 Possible interaction: Alter bb by mouse-drag action.

Labelling

5 xl = resample to 2mm(x)

6 bb = upsample bounding box(bb, from=4mm, to=2mm)

7 xsag, xcor = get localised mips(xl, bb)

8 ysag, ycor = predict vertebral heatmaps(xsag, xcor)

9 yl = get outer product(ysag, ycor)

10 centroids = heatmap to 3D coordinates(yl, threshold=Tl)

11 Interaction: Insert missing vertebrae, delete spurious predictions, drag incorrect predictions.

Segmentation

12 xs = resample to 1mm(x); mask = np.zeros like(xs)

13 for every centroid in centroids do

14 p = get 3D vertebral patch(xs, centroid)

15 pmask = binary segment vertebra of interest(p)

16 pmask = index of(mask, centroid)∗pmask

17 mask = put vertebrae in mask(pmask)

18 end

Appendix B.5. Inference & Interaction

Simplifying the flow of control throughout the pipeline, Algo. 1 describes the inference routine given a

spine CT scan and various points where medical experts can interact with the results, thus improving its

overall performance.
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Appendix C. Participating Algorithms

Amiranashvili T. et al.: Combining Template Matching with CNNs for Vertebra Segmentation and Iden-

tification

A multi-stage approach is adopted to label and segment the vertebrae as illustrated in Fig. C.15: 1.

Multi-label segmentation with arbitrary, but separate labels for each vertebra based on local regions of

interest in the image. 2. Unique label-assignment to segmented vertebral masks based on shape, while

globally regularising over the entire CT field of view. 3. Derive landmark positions from the multi-label

segmentation masks by applying a shape-based approach.

Multi-label Segmentation. This stage includes creating a first, rough binary segmentation of the overall

spine followed by localising regions of interests around each vertebra and performing voxel-level, refined

segmentation of each vertebra. Binary segmentation separating the spine from the background is achieved

through a U-Net employed on 2D sagittal slices. For each slice, neighboring slices are included as additional

channels in the input to provide a larger context. The network is trained on fixed-size, random crops from

original slices. Following this, the number of vertebra and their rough positions are computed based on the

binary segmentation by combining shape-based fitting via generalised Hough transform (GHT) (Seim et al.,

2008) with a CNN-based heat-map regression for localising vertebra in the spinal column. Put to use in the

fitting procedure were manually generated GHT templates of the lumbar (L1-L5), lower thoracic (T10-T12),

mid-thoracic (T5-T9), upper-thoracic (T1-T4), lower-to-mid cervical (C3-C5), and upper-cervical (C2-C1)

spine. The Butterfly network (Li et al., 2018) was trained on mean and maximum intensity projections in

anterior-posterior and lateral directions of the CTs. Finally, multi-label segmentation is performed based

on the rough locations from the previous step by deriving a region of interest for each visible vertebra. In-

dividual vertebrae are then segmented via a U-Net based on 2D sagittal slices cropped to the corresponding

regions of interests while including neighboring slices as additional input channels. The segmentation masks

resulting from the cropped images are then combined into a multi-label segmentation mask.

Vertebra Identification. Vertebra identification is performed based on shape through template fitting along

with explicit global regularisation over the whole visible spine. For each vertebra, shape templates are fit-

ted non-rigidly to the given labels via the iterative closest points (ICP) algorithm using the six templates

introduced above. This results in a table containing a fitting score for each template and each detected

vertebra. Then, optimisation for a set of unique vertebra types is performed such that the combined score

from the table is maximised while maintaining the consistent ordering of vertebra (e.g. L4 must follow L5).

The multi-label segmentation of the previous stage is then re-labelled according to the determined ordering,

resulting in a segmentation with uniquely identified labels for each vertebra.
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Figure C.15: Multiple stages involved in the algorithm proposed by Amiranashvili T.

Landmark Extraction. After segmentation and identification, the positions of the landmarks are identified by

re-fitting a template of the body of each vertebra to the unique labels followed by extracting the template’s

centre point which forms the landmark.

Angermann C. et al.: A Projection-based 2.5D U-net Architecture for VerSe‘19. (Angermann et al.,

2019)

For the task of a fully-automated technique for volumetric spine segmentation, a combination of a 2D

slice-based approach and a projections-based approach is proposed with two tasks: 1. 3D spine segmentation

with one output channel denoting the probability of a voxel belonging to a vertebra, followed by assignment

of a label from C1 to L6. 2. Using the multi-label segmentation mask, weighted centroid computation for

each label for the task of vertebra labelling. Please refer to (Angermann et al., 2019) for details on the 3D

segmentation procedure.

Vertebra Segmentation. This is a two-step approach working with images of size 224× 224× 224, obtained

by zooming the array such that the longest axis is size 224 and padding the other axes with zeros. In

the first step, whose output is a one channel segmentation mask (vertebra as foreground), a 2.5D U-net

(Angermann et al., 2019) and two 2D U-net are employed. The former network takes the 3D array as input

and generates 2D projections containing full 3D information. Here the MIPs are employed (cf. Fig C.16).

These 2D projections are propagated through a 2D U-net and lifted back to a volume using a trainable

reconstruction algorithm (cf. Eq 3.1, (Angermann et al., 2019)). Due to the non-convex nature of verte-

brae, this segmentation is combined with that of a 2D slice-based U-net in the probability space. In the
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Figure C.16: Maximum intensity projections of a 3D spine scan with directions {k × 30 degrees|k = 0, ..., 5}

second step, the binary segmentation mask is assigned multiple labels. For this, A 2D U-Net working on six

MIPs per scan is employed. Each of the MIPs is obtained at an angle in {0o, 10o, 80o, 90o, 100o, 170o}, as

in Fig. C.16. As output, six labelled MIP segmentation masks are obtained. From these, the 3D labelled

mask is obtained by back-projection, wherein each 2D MIP mask is multiplied by a rotated 3D binary seg-

mentation from the previous step, rotated according to the angle corresponding to the MIP mask in question.

Vertebra Labelling. Since the vertebrae are already labelled in the segmentation stage, the vertebral centroids

are obtained by just weighing the edges of the vertebra and computing the centroid. The edge-weight is set

empirically and is same across the vertebrae.

Brown K. et al.: Spine Segmentation with Registration

Segmentation of the vertebrae is performed by extracting a bounding box around each vertebra and seg-

menting this box with a residual U-net. The bounding box around the vertebra is identified via a regressed

set of canonical landmarks. Each vertebra is then registered to a common ‘atlas’ space via these landmarks.

For segmentation, the employed residual U-net works with inputs of size 64 × 64 × 64 voxels with a depth

of five blocks (cf. Fig. C.17).

Objective Function. A network is trained to minimise a combination of Dice coefficient (LD) and a weighted

false-positive/false-negative loss (LFPFN ), described as: L = LD +αLFPFN (α = 0.5 in this work). Specifi-

cally, the dice coefficient measures the degree of overlap between two sets. For two binary sets ground truth
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2 Brown et al.

Where di is the euclidean distance to the nearest class boundary, fi is the
frequency of the ground truth class at voxel i. Here, � is chosen to be 10 voxels,
and �e and �c are 5 and 2, respectively.

Our final loss was a weighted combination of the weighted loss above and the
dice coe�cient:

L = LFNFP + ↵LD (4)

↵ was chosen to be 0.5 and incrementally lowered throughout training.

1.3 Model structure

We employed a residual U-net (Figure 1) with an input size of 64 by 64 by 64
voxels, and depth of 5 blocks. A bounding box around vertebra is identified via
a regressed set of canonical landmarks. Each vertebra is then registered to a
common ’atlas’ space via these landmarks.

Fig. 1. Residual U-net

Conv 1x1x1

Input Softmax

Conv, BN, ReLU

Res Block

Res Block

Down Block

Down Block

Up Block

Up Block

Up BlockDown Block

Figure C.17: The residual U-Net employed for segmentation in Brown K.’s approach.

(G) and predicted class membership (G) with (N) elements each, the dice coefficient can be written as

D =
2
∑N

i pigi∑N
i pi +

∑N
i gi

, (C.1)

where each pi and gi are binary labels. In this case, pi is set to [0, 1] from the softmax layer representing

the probability that the ith voxel is in the foreground class. Each gi is obtained from a one-hot encoding

of the ground-truth-labelled volume of tissue class. Additionally, the weighted false-positive/false-negative

loss term is included to provide smoother convergence. It is defined as:

LFPFN =
∑
i∈I

wipi(1− gi) +
∑
i∈I

wi(1− pi)gi, (C.2)

where the weight, wi = γeexp(−d2
i /σ) + γcfi, with di being the euclidean distance to the nearest class

boundary and fi the frequency of the ground truth class at voxel i. In this work, σ is chosen to be 10 voxels,

and the parameters γe and γc are set to 5 and 2, respectively.

Chen M.: An Automatic Multi-stage System for Vertebra Segmentation and Labelling

A three-stage strategy is applied to solve the task of vertebral segmentation and labelling. The first two

stages are based on a U-Net architecture for multi-label segmentation. Utilising the predicted segmentation
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Algorithm 1 Update label for stage-2 vertebrae set

Input: Stage-2 vertebrae set Vn (Vn = 1, 2, ..., k) and the stage-1 vertebrae set Vr

(size=m,1  max (Vr)  26)
Output: Updated vertebrae label set
1: if Stage-1 vertebrae set contain label 22 or 23 and m  12 then
2: for instance i 2 Vn, i = k, k � 1 do
3: for vertebra vj 2 Vr, vj � i do
4: Calculating and recording dice index for instance i with vertebra vj

5: end for
6: Find the Maximum of record dice and the corresponding vertebra vb

7: if maximum of record dice� 0.8 then
8: if i = k then
9: update label for stage-2 vertebrae set from vb � k + 1 to vb

10: else
11: update label for stage-2 vertebrae set from vb � k + 2 to vb + 1
12: end if
13: break
14: end if
15: end for
16: else
17: for instance i 2 Vn, i = 2, 3, 4 do
18: for vertebra vj 2 Vr, i  vj  25 � k + 1 do
19: Calculating and recording dice index for instance i with vertebra vj

20: end for
21: Find the Maximum of record dice and the corresponding vertebra vb

22: if maximum of record dice� 0.8 then
23: if i = 2 then
24: update label for stage-2 vertebrae set from vb � 1 to vb + k
25: else if i = 3 then
26: update label for stage-2 vertebrae set from vb � 2 to vb + k + 1
27: else
28: update label for stage-2 vertebrae set from vb � 3 to vb + k + 2
29: end if
30: break
31: end if
32: end for
33: end if

1

Figure C.18: Procedure for label correction after Stage 2 of Chen M.’s approach.

mask, the third stage employs an RCNN-based architecture (Girshick et al., 2014; Girshick, 2015) to label

the vertebrae.

Segmentation (Stages 1 & 2). The first stage consists of a 3D U-Net working on randomly extracted patches

of size 224×160×128. The network is trained to predict 25 labels, ignoring the rare L6 label. It is observed

that the segmentation Stage 1 performs well in regions close to C1 and L5. However, in the other regions,

the vertebral labels are mixed with each other due to a similarity in their shapes. To resolve this problem, a

second refinement network is introduced with an architecture similar to the first stage but with a major dif-

ference in the training regime. For this, patches are extracted covering the spine in the middle and extending

1.5 times in the slice direction. These patches are padded to 128× 128× 128 with zeroes if necessary. The

network is trained to predict a binary label only for the mid-vertebra. The combination is trained as follows:

All the labelled Stage 1 masks are combined into a binary mask, indicating the foreground. Each of these

masks (corresponding to each vertebral label) is used to generate a patch for Stage 2. This prediction is

believed to be accurate at instance level and filled back into the binary foreground. If the foreground is not

filled sufficiently, new patches will be selected from the not-filled regions for Stage 2 recursively till conver-

gence. Because the well-segmented instances in Stage 1 and Stage 2 mostly overlap, it is operable to assign

labels based on both the stages by comparing the Dice of the pairs. With the constraint on the label continu-

ity of neighboring spines, this process can be performed using the matching algorithm presented in Fig. C.18.

Labelling. An RCNN-based architecture with a 3D ResNet-50 is used as the backbone for the vertebra
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labelling task. RoI pooling is performed on the features of the feature map at stride 4 to regress the

deviation of the vertebra centre to the RoI box’s centre in the coordinate space of the box. This network

works with inputs of size 160× 192× 224. In the training phase, boxes are generated from the segmentation

ground truth such that more positive samples are generated. During inference, the predicted segmentation

mask is utilised.

Dong Y. et al.: Vertebra Labeling and Segmentation in 3D CT using Deep Neural Networks (Yu et al.,

2020)

A U-shaped deep network is used for generating the vertebral segmentation masks and labels in the form

of a model ensemble followed by a post-processing module.

The problem is formulated as a 26-class segmentation task given 3D CT as input. The class information

from prediction is able to provide labels (cervical C1 ∼ C7, thoracic T1 ∼ T12, lumbar L1 ∼ L6) for

different vertebrae. For vertebra localisation, the centroids of vertebrae are determined as the mass centres

of segmentation masks.

We have adopted a U-shaped neural network for vertebral segmentation following the fashion of the state-

of-the-art network for 3D medical image segmentation. The network architecture is nearly symmetric with

an encoder and a decoder. After achieving the segmentation results, the vertebrae centroids are computed

based on the mass centres of binary labels for each individual vertebra. To further help determine the

vertebral body centre, several iterations of morphological erosion are conducted to remove the vertebral

‘wings’. The final prediction is from the ensemble of the five models.

Hu Y. et al.: Large Scale Vertebrae Segmentation Using nnU-Net

The tasks at hand are posed as an application of the nnU-Net (Isensee et al., 2019), a framework that

automatically adapts the hyper-parameters to any given dataset.

Generally, nnU-Net consists of three U-Net models (2D, 3D, and a cascaded 3D network) working on

the images patch-wise. It automatically sets the training hyper-parameters such as the batch size, patch

size, pooling operations etc. while keeping the GPU budget within a certain limit. If the selected patch

size covers less than 25% of the voxels in case, the 3D-Net cascade is additionally configured and trained

on a downsampled version of the training data. Specific to VerSe‘19, a sum of cross-entropy loss and Dice

loss are used the training objective, minimised using the Adam optimiser. An initial rate of 3 × 10−4 and

`2 weight decay of 3 × 10−5 . The learning rate is dropped by a factor of 0.2 whenever the exponential

moving average of the training loss does not improve within the last 30 epochs. Training is stopped when

the learning rate drops below 10−6 or 1000 epochs are exceeded. The data is augmented using elastic

deformations, random scaling, random rotations, and gamma augmentation. Note that in Phase 1, the

nnU-Net ensemble did not include all its components. Included are a 3D U-Net operating at full resolution,

a 3D U-Net at low resolution (as part of the cascade 3D), and a 2D U-Net.
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Figure C.19: An overview of SpineAnalyst network, a contribution of Jiang T.

Jiang T. et al.: SpineAnalyst: A Unified Method for Spine Identification and Segmentation

In contrast to most approaches that treat identification and segmentation as two separate steps, this

work efficiently solves them simultaneously with a keypoint based instance segmentation framework applying

anchor-free instance segmentation networks in a 3D setting. To the best of the participant’s knowledge, this

is a first. The proposed network adopts the encoder-decoder paradigm with two prediction heads attached

to the shared decoder, as described in Fig. C.19. The ‘binary segmentation head’ distinguishes spine

pixels resulting in a binary semantic map. The ‘vertebra labeling head’ detects and labels all the vertebrae

landmarks, while also predicting a vector field that associates vertebral pixels with their vertebrae centres.

The predictions of two heads are fused together to produce the final instance segmentation results

Encoder & Decoder. A V-Net is used as the backbone with the encoder containing four cascaded blocks.

Following this, the Atrous Spatial Pyramid Pooling (ASPP) method is applied to further increase the

receptive field and capture multi-scale information effectively. In the decoder, the concatenated features of

ASPP are passed through four cascaded up-sampling blocks recovering the original volume resolution .

Binary Segmentation Head. A binary semantic segmentation head is trained to detect the spine as the

foreground pixels. These pixels will further be assigned with vertebral labels in the subsequent fusion

processing.

Vertebra Labeling Head. This component performs two tasks: 1. Detect and label landmarks: For the

former, the heatmap channels predict the probability that a pixel belongs to a vertebra centre. Pixels

corresponding to high confidence are reserved as vertebral landmarks. Due to the similarity of the adjacent

vertebrae, it is challenging to directly identify individual vertebrae. Instead, the reference vertebrae with

obvious anatomical features, such as C2, L5 and C7, T12, are first identified. Other vertebrae labels are

then inferred from the reference vertebrae. Following this, 2. a vector-field is predicted with each channel

denoting the offsets relative to the corresponding vertebra centre. Each pixel is then labelled with the closest

vertebra centre according to the long offset.

Fusion Process. The final instance segmentation is obtained from binary semantic segmentation as follows:

Each pixel within the semantic mask acquires its label from the centre point closest to its predicted centres,

which is computed by pixel coordinates plus the vector field.
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Kirszenberg A. et al.:

A multi-stage approach is proposed involving a pseudo-3D U-Net architecture for segmentation and a

template matching approach enabled by morphological operation.

Segmentation. Three different U-Net models are trained in a ‘pseudo-3D’ segmentation technique wherein,

the 3D input is sliced into 3-voxel wide slices along the three axes. Prior to this, patches of size 80×128×128

are extracted from the scan, resulting in sagittal, coronal, and axial slices of shapes 3×123×128, 80×3×128,

and 80 × 128 × 3, respectively. This step performs a binary segmentation of ‘spine vs. background’. The

predicted masks of the three models are combined using majority voting and passed through a filtering

operation for removal of stray segmentation and hole-filling (cf. Fig. C.20a).

(a) (b)

Figure C.20: Team Kirszenberg A.’s contribution involving (a) detection of the spline passing through the vertebral column

and (b) a sample template for L4 use for vertebra identification.

Labelling. This task is attempted as a combination of morphological operations and template matching,

implemented as follows: 1. The predicted binary segmentation mask is blurred using a Gaussian kernel and

skeletonised to obtain a skeleton of the vertebral column. Further clean-up is obtained by choosing the path

connecting the voxels between two end-points using Dijkstra’s algorithm. 2. The skeleton is then discretised

into 1 mm distant points which are used as anchors for template matching. These templates were generated

from the training data at a vertebra level by centring each vertebra at the centroid and averaging over a

certain number of rotations as shown in Fig. C.20b. For template matching, the five best vertebrae, point

candidates are chosen and for every point its previous and next vertebrae are matched to the points before

and after, respectively. Once no vertebrae can be matched, scores for each vertebrae are summed from each

of the five vertebral columns and the one with the highest score is selected. Following this, each voxel of the

column is labelled after the template with the highest score.

Wang X. et al.: Improved Btrfly Net and a residual U-Net for VerSe‘19

Improved versions of Btrfly Net (Sekuboyina et al., 2018) and the U-Net (Ronneberger et al., 2015) are

employed to address the tasks of labelling and segmentation, respectively. Of interest is the task-oriented
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Figure C.21: Architecture of residual U-net employed by team Wang X. for the segmentation task.

pre- and post-processing employed in each task.

Pre-processing. A Single Shot MultiBox Detector (SSD) is implemented to localise the vertebrae in the

sagittal and coronal projections and its predictions are used to crop the 3D scans. This is followed by

re-sampling the crops to a 1 mm resolution and padding the projections to 610× 610 pixels.

Labelling. The Btrfly Net is employed for this task with a major difference in the reconstruction of 3D

coordinates from its 2D heatmap predictions. However, unlike obtaining the 3D coordinates from the outer

product of the 2D channelled heat-maps followed by an argmax, the authors propose an improved scheme

resulting in a 4% improvement of the identification rate. Specifically, 2D coordinates of the vertebra are

obtained from the individual projections, denoted by (x, zs) from the sagittal and (y, zc) from the coronal

heat maps. Notice the two variants of the z-coordinate. The final z-coordinate is then calculated as the

weighted average of zs and zc with the maximum values of their corresponding heat maps as weights.

Additionally, the missing predictions are filled in with interpolation.

Segmentation. Since the vertebral centroids are now identified, the segmentation is tasked to segment one

vertebra given its centroid position. For this, a 3D U-Net with residual blocks is chosen (Fig. C.21). The

network is trained with Dice loss and works with patches of size 96×96×96 centred at the vertebral centroid

in question. Once segmented, the vertebra is labelled according to its centroid’s label and assigned back to

the full scan. In case of a conflict, i.e: if a voxel labelled as i is again labelled as j, the label with a higher

logit is chosen.

Hou et al.: Fully Automatic Localisation and Segmentation of Vertebrae Based on Cascaded U-Nets

The authors propose a multi-stage pipeline for vertebral localisation and segmentation based on a general

U-net architecture. Firstly, the centre-line of the spine is inferred, and then the spine region is cropped to be

fed as the input of the second stage. Accordingly, the second neural network predicts the centre coordinates

and classes of all vertebrae. In the last stage, the segmentation network performs a binary segmentation of

each of the cropped vertebrae. The full pipeline is illustrated in Fig. C.22
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Figure C.22: Hou et al. proposed pipeline

Spine Localisation. In the first stage, the authors use a variant of the U-Net (Ronneberger et al., 2015) to

predict heat-maps that cover the whole spine. They set the filters of each convolutional layer to 64, which

can significantly improve training speed while ensuring performance. The authors utilise the general `2-loss

to minimise the difference between the target and predicted heat-maps. As a pre-processing step, the CT

images are sub-sampled to a uniform voxel spacing of 8mm, and then a patch size of 64×64×128 is fed into

the network. The predicted coordinates of the centre of the spine help are used to crop the spine region as

the input of the second stage.

Vertebrae Localisation. The authors deploy the general U-Net (Ronneberger et al., 2015) as a baseline. Both

encoder and the decoder use five levels consisting of two convolution layers with a leaky-ReLU activation

function. Due to the specific shape and fixed relative position of vertebrae, for most cases, the labels of the

vertebrae are a continuous sequence despite their coordinates. It is important to localise and identify the

first and the last vertebrae. The authors use a weighted `2-loss function to emphasise the contribution of

the first and the last vertebrae in the loss. Similarly to the first stage, the CT images are re-sampled to

uniform voxel spacing of 2mm, and then a patch size of 96 × 96 × 128 is fed into the network.

Vertebrae Segmentation. In this stage, the predicted coordinates of each vertebra are used to crop the

individual vertebrae region. Similar to the localisation stage, the U-Net is used and the CT volumes are

re-sampled to a uniform voxel spacing of 1 mm, the segmentation network with a patch size of 128 × 128 ×

96 produces the individual predictions of each vertebra, and finally, the multi-label segmentation results are

obtained by merging all binary segmentation results.

Postprocessing. Due to the partial vertebrae often in the top or bottom of volume, which has a bad influence

on detecting the position of the first or last vertebrae, in this work, the landmark is abandoned if its distance

from the top or the bottom of the volume is less than a threshold.
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Figure C.23: A2Unet’s Architecture

Figure C.24: Huang et al. Feature Aggregation block

Huang et al.: A2Unet: Attention and Aggregation UNet for Vertebrae Localisation and Segmentation

The authors formulate both tasks as a pixel-level prediction problem. Specifically, the landmark detection

problem (task 1) is converted into a heat-map prediction format and the vertebrae segmentation problem

(task 2) is converted into a multi-class semantic map prediction scheme. Both tasks generate full-scale

outputs that enabled the authors to utilise a U-net architecture (Ronneberger et al., 2015) to extract the

features. In this work, the authors develop a new variation of 3D Unet, in which an attention and aggregation

mechanisms are introduced to enhance the feature representation in both tasks. This new variant is called

the A2UNet.

Attention and Aggregation UNet (A2UNet). The proposed A2UNet, which is shown in Fig. C.23, adopts

the original U-Net structure that consists of a contracting path to downsample the inputs for global repre-

sentation, and an expanding path to upsample the feature for detailed prediction. Several skip connections

link the contracting and expanding paths that directly transfer the information from the shallow to deep

layers. However, features from different convolution stages contain information from different semantic lev-

els. In this work, the authors embed the efficient feature aggregation (FA) module shown in Fig. C.24, into

the U-Net structure for channel-wise attention based on the Squeeze-and-Excitation (SE) block (Hu et al.,

2019). It receives the two feature maps where one is from the contracting path, and the other is from the

expanding path. The features are firstly sent to the average pooling process for global representation. Then,
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two fully connected layers are used to investigates the importance (weights) of different feature channels.

By multiplying the weights to corresponding channels, the key features can be focused that will be used for

the following process.

Heads for Vertebra Localisation and Segmentation. The authors develop two sub-networks, or heads, to

decode the backbone output into the feature format for each task. For the localisation task, a convolution

layer is applied to generate a 26-channel output, each channel corresponds to one of 26 classes of the vertebra.

Each channel is actually a heat map where the location information of a specific vertebra is encoded. To

reason the vertebra location, the coordinates candidates are selected where the corresponding score in the

heat-map is above 0:35. The final vertebra coordinates are determined by adopting the non-maximum

suppression (NMS) algorithm towards those candidates in an adjacent vertebra region which has a distance

between 12.5mm and 40mm.

For the segmentation task, a convolutional layer is deployed to generate a single semantic map, each pixel

contains 27 categorical value, indicating one of 26 anatomical classes or the background. The segmentation

model is trained with Dice loss and CE loss. Since every voxel is classified only considering the channel score

after obtaining the segmentation mask, outlier voxels that are not connected with the largest component

will be removed.

Huỳnh et al.: 3D Mask Retinanet for Vertebrae Instance Segmentation

The authors propose a single model that performs both sub-tasks. A two-stage model is adopted inspired

by Mask R-CNN (He et al., 2018). Mask R-CNN is a two-staged model, in which the first stage localises RoI

while two sub-nets on the second stage classify and segment a subset of these RoIs. Since the Mask R-CNN

is a heavy model, an extended version or Mask R-CNN for 3-D images will require significant memory, and

as a result, it limits the number of RoIs that could be passed to the second stage. This problem makes the

model more sensitive to class imbalance. For that reason, the authors propose a new two-stage model. They

replace the first stage of Mask R-CNN with the Retinanet (Lin et al., 2018). With this modification, the

first stage is now responsible for both RoIs’ localisation and classification. The first stage is more robust

to class-imbalance than the original Mask R-CNN thanks to Focal Loss. This allows the authors to use a

small, fully convolutional network on the second stage to performs the mask regression. Since only RoIs

that contain objects will be passed through the second stage, training the model requires less memory. This

model is called the Mask RetinaNet. Due to memory limitation, the authors are forced to train with a small

batch size and they use Group Normalisation (Wu & He, 2018) instead of Batch Normalisation in their

network. The architecture of Mask RetinaNet is illustrated in Fig C.25

The detector stage. The authors adapt RetinaNet for 3D cases. Their version will also predict the object’s

centroid in addition to the axis-aligned bounding box (AABB). The backbone is constructed with a 3D

version of the Resnet50 and Feature Pyramid Network (Lin et al., 2018). For this dataset, the authors only
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Figure C.25: Mask RetinaNet’s architecture, as employed by Huỳnh et al.

use pyramid levels 3 to 5. They avoid level 2 because anchors defined on it are unnecessarily dense for this

dataset, while anchors defined on levels greater than 5 are too sparse to distinguish nearby vertebrae. At

each pyramid level, they use four anchors with two width/height/depth ratios of 1/1/0.625 and 1/0.74/0.42,

and a width of 86 and 68 for level 3, 100 and 79 for level 4 and 120 and 94 for level 5. They are chosen

by running a K-means clustering on the AABBs of training vertebrae similar to the algorithm described

in (Redmon & Farhadi, 2016) to ensure that for each vertebra, they could find at least one anchor so that

the Intersection over Union (IoU) with its AABB is higher than 0.6. The classification and regression sub-

nets are implemented as described in (Lin et al., 2018). The classification subnet is responsible for the

classification of anchors. It predicts a length N one-hot classification vector for each anchor, with N being

the number of classes. The regression subnet performs AABB and centroid regression. For each positive

anchor, it predicts a length nine regression vector, of which the first 6 encode the AABB (itscentre coordinate

and size), and the last 3 encode the centroids’ position. Instead of predicting these values directly, they

adopt the coordinate parameterisations of (Ren et al., 2015) for their case.

The mask regression stage. To perform instance segmentation, the authors attach a second stage to their

3D-RetinaNet to output a binary mask for each RoIs detected by the first stage. This stage is implemented

similar to Mask R-CNN: a 3D-ROIAlign layer extracts a fixed-size w × h × d feature map from the FPN

for each RoI using trilinear interpolation, followed by simple fully convolutional networks. These subnets

will produce D × 2w × 2h × 2d × N with D the number of detections provided by the first stage and N the

number of classes.
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Figure C.26: An overview of the multi-stage framework proposed by Jakubicek R.: Pre-processing, spinal slices detection,

spinal canal tracking, inter-vertebral disc (IVD) localisation, IVD labelling, and vertebral segmentation.

Jakubicek et al.: Approach for Vertebrae Localisation, Identification and Segmentation

The authors propose a fully automatic multi-stage system as shown in Fig. C.26. Moreover, they provide

an auxiliary semi-automatic mode that enables the inspection and possibly correction of automatically

detected positions of the inter-vertebral discs (IVD) and their labels before the following segmentation

step. Their approach combines modern deep-learning-based algorithms with more classical image and signal

processing steps and with segmentation using the intensity vertebra models adaptation.

Pre-processing. The authors first attempt to cut the data from background and “black” artefacts caused by

geometrical shearing. The second step is the correction of the random rotation,which is not presented in

the real CT data. For this purpose they provide the CTDeepRot algorithm (Jakubicek et al., 2020), which

predicts these rotational angles using a CNN and transforms the data into the standard Head First Supine

(HFS) patient position.

Detection of spinal cord centre-line: First, each axial slice of the CT data is classified by a CNN into four

categories (slices containing complex C1-2, slices with the main part of the spine from C3 to L6, slices

containing the sacrum, and remaining areas feet, head, background). A pre-trained AlexNet (Krizhevsky

et al., 2012) CNN is used for this purpose. In the slices containing the main part of the spine, the approximate

position of a spinal canal is found (Simonyan & Zisserman, 2014) architecture. Each detected centroid of a

detected bounding box is taken as a potentially correct centre of the spinal canal in the appropriate axial

slice. The whole spinal canal is then traced by the algorithm using the growing inscribed circles, where the

detected centroids are taken as starting (seed) points of the tracing. The optimum spine centre-line is then

chosen by the population-based optimisation process.

Vertebra localisation and identification. The spine CT data is geometrically transformed into the straightened

data according to the spine centre-line curvature. In the straightened data, the centroids of the vertebral

bodies are determined by morphological transforms, and the respective intensity profile along the z-axis is

taken. This way, the obtained 1D signal is processed by an adaptive IIR (infinite impulse response) filter,

lvi



which enables detection of the positions of the individual IVDs. Adaptation of the filter is controlled by a

statistical model using knowledge about the anatomy of the spine. Finally, each detected IVD is classified

into a category of the vertebral type (label) by a combination of a CNN (pre-trained Inception V3 (Guan

et al., 2019)) and the dynamic programming optimisation. All used pre-trained CNN architectures were

pre-trained on the ImageNet dataset (Russakovsky et al., 2015) and fine-tuned on the authors’ database of

CT image data.

Vertebra segmentation. The segmentation of the vertebrae is based on four-step vertebra intensity model

registration. In the first step the mean model of the individual vertebra is scaled and deployed along the

spine in accordance with the detected and labelled IVDs. The second step performs rigid registration of

each vertebra, which aligns the model into an optimally precise position in the 3D CT data, followed by

improvement via elastic registration of each vertebra. In the third step, the elastic registration is performed

on the whole spine model, where the models fits the shapes of the vertebrae. In the last step, the final

segmentation contours are slightly refined and smoothed by the graph-cut based algorithm. Elastix v.5.0.0

(Klein et al., 2009; Shamonin et al., 2014) is sued as the registration software.

Supriti M. et al.: Vertebrae localisation and Segmentation using Mask-RCNN with Complete-IoU Loss

The authors propose to segment vertebrae using Mask-RCNN trained with Complete-IoU (CIoU) loss.

The spine vertebrae segmentation process contains the following pipeline: 3D to 2D conversion, pre-

processing, Mask-RCNN feature extraction with Complete IoU loss for geometric factor enhancement (Frosio

& Kautz, 2018), and 2D to 3D back conversion.

3D to 2D conversion. Reorientation of the image is done with flips and reordering the image data array

so that the axes match the directions indicated in orientation required for spinal vertebrae segmentation.

Reoriented images are resampled to get the balance between image smoothness and identify fine image

details.

Preprocessing. CT images reconstructed from low-dose acquisitions may be severely degraded with noise and

streak artefacts due to quantum noise, or with view-aliasing artefacts due to insufficient angular sampling.

To improve CT image quality median filter along with non-local means (NLM) with Statistical Nearest

Neighbors(SNN) by Frosio et al. (Frosio & Kautz, 2018) filtering algorithm is applied. Sampling neighbors

with the nearest neighbour approach introduces a bias in the denoised patch which improves the CT image

quality significantly. Fig. C.27(a) and (c) shows the original slice of a spine CT while (b) and (d) shows the

enhanced images.

Segmentation using Mask-RCNN with CIoU loss. Mask R-CNN predicts bounding boxes and corresponding

object classes for each of the proposed region obtained using a backbone. Following this, a binary mask clas-

sifier generates a mask for every class. Bounding box regression is sometimes inaccurate due to overlapping

areas. So a complete IoU (CIoU) loss is added in Mask R-CNN.
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Figure C.27: Enhancement of CT slices using the filtering algorithm proposed by Frosio & Kautz (2018) employed by Mulay

S.

A good loss for bounding box regression should consider three important geometric factors, i.e. overlap

area, central point distance and aspect ratio. Zheng et al. (Zheng et al., 2020) proposed CIoU loss based

on these requirements. The authors use an end-to-end pretrained Mask R-CNN-based detectron with CIoU

loss model with Resnet x-152 backbone. An existing open-source implementation2 using Pytorch is chosen.

Once the scan is segmented slice-wise in 2D, the final segmentation is obtained by stacking the predicted

masks and reorienting and resampling it back to the original image particulars.

Netherton T. et al.: A Multi-view Localisation and Deeply Supervised Segmentation Framework

The authors propose a framework that combines the use of a set of individual CNNs to accomplish 1)

course spinal canal segmentation, 2) spine localisation via a multi-view network, and 3) automatic segmen-

tation of individual vertebrae using a deeply supervised approach. A detailed description of steps (1) and (2)

of the approach can be found in Netherton et al. (2020). Refer to Fig. C.28 for an overview of the proposed

approach.

Data. Data from VerSe 2019 and 2020 was used to train localisation and segmentation CNNs. All images

and segmentations were resampled to have isotropic voxel sizes (1.0mm3) and set to a common orientation.

Ground truth localisation coordinates were not used in this approach. In total, 160 pairs of CT scans and

segmentations were obtained and split into five groups for cross-validation.

Spinal canal segmentation. First, the spinal canal is segmented via a 2-dimensional FCN-8s with batch

normalisation on the axial CT slices. Pairs of intensity projection images (sagittal and coronal) are then

2https://github.com/Zzh-tju/DIoU-pytorch-detectron
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Figure C.28: (A) An overview of the three-stage framework proposed by Netherton T.: Sinal canal segmentation, localisation,

and segmentation. (B) Ground truth sagittal and coronal intensity projection image pairs used in the training of the second

stage. Each colored planar projection is housed in a separate channel. Centroids of each colored mask provide coordinates used

in subsequent stages in this approach.

generated about a volume of interest (cropped from the CT scan) surrounding the spinal canal. These image

pairs provide the network with sagittal and coronal views of the vertebral column and have a fixed width

but variable length l (where l is the length of the CT scan); their corresponding ground-truth labels are then

assigned individual channels (27 total) to account for each vertebral level. For the training stage, planar

segmentation masks posterior to the spinal canal are removed to produce modified vertebral coordinates. In

order to provide a large number of image augmentations, intensity projection image pairs (and corresponding

ground truth masks) are incrementally cropped from the superior-inferior, inferior-superior, and medial-

lateral directions.

Multi-view spinal localisation. X-Net (Netherton et al., 2020), the localisation architecture, inputs the

sagittal and coronal intensity projection pairs and outputs labeled, multi-dimensional sagittal and coronal

arrays of individual vertebral column segmentations. X-Net, inspired by Sekuboyina et al. (2020) and

Milletari et al. (2016), incorporates residual connections, pReLU activations, and is end-to-end trainable.

By combining centre-of-mass coordinates from sagittal and coronal planar segmentations, 3-dimensional

locations are obtained for each vertebral body. During training, the loss function, which incorporated the

soft-Dice loss and cross-entropy loss, was applied to each view (i.e. coronal and sagittal, L = Ls + Lc).

Augmentations were applied during training with a frequency of 0.7; coronal arrays were flipped left-right

with a frequency of 0.5. Training was performed on a 16GB NVIDIA-V100 with batch size 8. Each model

was trained for at least 26,000 iterations using early stopping.

Deeply supervised vertebral body segmentation. To perform vertebral body segmentation, a UNet++ ar-

chitecture using skip connections, multi-class structure, and deep supervision is designed based on work

by (Zhou et al., 2019) . Using ground truth images and segmentations, three channel arrays are formed

for each vertebral level by cropping around the centre of mass of each vertebral level. Separate channels

contained background, adjacent vertebral levels, and the central vertebral level, respectively. For each 3-

dimensional coordinate (from the second stage), the CT scan is cropped to form separate volumes of interest
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(120×96×96mm3). The top two most supervised outputs from each prediction are averaged to yield the

vertebral body of interest.

Paetzold J. et al.: A 2D-UNet on the VerSe data

The authors implement a 2-D segmentation architecture for slices of the sagittal orientation of the 3-

D dataset using a 2D U-Net (Ronneberger et al., 2015). The encoder is made of a ResNet-34 backbone

pre-trained on the ImageNet. The network is trained by optimising an equally weighted sum of the Dice

loss and the binary cross-entropy loss (BCE) with data augmentations such as flipping, rotation, scaling,

and shifting. The images are centre-cropped to 512 by 512 pixels to account for the irregular image sizes

during training. All networks are implemented in Pytorch using the Adam optimiser and are trained for

1000 epochs. After prediction, the 2D slices are stacked together to reconstruct the 3D volume. The training

was carried out on an NVIDIA QUADRO RTX 8000 GPU with a batch size of 52.

Xiangshang Z. et al.: Vertebra Labelling and Segmentation using the Btrfly-net and the nnU-net

The authors design an improved Btrfly Network (Sekuboyina et al., 2018) to detect the key points of

the vertebrae and then build an nn-Unet (Isensee et al., 2019) to segment the vertebral regions. Both the

labelling and segmentation tasks are handled independently.

Vertebra Labelling. Similar to Sekuboyina et al. (2018), the authors work with 2D sagittal and coronal MIP.

Improving on it, changes were made to the model architecture and the training procedure. Two convolution

layers for each layer of encoder and decoder in the network followed by batch-normalisation and ReLU

non-linearity after each convolution layer. Kaiming-initialisation is used for the network parameters. In

terms of data-based enhancements, the authors use horizontal and vertical flip for augmentation and with

normalisation.

Vertebra segmentation. The preprocessing and training procedure of the nnU-Net is retained. On top of

it, data augmentation is applied on the fly during training using the batch-generators framework (Isensee

et al., 2020). Specifically, elastic deformations, random scaling, and random rotations are used. If the data

is anisotropic, the spatial transformations are applied in-plane as 2D transformations. Once trained, cases

are predicted using a sliding window approach with half the patch size overlap between predictions.

Yeah T. et al.: A Coarse-to-Fine Two-stage Framework for Vertebra Labeling and Segmentation.

The author propose a two-stage network to achieve vertebra labeling and segmentation. Firstly, the low-

resolution net determines the rough target location from downsampled CT images. Secondly, by feeding the

first stage’s prediction results (upsampling before feeding) and high-resolution CT scans into a full resolution

net, more accurate vertebra classification and segmentation are achieved. Considering the competition

among different vertebra classes especially for adjacent vertebra, finally connected component analysis is

applied to refine vertebrae segmentation results.
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The two-stage cascaded segmentation pipeline consists of two steps. Firstly a coarse location of spine RoI

is obtained based on a lightweight low-resolution 3D U-Net from 3D CT scans with low resolution. Secondly

the RoI and the accurate segmentation results are performed with a high-resolution 3D U-Net. Finally

some post-processing methods are adopted to fill the holes inside each vertebrae and rule-based methods to

recalibrate the vertebrae label. Both the low-resolution network and the high-resolution network have 26

output channels (C1-C7, T1-T13, L1-L6).

The first stage preprocesses the training 3D CT scans to a larger spacing through downsampling and

train the low-resolution 3D U-Net model with a patch size of 224×128×96. The second stage preprocesses

3D CT images to smaller spacing through upsampling and crops the RoI of spine regions as the training

dataset for a high-resolution U-Net model with a patch size of 256×96×80.

Preprocessing and Augmentation. All input images are normalised zero mean and unit standard deviation

(based on foreground voxels only). The data augmentation include elastic deformation, rotation transfor-

mation, gamma transformation, random cropping, etc.

Loss and Optimisation. The low-resolution model with a classical combination of Dice loss and cross-entropy

loss, while training the high-resolution model with a dynamic hybrid loss combining Dice loss and weighted

cross-entropy loss. A model with a dynamic hybrid loss combining Dice loss and Adam optimiser with an

initial learning rate of 10−4 was used. During training, an exponential moving average of the validation and

training losses is used. Whenever the training loss does not improve within the last 30 epochs, the learning

rate is reduced by factor 5. The training is terminated automatically if validation loss does not improve

within the last 50 epochs.

Zeng C.: Two-stage Keypoint Location Pipeline for Vertebrae Location and Segmentation.

The author proposes a two-stage keypoint detection pipeline for vertebral labeling based on the scheme

of Payer et al. (2019) which uses Spatial-Configuration-Net and U-Net in VerSe‘19 described in Section

3.2.

Additional Data and Preprocessing. An additional 13 data sets from the VerSe‘19 training set are used.

The data is first preprocessed to the RAI direction. Data augmentation includes rotation, intensity shift,

scaling and elastic deformation. The model is trained with all 113 cases.

Localisation. To localize centres of the vertebrae, five keypoints location and global vertebrae location is

performed separately. For the five keypoints, which contains the first and last two vertebral masses of the

cervical spine, thoracic spine and lumbar spine, a network is designed of which the backbone is an HRNet

(Sun et al., 2019) to regress the five keypoint heatmaps. The significance of the first stage is for better

identification of several vertebral masses with obvious characteristics. The second stage follows Payer et al.

(2019), with a re-designed channel attention block in the network with a weighted loss function.
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Vertebrae Segmentation. For vertebrae segmentation, a binary segmentation network is trained based on

the outcome of the labelling stage. A U-Net with an inputs size of 128×128×64 is used. The loss function

is a mixture of Dice loss and binary cross-entropy loss.

Zhang A. et al.: A Segmentation-Based Framework for Vertebrae Localisation and Segmentation.

In general, the vertebrae localisation and segmentation tasks are performed in a four-step approach:

1) spine localisation to obtain the region of interest, 2) single-class key point localisation to obtain the

potential vertebrae candidates, 3) a triple-class vertebrae segmentation to obtain the individual mask and

main category of each vertebrae, and 4) rule-based post-processing.

A variant of V-Net with a mixture of Dice and binary cross-entropy loss is utilised in the first three

steps and only a few hyperparameters are changed in each step, such as input/output shape, depth, width,

etc. Step 2 and step 3 could be corrected by each other in an ‘intertwined’ way as mentioned above: the

proposed key-point candidates are used as input for step 3 to specify the vertebra to be segmented if the

resulting segmentation result does not seem to be a mask (the volume is not large enough), then the proposed

key-point can be regarded as a false positive.

Spine Localisation. To obtain the spinal centerline, a variant of V-Net is used to regress a heatmap of the

spinal centerline. The input is a 4-time downsampled single-channel 3D-patch with a size of 64×64×64). The

sliding window approach is applied to serve the network with the specific size of local cubes. The heatmaps

are generated using a Gaussian kernel by a kernel size (5, 5, 5) and sigma (6, 6, 6) on the downsampled mask

to keep unique 3D connected domain. The output heatmap is converted to a binary mask by a threshold of

0.4 and resampled back to the origin image scale for later use.

Keypoint Localization. A similar variant of V-Net is employed to regress a heatmap of the spine. The input

in this step is a single-channel 3d-patch with the size of 64×128×128. Sliding window approach is applied

as above. The heatmaps are generated by kernel size (7, 9, 9) and sigma (6, 6, 6) on the original scale based

on the JSON label to ensure they are independent and disconnected. The proposed regression results are

converted to a binary mask by a threshold of 0.4 and the centroid is calculated for each cluster.

Vertebrae Segmentation. Considering half of the vertebrae account for a lack of samples for a 26-class

classification, a triple-class segmentation task is defined to segment three categorises: ‘cspine’, ‘tspine’ or

‘lspine’ for each vertebra in this step. A variant of V-Net is employed. The input is a cropped 3D patch

around the localised centroid obtained from step 2.

Rule-based Post-processing. In this step a simple post-preprocessing logic is applied to create the final multi-

label result. If more than one category of vertebrae is found in one case, the two or four ‘split points’ which

is C7-T1 and T12-L1 can be localised. Then the others can be deduced based on these split points. If split

points are not found in one case, then ‘cspine’ vertebrae are deduced from C1 to the bottom and ‘lspine’

ones are deduced from the bottom to the top.
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