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Abstract. The portable microAeth® MA200 (MA200) is
widely applied for measuring black carbon in human ex-
posure profiling and mobile air quality monitoring. Due to
it being relatively new on the market, the field lacks a re-
fined assessment of the instrument’s performance under vari-
ous settings and data post-processing approaches. This study
assessed the mobile real-time performance of the MA200
to determine a suitable noise reduction algorithm in an ur-
ban area, Augsburg, Germany. Noise reduction and nega-
tive value mitigation were explored via different data post-
processing methods (i.e., local polynomial regression (LPR),
optimized noise reduction averaging (ONA), and centred
moving average (CMA)) under common sampling interval
times (i.e., 5, 10, and 30 s). After noise reduction, the treated
data were evaluated and compared by (1) the amount of use-
ful information attributed to retention of microenvironmental
characteristics, (2) the relative number of negative values re-
maining, (3) the reduction and retention of peak samples, and
(4) the amount of useful signal retained after correction for
local background conditions. Our results identify CMA as a
useful tool for isolating the central trends of raw black car-

bon concentration data in real time while reducing nonsen-
sical negative values and the occurrence and magnitudes of
peak samples that affect visual assessment of the data without
substantially affecting bias. Correction for local background
concentrations improved the CMA treatment by bringing
nuanced microenvironmental changes into view. This anal-
ysis employs a number of different post-processing meth-
ods for black carbon data, providing comparative insights
for researchers looking for black carbon data smoothing ap-
proaches, specifically in a mobile monitoring framework and
data collected using the microAeth® series of Aethalometer.

1 Introduction

Black carbon particulate matter with size ranging from 0.01
to 1 µm (Zhou et al., 2020) is a pollutant comprised of a range
of carbonaceous materials produced by the incomplete com-
bustion of fossil fuel and biomass containing carbon (Gold-
berg, 1985), and it is suspected of exerting a significant im-
pact on health (Anenberg et al., 2012; Janssen et al., 2011;
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Nichols et al., 2013). Black carbon also has an important role
in climate systems due to its strong radiative forcing potential
(Kutzner et al., 2018; Sadiq et al., 2015). The International
Agency for Research on Cancer (IARC) has classified black
carbon as a 2B carcinogen, while researchers have linked
black carbon exposures to cardiovascular, respiratory, and
neurological diseases (e.g., Nichols et al., 2013). However,
the high spatial variability of black carbon among small-
scale urban blocks is difficult to characterize with existing
monitoring networks which typically rely on fixed monitors
(Apte et al., 2017), especially for on-road concentrations. Re-
cently, mobile monitoring has been widely applied for the
collection of real-time air quality measurements to assess lo-
cal air quality and air pollutant exposures (Liu et al., 2020,
2021). This method can improve the spatio-temporal resolu-
tion of measurement data in the urban environment, and it
enables the collection of data such as the traffic-related air
pollutant concentrations (Liu et al., 2019). Therefore, mobile
measurements are favourably used in human exposure stud-
ies to quantify individual exposures and to demonstrate the
importance of exposure differences in different microenvi-
ronments.

Instrument manufacturers in the USA have recently devel-
oped a new instrument for measuring black carbon concen-
trations in a variety of exposure-related contexts, including
personal exposure assessment, ambient and vertical profiling,
and indoor emissions concentration measurements, among
others. This instrument, the microAeth® MA200 (MA200;
AethLabs, San Francisco, CA, USA), continuously collects
aerosol particles on a filter and measures the optical at-
tenuation (ATN) at five wavelengths (880, 625, 528, 470,
and 375 nm) with a data collection time base as frequent
as 1 Hz. This instrument supports the DualSpot® loading
compensation method, which corrects the optical loading ef-
fect (Virkkula et al., 2007) and provides additional infor-
mation about aerosol optical properties. However, the raw
data recorded by the MA200 at high frequencies (e.g., 1 Hz)
can exhibit noise that obscures nuanced signals surrounding
the central tendency of the data, increasing the difficulty of
analysis in mobile settings or during rapidly changing mi-
croenvironmental characteristics. These negative values usu-
ally contain valid information required for noise reduction
or smoothing, and so simply removing them may result in
bias. Noise reduction of the raw data without direct removal
of negative values is thereby recommended to enhance data
quality and temporal resolution (Liu et al., 2020). In addi-
tion, when the sampling equipment traverses from a highly
polluted to a marginally polluted area, such as a park, the in-
strument produces strong negative values due to the measure-
ment principle of the instrument and the strength of the pol-
lution gradient between microenvironments. Therefore, the
raw black carbon concentrations collected by MA200 need to
be post-processed to ensure that researchers can adequately
analyse the spatio-temporal distribution of black carbon.

Some progress has been made in the study of black car-
bon monitoring (Apte et al., 2011; Dons et al., 2012; Cao et
al., 2020); however, noise reduction algorithms have not been
fully assessed for the new generation of micro-Aethalometer
and for mobile monitoring contexts. In previous studies, Ha-
gler et al. (2011) and Cheng and Lin (2013) evaluated opti-
mized noise reduction averaging (ONA) for post-processing
mobile monitoring data. Due to the high spatial heterogeneity
of black carbon, the ONA algorithm may ignore important
microenvironmental effects and lead researchers to perhaps
incorrectly conclude that the resolution of microenvironmen-
tal source information cannot be determined from their data.

In this study, we aim to determine a suitable noise reduc-
tion algorithm for the MA200 Aethalometer, starting with
ONA and moving on to two additional smoothing techniques
offered by AethLabs in their suite of free online data post-
processing (i.e., noise reduction) tools: the local polynomial
regression (LPR) and centred moving average (CMA) algo-
rithms. The interpretation accuracy of data analysed and re-
ported upon in black carbon mobile monitoring studies can
be increased by assessing the relative performance of these
post-processing methods to each other and to ONA. The
quality of each noise reduction approach was assessed on
data collected in an urban environment and post-processed
with ONA, LPR, and CMA. Assessment criteria included (1)
retention of detailed information attributed to microenviron-
mental characteristics, (2) relative number of negative values
remaining, (3) reduction and retention of peak samples, and
(4) retention of detailed information on microenvironmental
characteristics after background correction.

2 Methods

2.1 Instrumentation

2.1.1 Sampling equipment

The MA200 measures optical ATN from black carbon on
a filter across five optical wavelength ranges: infrared, red,
green, blue, and ultraviolet (880, 625, 528, 470, and 375 nm,
respectively). A common black carbon metric called “equiva-
lent black carbon” (eBC) is assessed via the 880 nm channel,
i.e., data from the IR BCc channel. The detection limit of the
MA200 is reported at 30 ng/m3 eBC under a 5 min time base
and 150 mL/min flow rate (SingleSpot™ mode) and with a
resolution of 1 ng/m3 (AethLabs, 2018). In mobile monitor-
ing, the MA200 can be used to estimate personal exposure
and quantify eBC mass concentrations in different microen-
vironments. It should be noted that a predecessor instrument
to the MA200, the AE51, has demonstrated some sensitiv-
ity to mechanical shock during mobile measurements (Cai
et al., 2013). When AethLabs took control of manufacturing
the AE51, which was originally produced by Magee Scien-
tific (Berkeley, CA, USA), instrument optoelectronics were
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redesigned to reduce such sensitivity. Researchers using the
redesigned AE51 demonstrated only a small effect on data.
Supporting this improvement, Cai et al. (2013) found evi-
dence of a substantial improvement in data quality related to
vibration-related spikes after an equipment upgrade by Aeth-
Labs. In addition, there were no major mechanical shocks to
or unique vibrational effects on the instrument and no major
differences of accelerometer data in the raw data, precluding
these as potential confounders on all instruments.

2.1.2 Preparation of the instruments

In this study, seven MA200 portable black carbon moni-
tors (serial numbers MA200-0051, MA200-0053, MA200-
0059, MA200-0060, MA200-0155, MA200-0153, MA200-
159) were used simultaneously to measure black carbon lev-
els in the city centre under different interval times (5, 10,
and 30 s). To evaluate the relative performance of MA200,
this study analysed black carbon data collected from mul-
tiple MA200 devices, identified individually by serial num-
bers. The instruments were prepared and adjusted in our lab-
oratory before each walk, consisting of “zero” calibration
checks and the examination of the MA200 filter cassette, bat-
tery, GPS, and memory. Flow calibrations were adjusted with
a factory-calibrated flowmeter (Alicat Scientific Inc., Tuc-
son, AZ, USA).

Comparative measurements of the MA200 and a station-
ary Aethalometer (AE33, Magee Scientific, Berkeley, USA)
taken approximately 30 to 60 min between walks showed a
good agreement (Pearson’s r = 0.933) (Liu et al., 2021). In
addition, it is worth noting that when the AE33 was used for
monitoring black carbon at the same time as the MA200, the
AE33 was placed in a fixed station, while the MA200 was
used outdoors (in the stroller) during the individual walks,
which may have presented different relative humidity and
temperature values. This condition did not influence the con-
sistency of eBC concentration measured with both instru-
ments. Information about the date, duration, and time resolu-
tion (time base) of each MA200 device is summarized in Ta-
ble 1. To demonstrate the unit-to-unit comparability between
the MA200 units, we performed intercomparisons at fixed
monitoring stations (Table S1) and during co-located mobile
measurements (Fig. S2). No wavelength dependence was ob-
served between different instruments for fixed and mobile
monitoring measurements.

2.2 Study design and routes

The MA200 instrument is able to measure black carbon in
1, 5, 10, 30, 60, and 300 s interval times. The 1 s time base
exhibits the most challenging interpretation because of low
signal-to-noise ratio, especially at low concentrations, which
is similar to other optical black carbon monitors (Hagler
et al., 2011). Therefore, 1 s measurement resolution may
be most useful when sampling in high-concentration envi-

ronments, performing direct emissions testing and requiring
high time resolution for the application. However, the eBC
average concentration is low in the city centre of Augsburg,
Germany, (measured at 2.62 µg/m3 in winter by Gu, 2012);
thus, we did not use the 1 s time base. Moreover, 60 and 300 s
are too long for mobile monitoring, which may affect the ac-
curacy of the spatial variation of pollutants; hence, both time
bases were also not selected in this study. In order to better
understand at which interval time of sampling might be most
useful in this context – mobile measurements at low eBC
concentrations – three MA200 devices were used in paral-
lel to measure eBC concentrations with the interval times of
5, 10, and 30 s (measurement numbers 5–7 in Table 1).

To account for the different land-use types of the microen-
vironments, a fixed walking route within the centre of the
city was determined. Wherever possible, the mobile mea-
surements were carried out on the right side of the road,
simulating people’s common habits (driving and walking on
the right side in Germany). All walks along the route were
conducted on weekdays, with clear skies and calm winds
to avoid misrepresentation of typical urban exposure con-
ditions. The route started from Augsburg University of Ap-
plied Sciences (UAS) and continued approximately 14 km
for 3 h average walking time, passing through different types
of land use to ensure that different microenvironments were
represented in the entire area and to ensure the validity of
the results (Fig. S1). Meanwhile, as performed in our previ-
ous study (Liu et al., 2021), we divided the monitoring route
into four microenvironment groups in Augsburg, including
high traffic flow (H_Traffic, average 500–1000 vehicles per
hour), medium traffic flow (M_Traffic, average 200–500 ve-
hicles per hour), low traffic flow (L_Traffic, average 1–200
vehicles per hour), and park area (N_Traffic, average 0 vehi-
cles per hour), according to the actual traffic density exam-
ined during the daytime and determined from the traffic flow
observed by street views.

Briefly, the study consisted of the following phases: (1)
collecting raw black carbon data using the sampling instru-
ments (MA200); (2) smoothing the acquired raw black car-
bon data under different post-processing methods (i.e., noise
reduction); (3) comparing the noise reduction data based on
the detail of microenvironmental characteristic and number
of negative values; (4) following the peak samples identifica-
tion by the coefficient of variation (COV); (5) following the
background estimation and correction by thin-plate regres-
sion spline (TPRS); and (6), finally, selecting the best noise
reduction approach.

2.3 Post-processing methods

In order to reduce the noise of concentration data obtained
using high time resolutions, post-processing algorithms can
be used. AethLabs offers tools for applying several noise
reduction algorithms (ONA, LPR, and CMA) to MA-series
device data on its website (https://aethlabs.com, last access:
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Table 1. Measurements of black carbon by different MA200 devices.

Measurement Date Serial number Start time End time Time base Site
number (dd/mm/yyyy) (hh:mm:ss) (hh:mm:ss) (s)

1 27/09/2018 MA200-0051 10:29:10 13:38:20 10
2 15/11/2018 MA200-0059 11:53:42 16:13:12 10
3 16/11/2018 MA200-0053 11:34:06 16:33:56 10
4 26/08/2019 MA200-0060 11:01:56 15:44:46 10 Augsburg, Germany
5 21/02/2020 MA200-0155 10:00:10 13:10:00 5
6 21/02/2020 MA200-0153 10:00:10 13:10:00 10
7 21/02/2020 MA200-0159 10:00:10 13:10:00 30

8 24/11/2020 MA200-0059 09:40:57 11:09:07 10
9 01/12/2020 MA200-0051 13:29:05 15:19:00 5 Munich, Germany
10 18/12/2020 MA200-0051 14:39:30 15:19:30 30

26 July 2021; note that a free account is required). The rel-
ative utility of the different post-processing methods is de-
termined by (1) the ability to perceive nuanced differences
between microenvironmental pollution characteristics after
noise reduction, (2) the relative number of negative eBC val-
ues remaining, (3) the reduction and retention of peak sam-
ples, and (4) the ability to perceive nuanced differences be-
tween microenvironmental pollution characteristics with the
noise-reduced data after background correction.

2.3.1 ONA (optimized noise reduction averaging)

ONA is based on the time series of three parameters in the
original observation data, namely the observation time, the
original eBC concentration, and the amount of change in
optical ATN over time, as specifically described by Hagler
et al. (2011). Briefly, a 1ATN threshold is manually set to
prevent the algorithm from recalculating eBC until a certain
amount of ATN has been detected (e.g., enough black car-
bon has deposited on the filter to “confidently” calculate an
eBC concentration). The aim is to reduce erroneous and spu-
rious estimation by dynamically extending the effective sam-
ple time base; hence, there is sufficient ATN to significantly
reduce the error effects of instrument noise. This effective
time base will be longer in low concentrations compared to
higher concentrations; hence, when operating properly, no
negatives and less eBC noise will be reported. When using
the ONA algorithm, this 1ATN threshold needs to be man-
ually assigned. Hagler et al. (2011) implemented a 1ATN
threshold of 0.05 to post-processed data from a fixed moni-
toring site by different Aethalometer models (AE21, AE42,
and AE51). However, when applied to MA200 data, a1ATN
threshold of 0.05 results in a very smooth curve and may ob-
scure more information than is necessary to provide a use-
fully smoothed curve. For this reason, a lower1ATN thresh-
old of 0.01 was selected for the mobile measurement data of
our study (Fig. S3).

2.3.2 LPR (local polynomial regression)

The LPR algorithm is a non-parametric tool similar to a
moving average, but it operates on polynomial regression
rather than simple averaging (Masry, 1996; Breidt and Op-
somer, 2000; Kai et al., 2010). In LPR, the number of points
to smooth across must be manually identified. This value
should be chosen to balance effective smoothing of the mea-
sured values and the sensitivity required to provide spatial
resolution in mobile measurements (e.g., the distance over
which the average was taken). The distance resolution was
chosen to be approximately 100 m. Assuming the sampling
speed is 1.3 m/s, when the interval time is 5, 10, and 30 s, the
smoothing numbers of points are 15, 7, and 3, respectively.

2.3.3 CMA (centred moving average)

The CMA algorithm is a smoothing technique used to make
the long-term trends of a time series clearer (Easton and Mc-
Coll, 1997). Unlike a simple moving average, CMA has no
shift or group delay in the data processing, as it incorporates
data from both before and after the data point that is being
smoothed. The smoothing number of points was determined
as previously described in the LPR algorithm, assuming a
sampling speed of 1.3 m/s.

2.4 Comparison analysis after noise reduction
approach

2.4.1 The nuance of microenvironmental
characteristics and the proportion of negative
values

After post-processing the data, the characteristic change of
the treated data is used as criterion to select the best method.
In this regard, when the treated data provide more detailed
microenvironmental characteristics, the data reflect the actual
situation of air pollutants and facilitate the identification of
pollution sources. However, if microenvironmental trends are
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less pronounced, it may hinder the identification of the pol-
lution source. Therefore, more detailed microenvironmental
features result in more accurate information. In addition, the
number of remaining negative values is determined as an-
other criterion to propose the best method. Specifically, the
method with the smallest proportion of the negative values is
selected as the best method. The proportion of negative val-
ues (NV) remaining was calculated as the number of negative
values divided by the total sample size.

2.4.2 Peak sample identification

An earlier study by Brantley et al. (2014) compared several
methods for identifying and eliminating peak samples in mo-
bile air pollution measurements. These include identifying
samples outside of a threshold based on a median produced
using road segmentation, an α-trimmed arithmetic average
(Van den Bossche et al., 2015), a running coefficient of vari-
ation (COV) (Hagler et al., 2012), an estimate of background
standard deviation (Drewnick et al., 2012), a running low
25 % quantile (Choi et al., 2012), and 3 times the standard
deviation (Wang et al., 2015). The formula for the running
method used in this analysis was previously described by Ha-
gler et al. (2012) with minor modification (Eq. 1):

COVt =

√
1
7
∑i=t+3
i=t−3(xi − x)

2

xall
, (1)

where COVt is the 70 s sliding COV of the t th eBC sample
under a 10 s time base (representing 30 s prior to the sam-
ple, the sample time, and 30 s after the sample), xi is the ith
eBC sample, x is the average of the t th eBC sample and the
three samples before and after it, and xall is the average of all
eBC data in one experiment. The 99th percentile of the 70 s
sliding COV of all eBC data is used as the threshold for de-
termining “peak sample”. The eBC samples that are greater
than this threshold are flagged as peak samples along with
the eBC samples three data points before and after. However,
under different time bases (e.g., 5 and 30 s), the sliding COV
of the t th black carbon sample is different. Accordingly, the
COV equation is required for modification under different
time bases.

To calculate the reduction of peak samples (RP), the num-
ber of peak samples was calculated before and after post-
processing the data, and the difference value was obtained.
Then the change in the number of peak samples was divided
by the total number of peak samples before post-processing
the data. After noise reduction, we compared the reduction
and the number of peak samples to further evaluate post-
processing methods. In short, if the reduction of peak sam-
ples is high, the treated data have a high peak noise reduction
without removing the numbers of peak samples. Therefore,
the method with high reduction of peak samples and retain-
ing the number of peak samples after post-processing is con-
sidered the better method.

2.4.3 Background estimation and correction

The ability of a processing method to adequately remove
the estimated background concentration was used to evaluate
which method provides the most useful information related
to microenvironmental effects. A noise reduction method that
appears to better facilitate background estimation and cor-
rection (as described below calculated from noise-reduced
data via a defined background estimation and evaluation ap-
proach) is assessed to select a better post-processing method.

Background correction methods include the single sample
standardization method, the sliding minimum method, the
linear regression post-processing method, and the spline (of
minimum) regression post-processing method. Brantley et
al. (2014) suggest that a thin-plate regression spline (TPRS)
method can reliably evaluate the background value of mo-
bile measurements and be used to examine the “useful” in-
formation in the noise-reduced data (i.e., non-spurious non-
background pollution trends). Briefly, the TPRS approach in-
cludes three steps: first, the noise reduction data of the pollu-
tant were processed by a 30 s moving average; second, the re-
sults of the 30 s moving average were sequentially processed
by the specified time window (i.e., 5 and 10 min), and the
position of the minimum sample of pollutant concentration
was identified in each window; and, finally, thin-plate spline
regression was used to fit the sample of minimum pollutant
concentration obtained in the previous step, then the back-
ground concentration at each time point was obtained.

3 Results and discussion

The average eBC concentrations of raw, ONA-processed,
LPR-processed, and CMA-processed data (measurements 1–
10) monitored by all instruments were compared in this study
(Table S2). The results show that the three post-processing
methods accounted of approximately 1 % bias from the av-
erage of raw concentrations (except measurement 5, ONA-
processed data at 5 s). This indicates that the average con-
centration under each post-processing method did not affect
the average concentration of the raw unprocessed data.

3.1 Post-processing the data under different interval
times

As shown in Fig. 1, three MA200 devices were used at the
time bases of 5, 10, and 30 s. The proportion of negative val-
ues in the raw data collected under different time bases were
42.1 %, 37.6 %, and 30.5 % for 5, 10, and 30 s, respectively
(Fig. 1a, Table 2, Fig. S4a). Following this, the raw data were
processed using ONA, LPR, and CMA (Fig. 1b, c, and d).

In the 5 s time base, the eBC values changed very rapidly
(Fig. 1a), and the ONA processing of the data resulted in
only one value (which was negative) (Fig. 1b). Thus, the
microenvironmental characteristics of the eBC concentration
were not reproduced. We found that all1ATN (ATNt (0)+1t ′–
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Figure 1. The temporal fluctuations of the black carbon levels measured with the MA200 at sampling time bases of 5, 10, and 30 s during
a typical sampling period (about 190 min); (a) raw data without noise reduction; (b) data treated with optimized noise reduction averaging;
(c) data treated with local polynomial regression; and (d) data treated with centred moving average. The analysis was carried out on data
streams from three MA200 devices all collected during a single sampling run (measurements 5, 6, and 7).

Table 2. The proportion of negative value (NV) and average reduction of peak (RP) samples under the different post-processing methods
(values are shown in percent; NV [%]: proportion of negative values remaining; RP [%]: average reduction of peak samples. Symbol “–”
means no data; measurements 1–10).

Interval time Factor Raw ONA LPR CMA

5 s NV 42.1 – 28.1 22.9
RP 0 100 72.0 87.4

10 s NV 37.6 0 30.2 25.3
RP 0 5.54 22.3 47.7

30 s NV 30.5 0 25.5 22.4
RP 0 0.62 6.24 39.1
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ATN0) data were negative in the raw data collected at 5 s,
which, according to the ONA method described above, re-
sulted in only a single value. In short, after the first measure-
ment, the1ATN threshold (which is positive) for calculating
the next value was never reached. The first value was likely
a negative value due to a combination of instrument noise,
coincidence, and a low background concentration (i.e., low
baseline instrument signal), which is consistent with both the
raw data measurements and the typical low eBC concentra-
tions in the city centre of Augsburg, Germany (Gu, 2012). It
is unclear why1ATN remained negative, but, given the long
series of low concentration vales at the beginning of the sam-
pling and the initial negative measurement, it is possible that
the summed 1ATN became increasingly negative as a result
of the initial negative 1ATN measurement. The subsequent
measurements at low concentration did not exceed the mag-
nitude of the initial negative 1ATN value. Under these con-
ditions, a cumulative negative sum of 1ATN would prevent
the positive 1ATN threshold from being achieved at all. If
true, this condition highlights one potential weakness of the
ONA algorithm, such as difficulty registering a signal under
low concentrations, and requires further investigation of the
conditions under which ONA is truly unbiased. The observed
event prevented the use of ONA in the 5 s time base (Fig. 1b).
Previous studies in which ONA was successfully applied
implemented a 1 s time base (Hagler et al., 2011; Van den
Bossche et al., 2015). After post-processing with LPR and
CMA, the microenvironmental characteristics retained more
detailed information on the eBC concentration. Further com-
parison of their negative values revealed that the remaining
negative values comprised 28.1 % and 22.9 % of the dataset
for LPR and CMA, respectively, after post-processing.

In the 10 s interval time base, negative values were not
found after ONA processing, suggesting that a reasonable
smoothing effect is obtained at low black carbon concen-
tration. The microenvironmental characteristics presented
strong changes compared to the raw data, leaving less de-
tailed information on air pollution. After post-processing
with LPR and CMA, the microenvironmental characteris-
tics revealed more detailed information on air pollution, with
30.2 % of negative values for LPR and 25.3 % for CMA. In
the 30 s interval time base, the negative values comprised
0 % of the post-processed data for ONA, 25.5 % for LPR,
and 22.4 % for CMA. The 30 s interval dataset presented the
lowest proportion of negative values before and after post-
processing, due to the longer interval time of sampling. How-
ever, the longer 30 s measurement period results in more
distance covered during each measurement, given the mo-
bile nature of the sampling device. Thus, 30 s black carbon
measurements may be too long to detect local concentration
peaks in urban contexts that supported another study (Kerck-
hoffs et al., 2016).

The ONA algorithm showed a strong tendency to remove
negative values and, depending on the 1ATN threshold em-
ployed by the user, can remove potentially meaningful low

peaks. As a result, the ONA-treated data may present a bias
that obscures nuanced microenvironmental trends (Fig. 1b).
Interestingly, LPR and CMA post-processing are capable
of decreasing negative values while retaining microenviron-
mental trends. Both methods are promising for the analysis
of spatio-temporal changes in pollutant concentrations with
sensitivity to local sources. Previous studies have shown that
the spatio-temporal variability of black carbon is highly het-
erogeneous (Liu et al., 2019, 2021); the ability to capture
spatio-temporal variability of microenvironments is critical
for assessing differential exposures among populations.

3.2 Reduction and number of peak samples after
post-processing methods

The processing of peak sample is a pivotal evaluation index
for the measurement of time-averaged roadside air quality.
Passing vehicles, for example, may bias estimates of typical
local concentrations due to their contribution to the dataset
of peak concentrations that may substantially relate to arith-
metic averages. Therefore, after noise reduction, we compare
the reduction and the retained number of peak samples to fur-
ther evaluate the post-processing methods.

In the interval time 5 s, the average reduction of peak sam-
ples (RP) for the LPR and CMA algorithms was 72.0 % and
87.4 %, respectively (as discussed above, the ONA method
could not be used). In this interval time, the reduction of peak
samples was relatively high, indicating that when monitoring
black carbon at low concentrations and high sample frequen-
cies, drastic noise may occur in the raw data, and higher noise
reduction may affect the actual values. Therefore, a suitable
interval time should be considered when monitoring low eBC
concentrations. In the interval time 10 s, the average reduc-
tion of peak samples for CMA (47.7 %) is higher than ONA
(5.54 %) and LPR (22.7 %). In the interval time 30 s, CMA
presented the greatest average reduction of peak samples
(39.1 %) compared to ONA (6.24 %) and LPR (0.62 %) (Ta-
ble 2, Fig. S4b). The retention of peak samples remaining af-
ter post-processing was also assessed using the COV method
(measurements 1–10). The result showed that all three al-
gorithms retained all peak samples before and after post-
processing. In this regard, CMA retained all peak samples
despite the highest reduction in their magnitude. Therefore,
CMA highlights microenvironmental trends while preserv-
ing the identity of peak samples, facilitating the identifica-
tion of local pollution sources, and may thus be a better post-
processing method than ONA or LPR (Table 2, Fig. S4b).

To further characterize the distribution of peak sample
concentration under CMA, we performed an intensive graph-
ical analysis on a single data stream (measurement 4; Fig. 2).
As shown in Fig. 2, eBC values along the main roads and in-
tersections were higher than other locations, presumably due
in large part to stop-and-go traffic and cars in close proxim-
ity to the mobile monitor (Fig. 2). It can be seen from Fig. 2a
that the peak samples of black carbon were mainly found in
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Figure 2. Identification of the spatial (a) and temporal (b) distribution characteristics of black carbon peak samples based on the coefficient
of variation method (the analysis based on measurement 4); © OpenStreetMap contributors 2020. Distributed under the Open Data Commons
Open Database License (ODbL) v1.0.

four locations, represented by red triangles. Vehicle counts
and traffic in these locations vary depending on the time of
measurement. The highest eBC values were repeatedly found
in the streets with moderately high traffic volumes and dense
coverage with relatively high buildings (street canyon situ-
ation), indicating that heterogeneity in air pollution concen-
trations in Augsburg and similar settings is largely caused by
a combination of effects from traffic and topography (Buo-
nanno et al., 2011). To determine whether peak samples are
due to local sources or instrumental artefacts and to provide
further evidence that traffic and topography effects are pri-
mary contributors to spatial heterogeneity in pollution con-
centrations, we compared the data measurements of the three
co-located MA200 units during measurements 5, 6, and 7.
The results showed that there were no major differences in
the hotspot areas (an indicator of considerable peak sam-
ples) identified by the measurements of the three instruments
(Fig. S5).

3.3 Comparison of background estimation and
correction after noise reduction

Local air pollution can be highly affected by long-range and
regional transport. The timing and magnitude of such trans-
port events vary in space and time and are highly depen-
dent upon the stochasticity of meteorology. As a result, lo-
cal background concentration changes may vary, affecting
the comparability of measurements made at the same loca-
tion at different times (Brantley et al., 2014). For this reason,
reliable comparison of time-variable mobile measurements
across a city (and thus reliable pinpointing of hotspots and

pinpointing of key local sources) requires effective methods
to estimate, isolate, and remove the effects of fluctuations in
background concentration. Our analysis indicates that the ef-
fectiveness of background correction is affected by the noise
reduction method chosen during post-processing.

After post-processing, the data were evaluated using the
TPRS method. We calculated the 5 and 10 min background
concentrations under different post-processing approaches.
As shown in Fig. 3a and b, the background concentration
after LPR processing has both the largest proportion of neg-
ative values and the most negative values (i.e., negative val-
ues of the greatest absolute magnitude), resulting in estimates
of background-corrected concentrations that are greater than
actual monitored concentrations. Background concentrations
calculated after ONA and CMA post-processing presented
fewer and lower negative values than LPR but were not
convincingly different from each other. Therefore, to fur-
ther compare the ONA and CMA algorithms, we also com-
pared concentrations after background correction (Fig. 3c
and d). As shown in Fig. 3c and d, when the concentration
is lower than 1 µg/m3, the background-corrected results after
the ONA processing are smoother than after CMA. This re-
sult dampens the signal of local pollutant sources, resulting
in a lower utility of post-processed data.

In order to verify the CMA applicability and its advan-
tages, this study further analysed the eBC concentrations
measured by a fixed background monitoring station at the
University of Applied Sciences (UAS) (Fig. S6) (Cyrys et
al., 2006). The background value under the 5 min window
exhibits wave-like characteristics, and the fitting curve in the
10 min window is relatively smooth. However, the TPRS-
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Figure 3. Background concentration of black carbon under different time series for (a) spline of 5 min minimums and (b) spline of 10 min
minimums and after being corrected for (c) spline of 5 min minimums and (d) spline of 10 min minimums. Analyses are based on measure-
ment 4.

based background value often does not fluctuate greatly over
short periods, and the black carbon background value curve
under the 5 min window does not conform to the “actual”
urban background situation as estimated using the fixed-
site monitor data, which are assumed to primarily repre-
sent the fluctuations in background concentrations. More-
over, by comparing the curve produced by the spline of
10 min minimums with the eBC background concentration
(“Background-UAS”, Fig. S6), it can be found that the back-
ground correction method based on the time series can well
characterize the time-varying characteristics of background
pollution in each experiment, suggesting that, of the two op-
tions, 10 min showed the better window for fitting the back-
ground value curve of black carbon.

Under the TPRS method, the background concentration of
eBC can be fitted at any sampling time. The TPRS-estimated
background contribution of the observed eBC concentra-
tion averaged 37.8 % of the total measured concentration.
However, when the contribution of background concentra-
tion to a single measurement was examined, a large fluctu-
ation (10.4 %–71.3 %) was observed, which may be closely
related to sizable changes in the meteorological conditions,
traffic conditions along the road (and over time at the same
point in the road), and urban street canyon effects in each
measurement. Therefore, based on the comparison of back-
ground correction, CMA showed better applications for es-
timating the background concentration and location source
contribution.
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Scheme 1. The proposed decision tree for mobile monitoring data from the microAeth® MA200.

3.4 Generalizability

To verify the generalizability of our assessment, we per-
formed another three measurement runs in Munich (mea-
surements 8, 9, and 10). Raw data were post-processed for
noise reduction using CMA (Fig. S7). The results showed
that the following method is equally applicable in a city like
Munich as in our study site in Augsburg, which are two cities
that differ in location and environmental characteristics (e.g.,
population, economy, traffic density, etc.). After treated using
CMA, the peak samples can be identified in different interval
times (Fig. S8), and the estimated background concentrations
showed few negative values (Fig. S9). Further research into
the transferability of our results to a more diverse set of con-
texts is still needed.

3.5 Practical implications

The MA200 is widely used to measure human exposure
to black carbon and for mobile air quality monitoring. In
this study the MA200 devices were applied in mobile mea-
surements in an urban area (Augsburg), and the sensitivity

of the final analysis to various data post-processing meth-
ods was investigated. In contrast to our findings, Hagler et
al. (2011) suggested the use of the ONA algorithm to post-
process Aethalometer data from microAeth AE51, portable
AE42, and rack-mounted AE21 Aethalometer instruments
(Magee Scientific, Berkeley, CA, USA). In their analysis,
ONA demonstrated a strong noise reduction in all datasets
and retained spatio-temporal variation. ONA also reduced the
occurrence of negative data values in low concentration sam-
pling environments. However, for the microAeth® series of
black carbon monitoring instruments, our study showed that
ONA under reasonable 1ATN thresholding may lead to a
considerable dampening of spatio-temporal resolution in lo-
cal black carbon signals at street level – an effect that is lower
under CMA post-processing.

In addition, our analysis highlights that the selection of
an appropriate data post-processing method is crucial to the
proper assessment and interpretation of exposure-relevant
microenvironmental contributors to pollution concentrations
in urban areas. This analysis is important when estimating
exposures that occur during transit, where spatio-temporal
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variability in pollution concentrations is vast, like in com-
muter traffic (Snyder et al., 2013). Due to the typically low-
but-heterogeneous nature of eBC concentrations in many
areas like Augsburg, noisy measurement with the MA200
under high-frequency sampling may obscure actual trends
in measured values. This study demonstrated that post-
processing MA200 data using CMA can reliably extract the
actual signals from such noise and, alternatively, that post-
processing via ONA and LPR could be less reliable. Future
researchers and agencies may find a distillation of our results
in the form of the flow diagram in Scheme 1 useful in deter-
mining how to reliably assess spatio-temporal variability of
MA200 measurements for black carbon in different microen-
vironments.

4 Conclusion

A mobile monitoring campaign was conducted in the city
centre of Augsburg, Germany, to determine a suitable noise
reduction algorithm for the MA200 Aethalometer. Our re-
sults showed that, at the interval times of 5, 10, and 30 s,
CMA post-processing effectively removed spurious negative
concentrations without major bias and reliably highlighted
effects from local sources, effectively increasing spatio-
temporal resolution in mobile measurements. Evaluation of
the effects of each method on peak sample reduction and the
estimation of background concentrations further support the
reliability of CMA. Further analysis is needed to understand
how well these findings apply in different seasons; across dif-
ferent diurnal patterns; and in more rural, more urban, and
non-German locations.
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