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Abstract

As metabolomics datasets are becoming larger and more
complex, there is an increasing need for model-based data
integration and analysis to optimally leverage these data.
Dynamic models of metabolism allow for the integration of
heterogeneous data and the analysis of dynamic phenotypes.
Here, we review recent efforts in using dynamic metabolic
models for data integration, focusing on approaches based on
ordinary differential equations that are applicable to both time-
resolved and steady-state measurements and that do not
require flux distributions as inputs. Furthermore, we discuss
recent advances and current challenges. We conclude that
much progress has been made in various areas, such as the
development of scalable simulation tools, and although chal-
lenges remain, dynamic modeling is a powerful tool for
metabolomics data analysis that is not yet living up to its full
potential.
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Introduction
Metabolism is a key determinant of cellular behavior,
and metabolomics approaches are being applied in a
wide range of domains [1]. Nowadays, metabolomics

experiments yield rich datasets, which pose new chal-
lenges for their analysis. Current metabolomics assays
www.sciencedirect.com
provide information on hundreds to thousands of me-
tabolites, and large numbers of samples can be measured
within reasonable times [2]. Since the holistic inter-
pretation of the resulting datasets using ‘mental models’
becomes impossible, computational models are required
and increasingly used for data integration and interpre-
tation. However, observations from individual experi-
ments are still commonly analyzed independently and in
a qualitative manner instead of being integrated into an
overarching formal quantitative model.

Model-based data analysis aims at analyzing experi-

mental observations in the light of the current under-
standing of the observed system, as encoded in the
model. Experimental observations are either used as
model inputs or to infer model parameters. The behavior
of the parameterized model is subsequently analyzed to
obtain biological insights. Here, we focus mainly on the
case of inferring model parameters from experimental
data. Typical steps comprise (1) data acquisition, (2)
model construction, (3) parameter inference, (4) un-
certainty analysis, and (5) analyzing model fit and model-
derived predictions (Figure 1).

A variety of metabolic modeling frameworks have
emerged, which allow for the integration of varying types
of data, each with its specific advantages and disadvan-
tages. A broad overview of these existing metabolic
modeling approaches is provided in recent reviews [3e
5]. In this article, we focus on metabolomics data inte-
gration using dynamic models. These models, usually
specified in the form of ordinary differential equations
(ODEs), are particularly appealing because: (1) they
allow for both the integration of various types of metab-

olomics data and other types of data; (2) they allow for
the analysis of inherently dynamic phenotypes; and
(3) they can provide quantitative dynamic information
on latent quantities, such as metabolic fluxes or
compartment-resolved metabolite levels. On the down-
side, dynamic models come with a larger number of a
priori unknown parameters and are computationally more
challenging, and therefore, are less scalable than other
modeling approaches. When only considering steady-
state measurements, these issues can be circumvented
to a large extent, as exemplified by the recently devel-

oped K-FIT algorithm [6]. However, one is often inter-
ested in transient behavior or a case where a steady-state
cannot be attained. Therefore, although methods
tailored to steady-state measurements have provided
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Figure 1

Typical steps for data integration using dynamic models. A model is developed based on current knowledge (brackets indicate optional components).
Experimental observations of various types are used as model inputs or to estimate model parameters. If parameters are estimated, the model fit and
parameter intervals are assessed. Competing hypotheses can be encoded in different candidate models to select the most plausible one given the data.
The parameterized model is used in various downstream analyses to derive biological insights. Examples include sensitivity analysis or metabolic control
analysis to determine which parameters have the highest impact on reaction fluxes or metabolite concentrations. In silico experiments can be performed
to derive testable hypotheses and to design validation experiments. Considering uncertainties is crucial in all analyses to derive meaningful conclusions.

2 Big Data Acquisition & Analysis
great insights in many applications, they are not

discussed further here. Instead, we will focus on
ODE-based approaches that are applicable to both time-
resolved and steady-state measurements and that do
not require a known flux distribution or a biochemical
objective function as input. For a broader overview of
existing approaches, see, for example, references [5,7,8].

In the following, we give a brief overview of different
types of metabolomics data, review recent examples of
metabolomics data integration and analysis using
dynamic models, and discuss major challenges, as well

as recent advances related to model construction,
determining model parameters, and dealing with
uncertainty.
Current Opinion in Systems Biology 2021, 28:100358
Metabolomics data
Metabolomics measurements are usually performed
using mass spectrometry, nuclear magnetic resonance,
or enzymatic assays, with mass spectrometry being the
most widespread. Metabolomics datasets can be

very rich and diverse, depending on the analytical plat-
forms and experimental protocols. There are the clas-
sical label-free metabolomics approaches, which assess
metabolite levels, and there are stable-isotope-assisted
approaches, which determine isotopic enrichment after
application of stable-isotope-labeled tracers [1]. Recent
mass spectrometry methods can quantify isotopic
enrichment of more than 100 metabolites in a single run
[9]. Various types of samples are analyzed, such as
complete cell populations and extracellular media, and
www.sciencedirect.com
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in some cases, compartment-specific metabolite pools
are accessible [10]. Single-cell metabolomics assays
have also emerged [11,12]. Measurements can be
time-resolved or for single timepoints, quantitative or
semi-quantitative. Due to this heterogeneity, various
metabolic modeling approaches have been developed
that are, more or less, tailored or restricted to specific
types of data [3]. However, in many studies, a combi-

nation of different types of data is acquired, and inte-
gration of all these data is possible with dynamic models
[13,14].
Applications
Dynamic metabolic models have been applied in various
contexts. Recurrently pursued objectives are (1) un-
derstanding dynamic processes [15,16], for example,
through comparison of competing models [17]; (2)
inferring control mechanisms and rate-limiting steps
[13,18]; and (3) leveraging those to push some system of
interest in specific directions, for example, for strain
optimization or drug target identification) [14,19,20].

Berndt et al. [16] developed a comparably large dynamic
model of liver metabolism to, among others, study the

response to various perturbations. The model describes
the regulation of enzyme activities by allosteric effec-
tors, hormone-dependent reversible phosphorylation,
and variable protein abundances. A subset of parameters
was estimated from measurements of intracellular and
extracellular metabolite levels under 25 different
experimental conditions. Carter et al. [17] performed
model selection among four candidate models, cali-
brated on time-resolved measurements of metabolite
levels, to infer the most likely inhibitory mechanism in a
drugedrug interaction. Feldman-Salit et al. [18] trained
a dynamic model of sulfur assimilation in Arabidopsis
thaliana on steady-state metabolite measurements,
which allowed them to infer dynamic control patterns.
Millard et al. [13] analyzed time-resolved measure-
ments of biomass, metabolite levels, and isotopic
enrichment using a coarse-grained dynamic model that
links glucose uptake to acetate metabolism and growth.
Their analysis improved the understanding of control
and regulation of acetate overflow and suggested
the existence of a yet unknown regulatory program.
Marı́n-Hernández et al. [19] applied a dynamic model of
glycolysis, the pentose phosphate pathway, and glycogen

metabolism of cancer and noncancer cells, with param-
eters inferred from various enzyme assays, to derive
suggestions for new therapeutic targets. Ou et al. [20]
applied a dynamic model, which integrated experi-
mental proteomics, metabolomics, and fermentation
kinetics data, to identify key regulators and guide
metabolic engineering of n-butanol biosynthesis. Their
comparison of the results from the dynamic model to
those derived from a static model indicated higher
accuracy of the former. Ramos et al. [14] integrated both
www.sciencedirect.com
extracellular and intracellular time-resolved metabolite
measurements from different experimental settings
using a dynamic model comprising 33 state variables and
describing central carbon metabolism and cell growth.
They identified different physiological states and
performed in silico experiments to demonstrate how the
use of their model can improve cell line engineering and
medium design. Moon et al. [21] used a dynamic model

to predict the dynamics of mitochondrial NADPH
concentration and NADPH/NADPþ ratio in response
to oxidative stress. Parameters of the model were esti-
mated from time-resolved NADPH measurements.
Lövfors et al. [15] developed a model describing the
hormonal regulation of lipolysis. The model, comprising
15 state variables, was calibrated to time-resolved in vivo
and in vitro measurements of metabolite and phospho-
protein abundance after different stimulations. Horvath
et al. [22] calibrated an exceptionally comprehensive
model of Escherichia coli cell-free protein synthesis,

comprising 148 metabolites, based on time-resolved
metabolite and protein product measurements. An
ensemble model was subsequently used to identify the
pathways with a strong influence on product yield.
Yilmaz et al. [23] developed a coarse-grained model of
protein synthesis in Chinese hamster ovary cells based
on elementary flux modes. The model was calibrated to
time-resolved measurements of cell density and levels
of extracellular metabolites and protein products.

These application examples demonstrate the potential of

dynamic models to answer diverse research questions by
integrating and jointly analyzing various types of data.
However, many current applications of dynamic models
that integrate time-resolved measurements only cover
small parts of the metabolic network or use very coarse-
grained representations. This may be due to various
challenges discussed in the following sections.
Constructing kinetic models
Depending on the available data and research question,
the model scope has to be defined, and a model needs to
be constructed. Model construction includes choosing
and specifying (1) the network topology and (2) kinetic
rate laws.

Genome-scale metabolic reconstructions are a valuable
resource for deriving the model topology. Such knowl-

edge bases that describe the metabolic capabilities of
an organism have been created for many species through
automated reconstruction or extensive manual curation
through community efforts [24]. For example, the
recently published Human1 [25] unifies two lineages of
human genome-scale metabolic reconstructions and
provides a good example of open and transparent cura-
tion. Although such reconstructions are continuously
improved, structural uncertainty remains, for example,
due to enzymes of unknown function, enzyme
Current Opinion in Systems Biology 2021, 28:100358
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4 Big Data Acquisition & Analysis
promiscuity, or unclear subcellular localization of en-
zymes. For most data-integration efforts, genome-scale
dynamic models are still intractable. Therefore, inte-
grating measurements from very different parts of the
metabolic network, as commonly obtained from nontar-
geted metabolomics experiments, is still difficult.
Automated algorithms have been devised to reduce the
complexity of genome-scale metabolic reconstructions

[26] or even generating targeted kinetic models [27]
that are more tractable. Such algorithms can significantly
speed up model development. However, care has to be
taken that the (over-)reduced model complexity does
not skew analysis results [28].

If stable-isotope-labeling data are to be analyzed, the
model not only needs to account for the pools and re-
actions of unlabeled metabolites but also for those of the
additionally occurring isotopic isomers (isotopologues).
Deriving such isotopologue reaction networks requires

knowledge of the mapping of substrate atoms to product
atoms for all reactions involving potentially labeled
compounds. A number of algorithms for automatically
deriving such atom mappings have been developed (for
example [29]), and recent genome-scale metabolic
reconstructions also include atom mappings [30]. How-
ever, correct atom mappings are crucial for modeling, and
manual curation is still required, which is tedious for
bigger models. The resulting isotopologue reaction net-
works can be, depending on the network and tracer, vastly
larger than the usual metabolic networks due to the

combinatorial complexity of stable isotope incorporation.

Having established a reaction network, mathematical
expressions for describing reaction rates need to be
chosen. Various approaches for specifying rate laws exist
(reviewed in Ref. [8]). The choice of rate laws is a trade-
off between ‘mechanisticness’ on the one hand and
model complexity and the number of parameters on the
other hand. Using a thermodynamics-based formalism
[31,32] helps to create physically feasible models.
Furthermore, such a parameterization can reduce the
number of unknown parameters and simplify parameter

estimation. The required thermodynamic parameters
can be derived from experiments or approximated by
group contribution methods or quantum-mechanical
simulations [33].
Determining model parameters
Dynamic models usually come with a comparably high
number of parameters whose values are not known a
priori. Some parameter values can be retrieved from
databases, while others need to be estimated. Often, a
combination of both approaches is used.

Commonly used databases of experimentally deter-
mined kinetic parameters include BRENDA [34]
and SABIO-RK [35]. Additionally, the BioModels
Current Opinion in Systems Biology 2021, 28:100358
Parameters database [36] provides structured access to
parameter values that are used in models contained
in the BioModels repository. If parameter values for a
specific organism or experimental conditions are not
available, values from closely related species or settings
may still be useful [16]. Datanator provides a simple
interface to find such related parameter values based on
various similarity measures [37]. However, using

parameters determined by in vitro assays or other
makeshift parameter values comes with the caveat that
they may not optimally reflect the in vivo situation [5].
As an alternative to taking the parameter values from
databases as true values, they can instead be used as
prior information during parameter estimation [8,18].

Given sufficiently informative data, model parameters
can be inferred, for example, via optimization- [13e
21,23] or sampling-based [22,28] approaches. However,
this is computationally costly as, for most cases, it

involves thousands to millions of numerical ODE simu-
lations. Nevertheless, it has been demonstrated that
parameter estimation is computationally tractable for
large dynamic models. For example, through leveraging
scalable algorithms, optimization-based maximum like-
lihood estimation was shown to be possible for a dynamic
model of signaling pathways comprising over 1000 states
and 4000 unknown parameters [38]. In some cases, the
structure of the optimization problem can be exploited to
further improve convergence and reduce computational
costs. This has been demonstrated for optimization-

based parameter inference from relative measurements
[39], which are quite common in metabolomics datasets.

Scalable and highly optimized algorithms for model
simulation and sensitivity analysis have been made
available through easy-to-use toolboxes [40,41], and
there exists a wide variety of algorithms and tools for
parameter inference [42,43]. Many of these tools are
able to exploit increasingly available high-performance
computing resources, which is key for moving towards
larger dynamic models [38,39]. The use of community
standards for specifying models and parameter estima-

tion problems [44e46] gives easy access to a majority of
these tools.

Sometimes model parameters are estimated indepen-
dently for different subsystems and only later combined
in the full model [19,47]. Although this can be
computationally cheaper, it might not yield the best fit
to the data.
Dealing with uncertainty
Independently of the algorithm employed for parameter
estimation, parameter estimates will be subject to
uncertainty. This parameter uncertainty propagates to
prediction uncertainty and can result in false conclu-
sions [48]. Uncertainty analysis is, therefore, crucial.
www.sciencedirect.com
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Different methods to determine parameter confidence
intervals exist. Commonly applied methods include
those based on the Fisher information matrix (FIM), the
profile likelihood approach, or sampling-based proced-
ures [49]. The choice of method is a trade-off between
accuracy and computational complexity with FIM-based
methods being the cheapest computationally but least
accurate, and sampling being themost expensive but also

most informative. Profile likelihood is often the method
of choice since it provides accurate results and is more
scalable than sampling-based methods. Furthermore, as
opposed to other methods, profile likelihood can be
applied in spite of and to detect nonidentifiable param-
eters [49]. Implementations of these algorithms are
available through several easy-to-use software tools [42].

Methods that are similar to those used for parameter
uncertainty analysis are applied for prediction uncer-
tainty analysis [48,49]. Sampling-based approaches

account for the prediction uncertainty by design, as a
sample from the prediction posterior is acquired while
generating a sample from the parameter posterior.
Where sampling or prediction profile likelihood is
computationally too expensive, a cheaper ensemble-
based approach can be applied instead [48]. During
parameter estimation, multiple parameter vectors will
be obtained that result in similarly good model fits. An
ensemble of models can, for example, be built from
these parameter vectors, and the spread of the resulting
simulations can be used as an estimate for prediction

uncertainty [48].

Recent applications of dynamic models of metabolism
include examples of identifiability analysis [17,50],
sampling-based assessment of parameter and prediction
uncertainties [13], as well as other approaches to
uncertainty analyses [15].

It is important to note that large parameter un-
certainties do not have to manifest in large prediction
uncertainties but may still allow for deriving robust
predictions [18,38,51]. For example, Feldman-Salit et al.

[18] generated an ensemble of models that reproduced
the available data equally well and used it to derive
predictions that were consistent across the ensemble.
However, if no robust predictions can be derived,
additional measurements need to be considered for
parameter estimation. Optimal experimental design
approaches can help to decide the most informative
experiment [52].
Conclusions
Increasingly detailed metabolic reconstructions for
more and more organisms provide the basis for
constructing genome-scale models but also for deriving
targeted submodels. Efficient implementations of
scalable algorithms enable simulation and sensitivity
www.sciencedirect.com
analysis for dynamic models with as many as a few
thousand state variables, even on personal computers.
Adopting community standards for specifying models or
parameter estimation problems not only facilitates
reproducibility and reusability of models and data [46],
but also grants easy access to a wide ecosystem of tools
for model simulation, parameter inference, and further
analyses.

Computationally challenging parameter estimation is
often considered the major bottleneck for data-based
dynamic (metabolic) modeling [5]. It is true that for
very large models, this still is intractable, and more
scalable algorithms are required. Results from other
fields of application suggest that a better leveraging
of both existing tools and computational resources
can facilitate work with models and datasets that are an
order of magnitude larger than those currently used in
the field of dynamic modeling of metabolism.

Aside from any algorithms, successful model-based data
analysis depends on matching models and data. For
obtaining informative data, experiments should ideally
be designed with a specific modeling goal in mind, and
the available data should be taken into account when
building models. Nevertheless, parameter uncertainty
will always remain. Robust predictions may still be
possible despite large parameter uncertainties. There-
fore, dynamic modeling should not be ruled out pre-
maturely due to supposedly too sparse data. However,

awareness and assessment of parameter and prediction
uncertainties are crucial, although often neglected.

In summary, we feel that dynamic modeling is a
valuable yet underused tool for integrative metab-
olomics data analysis that could help to derive a more
comprehensive, quantitative, and dynamic understand-
ing of metabolism in many applications. We expect
that with the increasing availability of scalable and
interoperable tools, dynamic modeling will become
more accessible and will play a more prominent role in
the future. Given the efforts on integrating small

dynamic models with genome-scale models [53] and the
increasing size of fully dynamic models, we think that
data integration using genome-scale dynamic models
will become feasible in the future, although there is still
a long way to go.
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