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Supplementary Material 

The supplementary material is subdivided into Sections having the same name and numbers of the 

manuscript Sections. This choice allows the reader to easily access Figures and Tables referred in the 

manuscript. Tables and Figures are identified by tree numbers indicating: section, subsection, and figure 

number as, e.g., Figure S3.2.12. 
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S2.1 Description of cities and regions 

Table S2.1.1. Geographic, climatic and demographic features of the analysed cities. 

 
1Buildings are not provided with central heating in southern China and no heating season is prescribed and regulated. 
2Heating period is not regulated. Hence, the definition is based on the coolest months of a year.  
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S2.3 Data sources and analysis protocols 

S2.3.1 Air quality data sources 

Table S2.3.1. The number of cities and sites (in brackets) analysed for each lockdown period and for each air 
pollutant species. Although data were analysed for a total of 63 cities and 540 sites, there was no city for 
which a complete dataset for all pollutants, lockdown phases and site types was available. The most 
comprehensive datasets were for NO2, O3 and PM, while NO had the lowest coverage. 

Pollutant Pre-
lockdown 

Partial 
lockdown 

Full 
lockdown 

Partial  
relaxation 

Full 
relaxation 

    PM10 52 (339) 28 (245) 50 (341) 49 (317) 30 (141)  

    PM2.5 59 (343) 36 (236) 59 (349) 56 (298) 29 (118) 

    NO 46 (390) 34 (304) 44 (386) 43 (378) 20 (175)    

    NO2 62 (529) 38 (391) 60 (529) 59 (495) 31 (236)   

    CO 49 (231) 31 (146) 48 (227) 46 (196) 24 (98)     

    SO2 48 (244) 29 (188) 48 (246) 45 (223) 23 (84)    

    O3 59 (394) 35 (268) 57 (393) 54 (308) 31 (176)    

 

S2.3.3 Mobility data 

Cities associated to each of the considered mobility data sources: 

a) Apple driving: Greater Gauteng, Bengaluru, Chennai, Delhi, Hyderabad, Pune, London, 
Helsinki, Paris, Augsburg, Berlin, Munich, Athens, Naples Milano, Rome, Amsterdam, 
Eindhoven, Rotterdam, Den Haag, Utrecht, Barcelona, Madrid, Sevilla, Valencia, Stockholm, 
Calgary, Halifax, Montreal, Ottawa, Quebec, Toronto, Vancouver, Mexico City, Los Angeles, 
New York, City, Moscow, Melbourne and Sidney. 

b) Google Retail: Chandigarh, Amritsar, Kolkata, Seoul, Tallinn, Tartu. 
c) Waze: Rio de Janeiro, São Paulo, Santiago, Bogotá, Quito, Lima. 
d) Baidu: Beijing, Chengdu, Guangzhou, Jinan, Shangai, Shenyang, Wuhan, Xian, Zhengshou. 

 

Figure S2.3.1 presents the mobility variation index for each period of mobility (pre-, partial-, full-

lockdown, partial relaxation and full relaxation) for all the cities from different mobility databases: 

Apple, Baidu, Google, and Waze. It is possible to observe that during the full-lockdown period they 

show coherence in the abatement of mobility. 
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Figure S2.3.1. Average index for all the cities for mobility databases from Apple, Baidu, Google and 

Waze, for each period of analysis, pre-lockdown, partial lockdown, full lockdown, partial relaxation 

and full relaxation. 

 

 

 

 

Figure S2.3.2. Mobility change during the periods classified as pre-lockdown, partial relaxation and 

full relaxation. 
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S3 Results analysis and discussion 

S3.1 Changes in mobility and emissions 
 

 

Figure S3.1.1.  Linear regression fit (dashed line) and equation between CO and mobility 
percentage changes during full lockdown. The shaded area represents the 95% Confidence 

Interval. 
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Figure S3.1.2. Linear regression fit (dashed line) and equation between PM2.5 and mobility 
percentage changes during full lockdown. The shaded area represents the 95% Confidence 

Interval. 
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Figure S3.1.3. Linear regression fit (dashed line) and equation between NO2 and mobility 

percentage changes during full lockdown. The shaded area represents the 95% Confidence 
Interval. 
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Figure S3.1.4. Linear regression fit (dashed line) and equation between PMC and mobility 

percentage changes during full lockdown. The shaded area represents the 95% Confidence 
Interval. 
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Figure S3.1.5. Linear regression fit (dashed line) and equation between PMC and mobility 
percentage changes during full lockdown for Indian and Chinese traffic sites. The dashed 

lines delimit the 95% Confidence Interval (Indian and Chinese cities only). 
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Figure S3.1.6. Linear regression fit (dashed line) and equation between PMC and mobility 
percentage changes during full lockdown for traffic sites in South America. The  shaded 

area represents the 95% Confidence Interval. 
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S3.2 Implications of prevailing meteorology to changes in air quality 

   

                                             

   

                                               

   

                                                  

   

                                              

Figure S3.2.1. January 2020 anomalies with respect to 2015-2019 mean ERA5 reanalysis of (a) sea level 

pressure (Pa), (b) geopotential at 500 hPa (m2/s2), (c) 2-m temperature (K), (d) 2-m relative humidity (%), (e) 

10-m wind speed (m/s), (f) precipitation rate (mm/day), (g) solar radiation (W/m2), (h) boundary layer depth 

(m). 
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Figure S3.2.2. February 2020 anomalies with respect to 2015-2019 mean ERA5 reanalysis of (a) sea level 

pressure (Pa), (b) geopotential at 500 hPa (m2/s2), (c) 2-m temperature (K), (d) 2-m relative humidity (%), (e) 

10-m wind speed (m/s), (f) precipitation rate (mm/day), (g) solar radiation (W/m2), (h) boundary layer depth 

(m). 
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Figure S3.2.3. March 2020 anomalies with respect to 2015-2019 mean ERA5 reanalysis of (a) sea level 

pressure (Pa), (b) geopotential at 500 hPa (m2/s2), (c) 2-m temperature (K), (d) 2-m relative humidity (%), (e) 

10m wind speed (m/s), (f) precipitation rate (mm/day), (g) solar radiation (W/m2), (h) boundary layer depth 

(m). 
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Figure S3.2.4. April 2020 anomalies with respect to 2015-2019 mean ERA5 reanalysis of (a) sea level pressure 

(Pa), (b) geopotential at 500 hPa (m2/s2), (c) 2m temperature (K), (d) 2m relative humidity (%), (e) 10m wind 

speed (m/s), (f) precipitation rate (mm/day), (g) solar radiation (W/m2), (h) boundary layer depth (m). 
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Figure S3.2.5. May 2020 anomalies with respect to 2015-2019 mean ERA5 reanalysis of (a) sea level pressure 

(Pa), (b) geopotential at 500 hPa (m2/s2), (c) 2-m temperature (K), (d) 2-m relative humidity (%), (e) 10m wind 

speed (m/s), (f) precipitation rate (mm/day), (g) solar radiation (W/m2), (h) boundary layer depth (m). 
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Figure S3.2.6. June 2020 anomalies with respect to 2015-2019 mean ERA5 reanalysis of (a) sea level pressure 

(Pa), (b) geopotential at 500 hPa (m2/s2), (c) 2-m temperature (K), (d) 2-m relative humidity (%), (e) 10m wind 

speed (m/s), (f) precipitation rate (mm/day), (g) solar radiation (W/m2), (h) boundary layer depth (m). 
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Figure S3.2.7. July 2020 anomalies with respect to 2015-2019 mean ERA5 reanalysis of (a) sea level pressure 

(Pa), (b) geopotential at 500 hPa (m2/s2), (c) 2-m temperature (K), (d) 2-m relative humidity (%), (e) 10m wind 

speed (m/s), (f) precipitation rate (mm/day), (g) solar radiation (W/m2), (h) boundary layer depth (m). 
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Figure S3.2.8. Mean observed in situ anomalies during the different COVID-19 lockdown phases compared 

with their corresponding periods in 2015-2019, (a) 2-m temperature (K), (b) precipitation rate (mm/day), (c) 

10-m wind speed (m/s), (d) 2-m relative humidity (%). 
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S3.3 Air quality and long-range transport of pollutants 

 

Table S3.3.1. Air pollution episodes and atypical anticyclonic conditions affecting cities of interest during the 

lockdown periods during 2020. 

City Event Period 

Seville, Madrid, Valencia, 
Barcelona  

LRT Dust  15-20 March  

Naples, Rome  LRT Dust  18-20 April  

Milan LRT Dust 27-29 March 

Athens LRT Dust 7-9 and 23 March; 3-5 April 

Nicosia LRT Dust 5-7, 13-15 and 24 March;-5 and 21-23 
April 

Zhengzhou  LRT Dust 24 January, 4 February, 18 March 

Xi’an, Beijing and Jinan  LRT Dust  18 March  

Several European regions (e.g. 
Amsterdam, Ausburg, Munich, 
Paris) 

LRT Dust  16-30 March 

Moscow LRT biomass burning 29-31 March, 14-15 April 

Mexico city LRT biomass burning 26 April – 19 May 

Bogotá   LRT biomass burning  2 February – 1 May  

All Asian cities except Urumqi, 
Xi’an and Hyderabad 

LRT biomass burning During different lockdown periods 

Vancouver  Atypical anticyclonic 
conditions   

February to April  

Halifax  Atypical anticyclonic 
conditions   

March  

Seville, Madrid, Valencia, 
Barcelona  

Atypical anticyclonic 
conditions   

February  

Shenyang, Beijing, Seoul, Daegu  Atypical anticyclonic 
conditions   

January, February  
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Figure S3.3.1. Monthly means (January to June 2020) of the ICAP/MME smoke AOD 
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Figure S3.3.2. Time series (January to June 2020) of ICAP/MME daily means of the smoke AOD over 

considered cities in Africa, Asia and Australia. The three-letter city acronyms are defined in Table S2.1.1. 
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Figure S3.3.3. Time series (January to June 2020) of ICAP/MME daily means of the smoke AOD over 

considered cities in Europe, North and South America. The three-letter city acronyms are defined in Table 

S2.1.1. 
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Figure S3.3.4. Monthly means (January to June 2020) of the ICAP/MME Dust AOD. 
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Figure S3.3.5. Time series (January to June 2020) of ICAP/MME daily means of the Dust AOD over considered 

cities in Africa, Asia and Australia. The three-letter city acronyms are defined in Table S2.1.1. 
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Figure S3.3.6. Time series (January to June 2020) of ICAP/MME daily means of the Dust AOD over considered 

cities in Europe, North and South America. The three-letter city acronyms are defined in Table S2.1.1. 
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S3.4 Changes in air pollutant concentrations during the lockdown 

periods 

 
S3.4.1 Carbon monoxide concentrations for 2015–2019 
On a global scale, CO concentrations were the highest in Asia in 2015–2019 (see Figure S3.4.17a). 
The Indian and Chinese cities recorded the highest concentrations (750–4000 µg/m3), followed by 
the South American and some Italian cities (600–1200 µg/m3). The Canadian, US, Australian and 
rest of the European cities recorded the lowest concentrations (200–400 µg/m3).    
 
Strong inter-annual CO variations were observed in many countries, due to a combination of 
changes in emissions, meteorology and chemistry seasonal cycles (e.g., Sheel et al., 2014; Rozente 
et al., 2017). Cities in India and China recorded marked decreasing trends (up to -38%) for 2015–
2019, probably following the trends described by Zheng et al. (2018) derived from continuous 
emission control policies. Decreasing trends were also observed in Mexico, Australia, some south-
eastern Canadian cities (Montreal, Quebec and Ottawa), and Europe (Estonia, Finland, Italy, coastal 
cities of Spain and France). For a few cities, such as Madrid and Amsterdam, a 30% increase was 
observed over the period.  
 
A pronounced seasonal pattern was evident in most NH cities, where CO concentrations decreased 
from the pre-lockdown to the relaxation periods (Figure S3.4.17b), which we believe to have been 
driven by both meteorological changes from winter to summer and by energy use (e.g., mobility and 
indoor heating).  An opposite pattern was observed in the SH, especially in the Andean cities 
(Santiago, Quito and Bogotá) with maximum CO concentrations in the full lockdown period, 
coinciding with the winter season, with Santiago showing a nearly three-fold increase. Mendez-
Espinosa et al. (2019), using a 10-year climatology of trace pollutants, have shown that CO peaks 
occur in February and March in Bogotá, associated with biomass burning and stagnant atmospheric 
conditions. 
 
S3.4.2 Relative CO changes by type of environment  

The available CO data were predominantly from traffic and urban background sites, except for China 
(see Figure S3.4.17e).  In most American, Indian and European cities, the decreases during the 
lockdown were most likely dominated by the reduction in traffic emissions, since negative CO 
anomalies were higher at traffic sites. Conversely, CO variations in several Chinese cities showed a 
more homogeneous spatial pattern across rural, industrial and urban background sites, suggesting 
that all different anthropogenic activities affected the CO concentrations. Seville and Madrid showed 
the largest increases at traffic and rural sites, respectively, but the signal may have been affected by 
domestic biomass burning because the sites are located within residential areas.  
 

S3.4.3 Sulphur dioxide concentrations for 2015–2019 
SO2 showed variability on a worldwide scale (Figure S3.4.23), with higher concentrations in Asia 
than in other regions. The Chinese and Indian cities registered the highest mean SO2 concentrations 
during the corresponding lockdown periods in BAU periods of 2015-2019 (from 10.7 to 78.5 µg/m³ 
and from 7.3 to 15.9 µg/m³, respectively). Other cities exhibited lower SO2 concentrations, with all 
but Mexico City and Madrid having mean concentrations in BAU lower than 6 µg/m³, with the lowest 
values (0.38-1.6 µg/m³) in Estonian cities. Strong inter-annual SO2 variations were evident in most 
countries in 2015–2019. A decreasing trend from 2015 to 2019 was seen in China, South Korea, 
Europe (France, Estonia, Italy and the Netherlands), Mexico, US, Brazil, and Ecuador.  Some 
countries, however, showed either no changes or increasing trends, including India, Australia and 
Europe (Cyprus, Finland, Spain except Barcelona), and the cities of Halifax and Bogotá.  

 
Temporal variabilities in SO2 concentrations were observed for most cities from 2015 to 2019 (Figure 
S3.4.23). In Asian cities (except Chennai, Delhi and Hyderabad), the decreases were prominent 
from the pre-lockdown to the relaxation periods. As the temperature increased from pre-lockdown to 
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full lockdown, a reduction in residential heating emissions may have partly contributed to the 
temporal decrease in SO2 (Liu et al., 2016; Zhai et al., 2019). In other NH cities, such as those in 
Europe and North America (except for Naples, Toronto, and Vancouver), decreases were also large 
(up to 64%). Conversely, in the SH, the SO2 concentrations increased which may be attributed to 
the winter heating emission and the influence of the Amazonian fires (Buchholz et al., 2018). 
Besides, enhanced oxidizing capacity can promote the formation of sulfate by oxidizing SO2, and 
increases in OX can be understood as enhancements in the abundance of oxidants (e.g., OH) (Lee 
et al., 2020; Shen et al., 2021). Hence, increased seasonal OX in most NH cities while decreases in 
SH cities (not shown) can be another cause for the opposite temporal variabilities in worldwide SO2 
levels. 
 

S3.4.4 Relative changes during full lockdown period by type of environment 
Because most SO2 monitoring stations were either traffic or urban types (Figure S3.4.23e), the SO2 
decreases during the lockdown compared to the 2015–2019 means at traffic sites were prominent 
in China, some southern European and American cities (most saw decreases larger than -40%) and 
two of the three Indian cities (Delhi and Hyderabad). In the case of Chennai, there was an increase 
of 20% at the traffic site but a significant decrease of 66% at the industrial station which requires 
further investigation. Chinese, some northern European and southern American urban background 
sites also showed large decreases, while Naples, Calgary, and Ottawa had increases at urban 
background sites (6.2 to 29%). All of the industrial stations showed reductions during 2020 compared 
to BAU. For rural stations only Valencia showed an increase (+9.9%) for 2020. As mentioned above, 
interpreting isolated instances is difficult for SO2 but overall, there were decreasing trends globally 
over the 2020 lockdown periods compared to BAU at most station types.   
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Figure S3.4.1. Observed concentrations (µg/m3) and percentage changes in PM2.5 (a) Mean concentrations 

for the full lockdown period for years 2015 to 2020, (b) Mean concentrations for different matching lockdown 

periods during BAU, (c) Observed mean concentrations during 2020 for different lockdown periods, (d) 

Percentage changes observed for different lockdown periods, and (e) Percentage changes observed for full 

lockdown in different environments. 
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Figure S3.4.2. Observed percentage change in PM2.5 on global map for (a) pre-lockdown, (b) partial lockdown, 

(c) full lockdown, (d) partial relaxation, and (e) full relaxation. The small sub-panel maps show zooms of 

European and Asian countries. 
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Figure S3.4.3. Observed concentration ratios and percentage changes in PM2.5/PM10 concentration ratios (a) 

Mean concentration ratios for the equivalent full lockdown period for each year from 2015 to 2020, (b) Mean 

concentration ratios for different equivalent lockdown periods during BAU (2015-2019), (c) Observed mean 

concentration ratios during 2020 for different lockdown periods, (d) Percentage changes observed for 

different lockdown periods, and (e) Percentage changes observed for full lockdown in different 

environments.  
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Figure S3.4.4. Observed percentage changes in PM2.5/PM10 on global maps for (a) pre-lockdown, (b) partial 

lockdown, (c) full lockdown, (d) partial relaxation, and (e) full relaxation. The small sub-panel maps show 

zoom of European and Asian countries. 
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Figure S3.4.5. Observed concentrations (µg/m3) and percentage changes in PM10 (a) Mean concentrations for 

the equivalent full lockdown period for each year from 2015 to 2020, (b) Mean concentrations for different 

equivalent lockdown periods during BAU (2015-2019), (c) Observed mean concentrations during 2020 for 

different lockdown periods, (d) Percentage changes observed for different lockdown periods, and (e) 

Percentage changes observed for full lockdown in different environments.  
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Figure S3.4.6. Observed percentage changes in PM10 on global maps for (a) pre-lockdown, (b) partial 

lockdown, (c) full lockdown, (d) partial relaxation, and (e) full relaxation. The small sub-panel maps show 

zoom of European and Asian countries. 

 

 



35 
 

 

Figure S3.4.7. Observed concentrations (µg/m3) and percentage changes in PMC (a) Mean concentrations for 

the equivalent full lockdown period for each year from 2015 to 2020, (b) Mean concentrations for different 

equivalent lockdown periods during BAU (2015-2019), (c) Observed mean concentrations during 2020 for 

different lockdown periods, (d) Percentage changes observed for different lockdown periods, and (e) 

Percentage changes observed for full lockdown in different environments.  
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Figure S3.4.8. Observed percentage changes in PMC on global map for (a) pre-lockdown, (b) partial lockdown, 

(c) full lockdown, (d) partial relaxation, and (e) full relaxation. The small sub-panel maps show zoom of 

European and Asian countries. 
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Figure S3.4.9. Observed concentrations (µg/m3) and percentage changes in NO2 (a) Mean concentrations for 

the equivalent full lockdown period for each year from 2015 to 2020, (b) Mean concentrations for different 

equivalent lockdown periods during BAU (2015-2019), (c) Observed mean concentrations during 2020 for 

different lockdown periods, (d) Percentage changes observed for different lockdown periods, and (e) 

Percentage changes observed for full lockdown in different environments.  
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Figure S3.4.10. Observed percentage changes in NO2 on global map for (a) pre-lockdown, (b) partial 

lockdown, (c) full lockdown, (d) partial relaxation, and (e) full relaxation. The small sub-panel maps show 

zoom of European and Asian countries. 
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Figure S3.4.11. Observed concentrations (µg/m3) and percentage changes in O3 (a) Mean concentrations for 

the equivalent full lockdown period for each year from 2015 to 2020, (b) Mean concentrations for different 

equivalent lockdown periods during BAU (2015-2019), (c) Observed mean concentrations during 2020 for 

different lockdown periods, (d) Percentage changes observed for different lockdown periods, and (e) 

Percentage changes observed for full lockdown in different environments.  
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Figure S3.4.12. Observed percentage change in O3 on global map for (a) pre-lockdown, (b) partial lockdown, 

(c) full lockdown, (d) partial relaxation, and (e) full relaxation. The small sub-panel maps show zoom of Europe 

and Asian countries. 
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Figure S3.4.13. Observed concentrations (µg/m3) and percentage changes in NO (a) Mean concentrations for 

the equivalent full lockdown period for each year from 2015 to 2020, (b) Mean concentrations for different 

equivalent lockdown periods during BAU (2015-2019), (c) Observed mean concentrations during 2020 for 

different lockdown periods, (d) Percentage changes observed for different lockdown periods, and (e) 

Percentage changes observed for full lockdown in different environments.  
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Figure S3.4.14. Observed percentage changes in NO on global maps for (a) pre-lockdown, (b) partial 

lockdown, (c) full lockdown, (d) partial relaxation, and (e) full relaxation. The small sub-panel maps show 

zoom of European and Asian countries. 
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Figure S3.4.15. Observed concentrations (µg/m3) and percentage changes in NOX (a) Mean concentrations 

for the equivalent full lockdown period for each year from 2015 to 2020, (b) Mean concentrations for 

different equivalent lockdown periods during BAU (2015-2019), (c) Observed mean concentrations during 

2020 for different lockdown periods, (d) Percentage changes observed for different lockdown periods, and 

(e) Percentage changes observed for full lockdown in different environments.  
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Figure S3.4.16. Observed percentage changes in NOX on global maps for (a) pre-lockdown, (b) partial 

lockdown, (c) full lockdown, (d) partial relaxation, and (e) full relaxation. The small sub-panel maps show 

zoom of European and Asian countries. 
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Figure S3.4.17. Observed concentrations (µg/m3) and percentage changes in CO (a) Mean concentrations for 

the equivalent full lockdown period for each year from 2015 to 2020, (b) Mean concentrations for different 

equivalent lockdown periods during BAU (2015-2019), (c) Observed mean concentrations during 2020 for 

different lockdown periods, (d) Percentage changes observed for different lockdown periods, and (e) 

Percentage changes observed for full lockdown in different environments.  
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Figure S3.4.18. Observed percentage changes in CO on global map for (a) pre-lockdown, (b) partial lockdown, 

(c) full lockdown, (d) partial relaxation, and (e) full relaxation. The small sub-panel maps show zoom of 

European and Asian countries. 
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Figure S3.4.19. Observed concentration ratios and percentage changes in NO2/CO concentration ratio (a) 

Mean concentration ratios for the equivalent full lockdown period for each year from 2015 to 2020, (b) Mean 

concentration ratios for different equivalent lockdown periods during BAU (2015-2019), (c) Observed mean 

concentration ratios during 2020 for different lockdown periods, (d) Percentage changes observed for 

different lockdown periods, and (e) Percentage changes observed for full lockdown in different 

environments.  
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Figure S3.4.20. Observed percentage changes in NO2/CO ratios on global maps for (a) pre-lockdown, (b) 

partial lockdown, (c) full lockdown, (d) partial relaxation, and (e) full relaxation. The small sub-panel maps 

show zoom of European and Asian countries. 
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Figure S3.4.21. Observed concentration ratios and percentage changes in NOX/CO concentration ratio (a) 

Mean concentration ratios for the equivalent full lockdown period for each year from 2015 to 2020, (b) Mean 

concentration ratios for different equivalent lockdown periods during BAU (2015-2019), (c) Observed mean 

concentration ratios during 2020 for different lockdown periods, (d) Percentage changes observed for 

different lockdown periods, and (e) Percentage changes observed for full lockdown in different 

environments. 
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Figure S3.4.22. Observed percentage changes in NOX/CO ratios on global maps for (a) pre-lockdown, (b) 

partial lockdown, (c) full lockdown, (d) partial relaxation, and (e) full relaxation. The small sub-panel maps 

show zoom of European and Asian countries. 
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Figure S3.4.23. Observed concentrations (µg/m3) and percentage changes in SO2 (a) Mean concentrations for 

the equivalent full lockdown period for each year from 2015 to 2020, (b) Mean concentrations for different 

equivalent lockdown periods during BAU (2015-2019), (c) Observed mean concentrations during 2020 for 

different lockdown periods, (d) Percentage changes observed for different lockdown periods, and (e) 

Percentage changes observed for full lockdown in different environments.  
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Figure S3.4.24. Observed percentage changes in SO2 on global map for (a) pre-lockdown, (b) partial lockdown, 

(c) full lockdown, (d) partial relaxation, and (e) full relaxation. The small sub-panel maps show zoom of 

European and Asian countries. 
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Figure S3.4.25. Observed concentration ratios and percentage changes in NO2/NOX concentration ratio (a) 

Mean concentration ratios for the equivalent full lockdown period for each year from 2015 to 2020, (b) Mean 

concentration ratios for different equivalent lockdown periods during BAU (2015-2019), (c) Observed mean 

concentration ratios during 2020 for different lockdown periods, (d) Percentage changes observed for 

different lockdown periods, and (e) Percentage changes observed for full lockdown in different 

environments.  
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Figure S3.4.26. Observed percentage changes in NO2/NOX ratios on global maps for (a) pre-lockdown, (b) 

partial lockdown, (c) full lockdown, (d) partial relaxation, and (e) full relaxation. The small sub-panel maps 

show zoom of European and Asian countries. 
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Figure S3.4.27. Ratio of NOX/CO as a mean over the 2020 full lockdown period shown as (a) bar plot for each 

city, and (b-d) cross correlation plots for the cities grouped by regions. 
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Table S3.4.1. Mean concentration deltas and percentage changes inf NO2, O3, NOx and Ox in 2020 compared to the same period in 2015-2019. Also 

shown are the slopes and intercepts, their 95% confidence intervals (C.I.) and the fraction of NO2 within OX. 

Country and 
period of 

data analysis 

City (site) Site type Mean daytime (8:00 – 17:00) changes  2015-2019 2020 

8hO3 O3 NOx  NO2 OX Slope 

[95% C.I.] 

Intercept 

[95% C.I.] 

ppb 

 

NO2/OX 

Slope 

[95% C.I.] 

Intercept 

[95% C.I.] 

ppb 

 

NO2/OX ppb and [%] 

 

 

Spain 

 

March 16 – 
July 31 

 

Barcelona 
(Eixample) 

Urban 3.3 

[9.9%] 

2.3 

[8.4%] 

-36.2 

[-58.3%] 

 

-15.9 

[-51.7%] 

-13.6 

[-23.5%] 

0.19 

[0.17; 
0.21] 

46 

[44; 47] 

0.53 0.23 

[0.16; 
0.30] 

38 

[36; 40] 

0.33 

Barcelona 
(Tona) 

Rural -8.3 

[-15.2%] 

-7.2  

[-15.8%] 

-3.9  

[-50.4%] 

-3.2  

[-54.6%] 

-10.3  

[-19.9%] 

0.10  

[-0.1; 

0.3] 

51  

[49; 53] 

0.11 1.0 

[0.14; 
1.9] 

38 

[34; 41] 

0.06 

Madrid 

(Aguirre) 

Urban 2.2 

[5.3%] 

2.4 

[7.1%] 

-24.0 

[-59.9%] 

-13.1 

[-50.6%] 

-10.7 

[-18.0%] 

0.14 

[0.10; 
0.17] 

54  

[52;56] 

0.43 0.54 

[0.37;0.7
1] 

40 

[37; 43] 

0.26 

Madrid 

(El Atazar) 

Rural -7.5 

[-13.5%] 

-5.9 

[-12.3%] 

-0.6 

[-21.0%] 

-0.5 

[-28.2%] 

-6.4 

[-12.8%] 

0.44 

[-0.16; 
1.0] 

49 

[47;51] 

0.04 11 

[8.3; 13] 

21 

[15;26] 

0.03 

 

 

Italy 

 

Milan 

(Pascal) 

Urban 
backgrou
nd 

-0.9 

[-1.8%] 

-1.0 

[-2.7%] 

-10.7 

[-44.3%] 

-6.2 

[-41.9%] 

-7.0 

[-13.1%] 

-0.12 

[-0.17;  

-0.07] 

56 

[55;58] 

0.30 -0.14 

[-0.28; 
0.01] 

48 

[46;51] 

0.20 

Milan 

(Saronno) 

Urban -0.1 

[-0.3%] 

0.7 

[1.7%] 

-6.6 

[-41.9%] 

-5.0 

[-44.6%] 

-4.3 

[-7.8%] 

-0.33 

[-0.41;  

60 

[59;62] 

0.23 -0.41 

[-0.62;  

55 

[52;57] 

0.14 
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February 25 
– July 31 

 

 

 -0.25] -0.19] 

Rome  

(Cipro) 

Urban 
backgrou
nd 

1.6 

[4.3%] 

1.7 

[5.2%] 

-13 

[-47.4%] 

-7.7 

[-42.7%] 

-6.0 

[-11.9%] 

0.09 

[0.05; 
0.13] 

48 

[47;49] 

0.36 

 

0.19 

[0.04; 
0.35] 

41 

[39;44] 

0.23 

Rome 

(Guido) 

Rural -12.3 

[-25.3%] 

-10.7 

[-24.4%] 

-1.3 

[-29.9%] 

-0.9 

[-26.4%] 

-11.2 

[-23.9%] 

-0.02 

[-0.22; 
0.18] 

47 

[46;48] 

0.07 0.46 

[-0.02; 
0.94] 

34 

[32;36] 

0.07 

 

England 

 

March 5 – 
July 31 

London 
(Marylebone)  

Urban 11.4 

[63.6%] 

11.1 

[88.1%] 

-87.7 

[-71.4%] 

-31.9 

[-61.5%] 

-20.8 

[-32.2%] 

0.19 

[0.18; 

0.20] 

41 

[39;42] 

0.78 0.16 

[0.10; 
0.23] 

38 

[35;41] 

0.45 

Chilbolton Rural 1.6 

[3.8%] 

1.6 

[4.5%] 

-2.0 

[-37.0%] 

-1.8 

[-38.8%] 

-0.2 

[-0.5%] 

0.59 

[0.36; 
0.82] 

38 

[36;39] 

0.12 2.8 

[2.0; 3.5] 

38 

[28;39] 

0.07 

 

Brazil 

 

March 23 – 
July 19 

 

 

São Paulo 
(Pinheiros) 

Urban 4.6 

[21.9%] 

4.2 

[24.6%] 

-19.1 

[-42.8%] 

-8.0 

[-38.9%] 

-3.9 

[-10.4%] 

0.12 

[0.08; 

0.16] 

32 

[30;35] 

0.57 0.08 

[0.01; 

0.16] 

32 

[29;34] 

0.38 

São Paulo  

(Pico 
Jaraguá) 

 

(No data for 
2015-2016) 

Mountai
n site  

-0.5 

[-1.5%] 

-1.5 

[-5.0%] 

-4.1 

[-36.4%] 

-2.4 

[-29.2%] 

-4.0 

[-10.6%] 

0.02 

[0.01;  

0.4] 

36 

[33;37] 

0.23 0.12 

[-0.32; 
0.54] 

32 

[29;36] 

0.17 

 Delhi  Urban -11.8 -11.2 -12.2 -10.6 -22.4 0.98 30 0.41 -0.39 35 0.39 
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India 

March 16- 
September 
30  

 

(Puram) 

 

(data 
available 
until August 
31, 2020) 

[-35.7%] [-34.7%] [-52.2%] [-52.5%] [-41.8%] [0.76; 
1.1] 

[28;36] [-0.88; 
0.1] 

[30; 41] 

Delhi 

(Shadipur) 

Urban -1.9 

[-7.0%] 

-1.9 

[-7.9%] 

-6.3 

[-31.6%] 

-5.9 

[-37.4%] 

-8.2 

[-20.0%] 

0.76 

[0.63; 
0.89] 

25 

[22;28] 

0.39 -1.1 

[-1.6;  

-0.5] 

47 

[39; 55] 

0.42 

Canada 

 

March 15 – 
May 31 

Toronto 
(Toronto 
West) 

Urban -1.2 

[-3.1%] 

1.6 

[4.9%] 

-6.7 

[-40.3%] 

-4.4 

[-39.5%] 

-2.8 

[-6.3%] 

0.08 

[-0.01; 
0.18] 

42 

[41;44] 

0.26 -0.38 

[-0.69;  

-0.07] 

45 

[41; 48] 

0.17 

Chile 

March 26 – 
July 31 

Santiago 
(Puente Alto) 

Urban 4.8 

[22.5%] 

3.5 

[18.6%] 

-31.0 

[-40.3%] 

-10.1 

[-39.7%] 

-6.2 

[-14.3%] 

0.16 

[0.13; 
0.18] 

33 

[32;36] 

0.58 0.06 

[-0.04; 
0.15] 

36 

[32; 39] 

0.43 

Colombia 

 

March 20 – 
June 30 

Bogotá 

(Carvajal) 

Urban 5.2 

[39.4%] 

5.0 

[39.4%] 

-18.2 

[-26.0%] 

-6.7 

[-27.2%] 

-2.1 

[-5.9%] 

-0.01 

[-0.05; 
0.05] 

36 

[32;40] 

0.69 -0.02 

[-0.11; 
0.03] 

34 

[32;40] 

0.54 

China 

 

January 1 – 
May 9 

Wuhan 

(Qingshan 
Ganghua) 

Urban  6.0 

[41.9%] 

 

6.3 

[21.3%] 

-15.3 

[-47.8%] 

-9.0 

[-39.4%] 

-2.7 

[-5.2%] 

0.09 

[0.03; 
0.15] 

50 

[47;52] 

0.46 0.03 

[-0.26; 

0.32] 

49 

[43; 54] 

0.31 
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South Africa 

 

March 27 – 
May 31 

Greater 
Gauteng 

(Kliprivier) 

Urban 0.8 

[2.4%] 

-0.65 

[-2.3%] 

-13.5 

[-33.6%] 

-2.6 

[-17.5%] 

-2.5 

[-5.6%] 

0.12 

[0.07; 
0.14] 

37 

[36;40] 

0.35 0.29 

[0.23; 

0.37] 

32 

[30; 34] 

0.29 

Australia 

 

March 16 – 
June 30 

 

Sydney 
(Rozelle) 

Urban 4.6 

[26.3%] 

2.8 

[18.3%] 

-4.7 

[-22.0%] 

-2.2 

[-19.7%] 

0.6 

[2.4%] 

-0.01 

[-0.03; 
0.04] 

26 

[25;27] 

0.43 -0.04 

[-0.06; 

0.18] 

26 

[24;28] 

0.30 

Sydney 
(Bargo) 

Urban 
backgrou
nd 

-2.2 

[-8.1%] 

-1.3 

[-5.6%] 

-0.5 

[-10.3%] 

-0.5 

[-16.5%] 

-1.8 

[-6.7%] 

-0.02 

[-0.08; 
0.05] 

26 

[25;27] 

0.11 -0.12 

[-0.27; 

 -0.01] 

25 

[24;26] 

0.10 
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S4.1 Regional changes in air quality during full lockdown 

 

 

 

Figure S4.1.1. Continental/country-wide changes in air pollution shown as boxplots for the full 
lockdown period for (a) NO, (b) NO2/NOX, (c) NO2/CO, (d) NOX/CO, (e) PM2.5/PM10. Numbers on 
the right-hand side of the panels indicate number of cities. The red + symbol is the outlier 
(values more than 1.5 times the interquartile range) 

 


