Appendix

1. Analysis of sero-prevalence over time in our study

[bookmark: MendeleyTempCursorBookmark1]We analysed the sero-positivity over time using the aggregated proportion of the sero-positive results over the time intervals. We fitted a count data regression to estimate the counts of sero-positive samples using a one-way ANOVA model within the Bayesian modelling using non-informative priors for the individual weeks as normal distribution with mean zero and standard deviation 10. The estimates were based on 5,000 warmup MCMC samples followed by another 5,000 MCMC samples used for the posterior distribution (1, 2). For the count data regression, we could aggregate two options, one without the sampling weights. We explored the outcomes as binomial counts versus Poisson counts for sensitivity analysis. However, the results remain unchanged and we could observe an increase in sero-prevalence in the population during the later time points. In addition to this, as described in Figure 2, dried blood samples (DBS) of individuals (including household members) who produced intermediate results or positive results retested using venous blood samples. We performed the venous blood draw only during the last time point of the study, and hence the increase in the sero-positivity at the last week most likely have artificial effect. Thus, we compared the results of sero-positivity only using the DBS versus the results using the combination of DBS and reconfirmation with venous blood draw. The increase during the last two time points would be obvious, however it is higher in the last week of the study when we had the additional results using venous blood draw. The DBS results and the venous blood results are in Table S1 and the sero-positivity over time is illustrated in Figure S1 and Figure S2.
Table S1: Comparison of the follow-up plasma results, using DBS or Venous Blood Samples 
	Venous Blood Sample
	Dried Blood Sample Results

	
	Intermediate
	Negative
	Positive
	Total

	Negative
	11 (12.0%)
	76 (82.6%)
	5 ( 5.4%)
	92 (100.0%)

	Positive
	12 (13.5%)
	3 ( 3.4%)
	74 (83.1%)
	89 (100.0%)

	Not Done
	0 ( 0.0%)
	4208 (99.0%)
	44 ( 1.0%)
	4252 (100.0%)

	Total
	23 ( 0.5%)
	4287 (96.7%)
	123 ( 2.8%)
	4433 (100.0%)
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Figure S1: For sensitivity and specificity adjusted (left) and unadjusted (right) SARS-CoV-2 sero-prevalence over the follow-up period excluding DBS intermediates. The 95% confidence intervals for the weekly sero-prevalence are based on the 2.5 and 97.5 percentiles from 5,000 repetitions of a cluster bootstrap that accounts for within household clustering. The estimates do not account for sample weights. 
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Figure S2: Comparison of the sero-positivity over the follow-up period accounting for sampling weights. 



2. Analysis of sero-prevalence over the spatial structure of Munich
We estimated the sero-prevalence over the set of non-overlapping spatial areal units, which are the 25 districts or boroughs of Munich. Our goal was to test the hypothesis of the association in sero-prevalence and the population density of the boroughs. We would expect the observations of sero-prevalence from boroughs closer together tending to have similar values. We report the spatial autocorrelation present in the prevalence observed in the different boroughs using the Moran’s I. We report the Moran’s I permutation test for spatial autocorrelation based on 10,000 random permutations, using the functionality of the spatial weights (3, 4) . We considered two kinds of spatial weighting schemes, starting from a binary neighbours list, in which boroughs are either listed as neighbours or are absent (thus not in the set of neighbours for some definition), and row standardised Euclidian distances from a borough (sums over all links to each borough). Using both schemes we did not observe any spatial autocorrelation with the Moran’s I being 0.025 and 0.015 respectively and a corresponding p-value of 0.271 and 0.303. This allowed us not to reject the null hypothesis that the crude borough- wide sero-prevalence estimates had a spatial autocorrelation significantly different from zero. However, in case of population density within the boroughs the Moran’s I was computed to be 0.291 and 0.317 respectively with a p-value of 0.007 and 0.005. Thus, there is evidence for spatial autocorrelation in the population density estimates.  
Since the population density estimates are spatially correlated, when evaluating the association between population density and sero-prevalence at the level of boroughs within Munich, we used the common remedy for this spatial autocorrelation by augmenting the linear predictor with a set of spatially correlated random effects, as part of a Bayesian hierarchical model (3, 4). The random effects are considered through a conditional autoregressive model (CAR), which induces spatial autocorrelation through the adjacency structure of the boroughs (spatial units within the city of Munich). Among the CAR priors that are used in practice, we explored the two options, one using the global and the second using a local CAR prior. A binary specification based on geographical neighbourhood contact is used, where  if boroughs  share a common border (denoted k ∼ j), and is zero otherwise. This specification forces the outcomes of geographically adjacent or neighbouring boroughs () to be correlated, and random effects related to non-neighbouring boroughs to be conditionally independent given the values of the remaining random effects. We used the CAR model as was proposed by Leroux, Lei and Breslow (1999) where one random effect is used for modelling the differential intensity of the spatial autocorrelation for the globally smoothed spatial sero-prevalence rates (3–5). However, it has been argued often that in more complex urban setup (that would be typical for a city like Munich); there might be possibilities for a localized spatial structure. In Munich city too, there exist spatial pockets of super high density surrounded by spatial pockets of lower population density. The model proposed by Lee and Mitchell (2012) considered the partial correlation between random effects in adjacent spatial units as a function of their dissimilarity (3, 4, 6, 7). So we considered not only a binary geographical neighbourhood but also an additional component of the density difference between two neighbouring boroughs (rescaled by the standard deviation among all neighbours) to create a dissimilarity matrix for the boroughs. This allowed for local CAR prior models. Both kind of models were done to estimate the counts of sero-positives in a borough at an aggregated level, both using the sample weights and ignoring them as potentially binomial or Poisson counts. The estimates were based on 10,000 burn in MCMC samples followed by another 15,000 MCMC samples used for the posterior distribution. Additionally adjustment by population density based counts could be obtained from such models. This allowed us to have sensitivity analyses of the sero-prevalence across the boroughs within Munich (Figure S3 – Globally smoothed CAR model and S4 Local smoothed CAR model). We observed that sero-prevalence estimates varied slightly across the boroughs however, the confidence intervals were majorly overlapping. 
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Figure S3: Sero-prevalence estimates across the different boroughs of Munich using CAR model priors with a single level of spatial autocorrelation as random effects.
[image: C:\COVID Sentinel Kohorte Munich\KoCo19 Data\KOCO19V2\prevalence vs Borough_spatialAC_Local.jpeg]
Figure S4 Sero-prevalence estimates across the different boroughs of Munich with CAR model priors through the dissimilarity of the population density in neighbouring boroughs for spatial autocorrelation.
In the above analyses we observed that the population density of the boroughs are not likely to be associated with sero-prevalence estimates. Adjusted sero-prevalence estimates changed slightly. However, the confidence intervals were overlapping. Nevertheless, this analysis was performed at the aggregated level of boroughs. In reality, boroughs are not completely homogenous population units within the city of Munich. Thus, constituencies within a borough offer a higher level of homogeneity of population density than the borough itself. In our representative sample, we have data from only 361 of the 755 constituencies in Munich. So performing a spatial analysis at the level of the constituencies was difficult, since it is likely that we often missed data from neighbouring constituencies. We additionally investigated into the association of population density and sero-prevalence at the aggregation level of the constituency. Another difficulty in the measurement of the association is that only 89 of the 361 sampled constituencies had any sero-positive counts. Thus, there exists an excess of zeros in the positivity count. To tackle the issue of more zeros than would be in a Poisson outcome, we considered the Poisson distribution to obtain the estimated counts of positive individuals at the level of constituency with an additional adjustment for the zero counts. The zero inflated models are two-component mixture models combining a point mass at zero with a count distribution. There exists two sources of zeros: zeros may come from both the point mass and from the count component. For modelling the unobserved state (zero vs. count), a binary model, and a separate count component is used (8). We also compared the estimates using a negative binomial outcome. However, the results remained unchanged and no statistically significant association between the zero component or the count component and the population density of the constituency was observed (Table S2).
Table S2 Comparison of the estimates for the covariate of population density at the constituency level using the Poisson and the negative binomial model.
	Model
	Zero Inflated Poisson
	Zero Inflated Negative Binomial

	Covariate
	Estimate
	2.50%
	97.50%
	Estimate
	2.50%
	97.50%

	Count (Intercept)
	-2.468
	-2.810
	-2.126
	-2.963
	-3.952
	-1.973

	Count Population Density March 2020
	-0.002
	-0.005
	0.001
	-0.001
	-0.006
	0.003

	Zero (Intercept)
	0.394
	-0.270
	1.058
	-0.806
	-4.022
	2.411

	Zero Population Density March 2020
	-0.003
	-0.009
	0.004
	-0.007
	-0.029
	0.015



Additional tables and figures
Table S3: Course of SARS-CoV-2 antibody status within the KoCo19 follow-up participants
	
	
	
	SARS-CoV-2...

	...sero-remission
(positive at baseline, negative at follow-up)
	...sero-persistence
(positive at baseline and follow-up)
	...sero-incidence
(negative at baseline, positive at follow-up)
	
	...seroprevalence


(ever positive)
	

	Variable
	Categories*
	N
	nMissing
	n
	%
	n
	%
	n
	%
	p
	n
	%
	p

	
	Total
	4433
	0
	6
	0.14
	64
	1.44
	71
	1.60
	
	141
	3.18
	

	Sex
	Female
	2320
	0
	5
	0.22
	30
	1.29
	32
	1.38
	0.20
	67
	2.89
	0.30

	
	Male
	2113
	
	1
	0.05
	34
	1.61
	39
	1.85
	
	74
	3.50
	

	Age
	0-19
	212
	0
	0
	0.00
	3
	1.42
	6
	2.83
	0.86
	9
	4.25
	0.70

	(years)
	20-34
	1040
	
	0
	0.00
	16
	1.54
	18
	1.73
	
	34
	3.27
	

	
	35-49
	1271
	
	3
	0.24
	19
	1.49
	22
	1.73
	
	44
	3.46
	

	
	50-64
	1166
	
	2
	0.17
	14
	1.20
	18
	1.54
	
	34
	2.92
	

	
	65-79
	599
	
	1
	0.17
	11
	1.84
	6
	1.00
	
	18
	3.01
	

	
	80+
	145
	
	0
	0.00
	1
	0.69
	1
	0.69
	
	2
	1.38
	

	Birth country
	Germany
	3521
	232
	4
	0.11
	49
	1.39
	53
	1.51
	0.59
	106
	3.01
	0.34

	
	Other
	680
	
	2
	0.29
	10
	1.47
	13
	1.91
	
	25
	3.68
	

	Level of education
	Student
	80
	446
	0
	0.00
	1
	1.25
	4
	5.00
	0.06
	5
	6.25
	0.2

	
	<12 yrs
	1175
	
	2
	0.17
	17
	1.45
	12
	1.02
	
	33
	2.81
	

	
	≥12 yrs
	2732
	
	4
	0.15
	40
	1.46
	47
	1.72
	
	89
	3.26
	

	Occupationally active
	No
	784
	236
	0
	0.00
	6
	0.77
	8
	1.02
	0.09
	14
	1.79
	0.02

	
	Yes
	3413
	
	6
	0.18
	53
	1.55
	58
	1.70
	
	117
	3.43
	

	Smoking status
	Never smoker
	2217
	253
	3
	0.14
	29
	1.31
	41
	1.85
	0.66
	73
	3.29
	0.55

	
	Ex-smoker
	1234
	
	2
	0.16
	19
	1.54
	19
	1.54
	
	40
	3.24
	

	
	Current smoker
	729
	
	1
	0.14
	11
	1.51
	6
	0.82
	
	18
	2.47
	

	General health
	Excellent
	686
	233
	0
	0.00
	10
	1.46
	15
	2.19
	0.84
	25
	3.64
	0.72

	
	Very good
	1852
	
	3
	0.16
	26
	1.40
	30
	1.62
	
	59
	3.19
	

	
	Good
	1493
	
	3
	0.20
	20
	1.34
	18
	1.21
	
	41
	2.75
	

	
	Not good
	169
	
	0
	0.00
	3
	1.78
	2
	1.18
	
	5
	2.96
	

	Household type
	Single
	588
	254
	0
	0.00
	11
	1.87
	6
	1.02
	0.66
	17
	2.89
	0.28

	
	Couple
	1531
	
	2
	0.13
	18
	1.18
	20
	1.31
	
	40
	2.61
	

	
	Family
	1674
	
	3
	0.18
	24
	1.43
	29
	1.73
	
	56
	3.35
	

	
	Others
	386
	
	0
	0.00
	8
	2.07
	8
	2.07
	
	17
	4.40
	

	Household income
	≤2500 
	501
	1210
	1
	0.20
	6
	1.20
	4
	0.80
	0.2
	11
	2.20
	0.02

	(Euro)
	2501-4000 
	706
	
	1
	0.14
	6
	0.85
	8
	1.13
	
	15
	2.12
	

	
	4001-6000 
	1043
	
	1
	0.10
	13
	1.25
	18
	1.73
	
	32
	3.07
	

	
	6000+ 
	973
	
	3
	0.31
	15
	1.54
	26
	2.67
	
	44
	4.52
	

	Living area/inhabitant
	≤ 30
	1432
	269
	2
	0.14
	20
	1.40
	22
	1.54
	0.2
	44
	3.07
	0.03

	(sqm/individual)
	31-40
	1038
	
	1
	0.10
	19
	1.83
	23
	2.22
	
	43
	4.14
	

	
	41-55
	889
	
	2
	0.22
	7
	0.79
	7
	0.79
	
	16
	1.80
	

	
	55+
	805
	
	1
	0.12
	15
	1.86
	11
	1.37
	
	27
	3.35
	

	Building type
	1-2 apt
	1263
	0
	2
	0.16
	19
	1.50
	19
	1.50
	0.37
	40
	3.17
	0.11

	(No of apartments)
	3-4 apt
	307
	
	1
	0.33
	2
	0.65
	0
	0.00
	
	3
	0.98
	

	
	5+ apt
	2856
	
	3
	0.11
	43
	1.51
	52
	1.82
	
	98
	3.43
	

	
	Others
	7
	
	0
	0.00
	0
	0.00
	0
	0.00
	
	0
	0.00
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Health-risk taking
	Not high
	2156
	1668
	4
	0.19
	29
	1.35
	33
	1.53
	0.63
	66
	3.06
	0.6

	behavior
	High 
	609
	
	0
	0.00
	11
	1.81
	10
	1.64
	
	21
	3.45
	

	Leisure time activity level 
	
	
	
	
	
	
	
	
	
	
	
	

	After 1st wave
	Not high
	1052
	3170
	1
	0.10
	13
	1.24
	19
	1.81
	0.75
	33
	3.14
	0.67

	(June-Oct 2020)
	High
	211
	
	0
	0.00
	2
	0.95
	6
	2.84
	
	8
	3.79
	

	Sum of personal contacts
	Mean (SD)
	
	Mean
	SD
	Mean
	SD
	Mean
	SD
	
	Mean
	SD
	

	After 1st wave 
(June-Oct 2020)
	SARS-CoV-2 negative
	8.81 (4.28)
	1665
	11.5
	44.382.00
	10.7
	3.89
	8.91
	4.80
	0.02
	9.85 / 8.81
	4.46 / 4.28
	0.03


*for category definitions please see methods section of the article
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Figure S5: Distribution of mean within-cluster variance of test results under 10,000 random permutation of cluster assignments, with clusters being households, buildings, and geospatial clusters of different sizes. Household membership left invariant for building and geospatial clusters. Left: Value distribution. Right: 50%, 95%, 99% CIs. Black lines (left) and dots (right) indicate the observed values.


Table S4: Summary across age group and sex for the response to the behaviour questionnaires stratified by sex. p- values are from Pearson’s Chi-squared test with simulated p-value (based on 10000 replicates).
	 
	Age group

	Sex
	 
	<35 (N=1252)
	35-64 (N=2437)
	>=65 (N=744)
	p value

	Female
	Health-risk taking Behaviour
	< 0.001

	
	High
	66 (17.2%)
	75 (8.9%)
	27 (9.5%)
	 

	
	Not High
	317 (82.8%)
	766 (91.1%)
	258 (90.5%)
	 

	
	Missing
	272
	425
	114
	 

	
	Sum of contacts
	< 0.001

	
	High
	176 (45.8%)
	360 (42.8%)
	51 (17.9%)
	 

	
	Not High
	208 (54.2%)
	482 (57.2%)
	234 (82.1%)
	 

	
	Missing
	271
	424
	114
	 

	
	Leisure time activity level
	< 0.001

	
	High
	58 (35.6%)
	43 (12.6%)
	21 (11.1%)
	 

	
	Not High
	105 (64.4%)
	299 (87.4%)
	168 (88.9%)
	

	
	Missing
	492
	924
	210
	 

	Male
	Health-risk taking Behaviour
	< 0.001

	
	High
	62 (21.8%)
	106 (14.1%)
	22 (10.0%)
	 

	
	Not High
	222 (78.2%)
	646 (85.9%)
	198 (90.0%)
	 

	
	Missing
	313
	419
	125
	 

	
	Sum of contacts
	< 0.001

	
	High
	121 (42.6%)
	359 (47.7%)
	50 (22.6%)
	 

	
	Not High
	163 (57.4%)
	393 (52.3%)
	171 (77.4%)
	 

	
	Missing
	313
	419
	124
	 

	
	Leisure time activity level
	< 0.001

	
	High
	36 (26.3%)
	42 (14.0%)
	11 (8.3%)
	 

	
	Not High
	101 (73.7%)
	258 (86.0%)
	121 (91.7%)
	

	
	Missing
	460
	871
	213
	 





Table S5: Summary across age group and sex for the response to the behaviour questionnaires stratified by age group. p- values are from Pearson’s Chi-squared test with simulated p-value (based on 10000 replicates).
	 
	Sex
	 

	Age group
	 
	Female (N=2320)
	Male (N=2113)
	p value

	<35
	Health-risk taking Behaviour
	0.137

	
	High
	66 (17.2%)
	62 (21.8%)
	 

	
	Not High
	317 (82.8%)
	222 (78.2%)
	 

	
	Missing
	272
	313
	 

	
	Sum of contacts
	0.431

	
	High
	176 (45.8%)
	121 (42.6%)
	 

	
	Not High
	208 (54.2%)
	163 (57.4%)
	 

	
	Missing
	271
	313
	 

	
	Leisure time activity level
	0.104

	
	High
	58 (35.6%)
	36 (26.3%)
	 

	
	Not High
	105 (64.4%)
	101 (73.7%)
	

	
	Missing
	492
	460
	 

	35-64
	Health-risk taking Behaviour
	0.001

	
	High
	75 (8.9%)
	106 (14.1%)
	 

	
	Not High
	766 (91.1%)
	646 (85.9%)
	 

	
	Missing
	425
	419
	 

	
	Sum of contacts
	0.049

	
	High
	360 (42.8%)
	359 (47.7%)
	 

	
	Not High
	482 (57.2%)
	393 (52.3%)
	 

	
	Missing
	424
	419
	 

	
	Leisure time activity level
	0.641

	
	High
	43 (12.6%)
	42 (14.0%)
	 

	
	Not High
	299 (87.4%)
	258 (86.0%)
	

	
	Missing
	924
	871
	 

	>=65
	Health-risk taking Behaviour
	0.88

	
	High
	27 (9.5%)
	22 (10.0%)
	 

	
	Not High
	258 (90.5%)
	198 (90.0%)
	 

	
	Missing
	114
	125
	 

	
	Sum of contacts
	0.217

	
	High
	51 (17.9%)
	50 (22.6%)
	 

	
	Not High
	234 (82.1%)
	171 (77.4%)
	 

	
	Missing
	114
	124
	 

	
	Leisure time activity level
	0.454

	
	High
	21 (11.1%)
	11 (8.3%)
	 

	
	Not High
	168 (88.9%)
	121 (91.7%)
	

	
	Missing
	210
	213
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