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Abstract
Background: Children with asthma have impaired production of interleukin (IL) 37; 
in mice, IL- 37 reduces hallmarks of experimental allergic asthma (EAA). However, it 
remains unclear how IL- 37 exerts its inhibitory properties in asthma. This study aimed 
to identify the mechanism(s) by which IL- 37 controls allergic inflammation.
Methods: IL- 37 target cells were identified by single- cell RNA- seq of IL- 1R5 and IL- 
1R8. Airway tissues were isolated by laser- capture microdissection and examined by 
microarray- based gene expression analysis. Mononuclear cells (MNC) and airway epi-
thelial cells (AECs) were isolated and stimulated with allergen, IL- 1β, or IL- 33 together 
with recombinant human (rh) IL- 37. Wild- type, IL- 1R1–  and IL- 33– deficient mice with 
EAA were treated with rhIL- 37. IL- 1β, IL- 33, and IL- 37 levels were determined in spu-
tum and nasal secretions from adult asthma patients without glucocorticoid therapy.
Results: IL- 37 target cells included AECs, T cells, and dendritic cells. In mice with 
EAA, rhIL- 37 led to differential expression of >90 genes induced by IL- 1β and IL- 33. 
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1  |  INTRODUC TION

Asthma, one of the most common chronic diseases worldwide,1 is 
highly heterogeneous, with a range of endotypes.2,3 However, all 
endotypes are associated with chronic airways inflammation, with 
most patients experiencing symptoms.2,4,5 Mostly, this inflam-
matory response is orchestrated by T helper (Th) 2 cells and their 
characteristic array of cytokines that overwhelm the counterbalanc-
ing properties of cells like Th1 and/or regulatory T cells (Tregs).6- 9 
Nevertheless, the mechanisms leading to development of allergic 
inflammation (and thus of asthma) remain elusive. In an attempt to 
understand these mechanisms, the role of innate immune functions 
and the breakdown of the local immuno- homoeostasis are being 
studied. Airway epithelial cells (AECs) and antigen- presenting cells 

(APCs) produce factors that amplify or dampen acute inflammatory 
reactions: On the one hand, they augment allergic airway inflamma-
tion and thus formation of pathophysiological hallmarks of asthma 
by releasing pro- inflammatory cytokines such as interleukin (IL) 1β 
and IL- 6, while epithelium- derived factors such as IL- 33 promote 
Th2 and innate lymphoid tissue cell 2 (ILC2) differentiation that di-
rect allergic immune responses via release of IL- 4, IL- 5, and IL- 13.10- 13 
On the other hand, they maintain local immuno- homeostasis and 
so prevent tissue damage by the actions of anti- inflammatory fac-
tors including IL- 10 and IL- 37, and an impairment of this immuno- 
regulatory function could be a central factor in the pathogenesis of 
chronic inflammatory diseases such as asthma.14,15

Originally described as a fundamental inhibitor of innate immune 
functions,16,17 the member of the IL- 1β cytokine family, IL- 37, has 

rhIL- 37 reduced production of Th2 cytokines in allergen- activated MNCs from wild- 
type but not from IL- 1R1– deficient mice and inhibited IL- 33– induced Th2 cytokine 
release. Furthermore, rhIL- 37 attenuated IL- 1β–  and IL- 33– induced pro- inflammatory 
mediator expression in murine AEC cultures. In contrast to wild- type mice, hIL- 37 had 
no effect on EAA in IL- 1R1–  or IL- 33– deficient mice. We also observed that expres-
sion/production ratios of both IL- 1β and IL- 33 to IL- 37 were dramatically increased in 
asthma patients compared to healthy controls.
Conclusion: IL- 37 downregulates allergic airway inflammation by counterbalancing 
the disease- amplifying effects of IL- 1β and IL- 33.

K E Y W O R D S
asthma, asthma treatment, inflammation, interleukin

G R A P H I C A L  A B S T R A C T
IL- 37 target cells include many cells involved in asthma pathogenesis such as AECs, DCs, ILC2s, and Th2 cells. IL- 37 limits the pro- 
inflammatory and disease- amplifying effects of IL- 1 and IL- 33 on these target cells. Patients with asthma display increased expression/
production ratios of both IL- 1β and IL- 33 to IL- 37.
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been shown to impact adaptive immune responses, with production 
reduced in children with asthma.18- 20 Moreover, local administration 
of IL- 37 not only reduces allergic airway inflammation but also ame-
liorates hallmarks of experimental allergic asthma (EAA) in mice. On 
a cellular basis, administration of IL- 37 reduces the release of Th2 
type cytokines and of several pro- inflammatory mediators, indicating 
that IL- 37 impacts different cell types involved in asthma pathogen-
esis.18,21- 23 The anti- inflammatory properties of IL- 37 are mediated 
by the IL- 37 receptor complex composed of IL- 1R5 and IL- 1R8: Initial 
binding of monomeric IL- 37 to IL- 1R5 is followed by recruitment of 
IL- 1R8, which acts as a co- receptor and transduces anti- inflammatory 
signals by suppressing NF- κB (nuclear factor κ- light- chain- enhancer of 
activated B cells) and MAPK (mitogen- activated protein kinase) and by 
activating the signaling molecules Mer, PTEN (Phosphatase and Tensin 
homolog), STAT (signal transducer and activator of transcription pro-
teins) 3, and dok (downstream of kinase).16,17,24,25 Since impaired pro-
duction of IL- 37 in patients with asthma could lead to dysregulation of 
allergic inflammation, clarification of the underlying mechanism poten-
tially identifies new targets for therapeutic intervention. The aim of 
this study was therefore to elucidate the mechanism(s) by which IL- 37 
controls allergic inflammation. Our hypothesis is that IL- 37 directly in-
hibits the pro- inflammatory effects of other members of the IL- 1 family 
namely IL- 1β and IL- 33.

2  |  MATERIAL S AND METHODS

2.1  |  Analysis of publicly available single- cell RNA- 
seq (scRNA- seq) data

Overview analysis of publicly available scRNA- seq data from healthy 
Human individuals26,27 and control Mice28,29 was performed using 
Scanpy (v.1.6.0.)30 and Seurat (v.4.0.1),31 respectively.

2.2  |  Animals and experimental protocol

Female wild- type (WT) C57BL/6 mice (Charles River Laboratories, 
Sulzfeld, Germany), IL- 1R1,32 and IL- 33 deficient,33 aged 6– 8 weeks, 
were housed under specific pathogen- free conditions, receiving 
an ovalbumin (OVA)- free diet and water ad libitum. All experimen-
tal procedures were approved by the animal ethics committee at 
the MELUND, Kiel, Germany (V312- 72241.123– 3(83- 7/11), V244- 
28793/2016(44- 4/16), and V244- 6919/2018(19- 3/18)). Induction 
of EAA and administration of IL- 37 were performed as described 
previously.18 For details, see the Supporting information.

Bronchoalveolar lavage (BAL) and differential cell count were 
performed as previously described.34 Lung specimens were sampled 
and prepared for immunohistochemistry and quantitative morphol-
ogy as previously described,35 as were immunohistochemistry and 
quantitative morphology,36 isolation and stimulation of mononuclear 
cells (MNCs) and CD4+ T cells in cell culture,36 and assessment of cy-
tokine levels.36 Furthermore, laser- capture microdissection,37 whole 

genome array analysis of RNA samples,38 air- liquid interface (ALI) 
culture of murine tracheal epithelial cells,36 and reverse transcrip-
tion and quantitative real- time polymerase chain reaction on murine 
and human samples were all performed as previously described.37,39 
For details, see online supplement.

2.3  |  Cross- sectional human study 
cohort and protocol

Patient characteristics can be found in Table S1. Patients with asthma 
discontinued corticosteroid medication (inhaled and oral) for two 
weeks before analysis. For this analysis, we examined twelve patients 
with grass- pollen allergic asthma with hay fever, and 23 age- matched 
healthy controls during pollen season. All patients reported clinical 
symptoms to grass pollen, however, none of the control subjects. 
Clinical outcomes were assessed using the GINA (Global Initiative for 
Asthma) score,40 striving for an optimal individual therapy setting. 
The study was approved by the ethics commission of the Technical 
University of Munich (5534/12). After written and informed consent, 
and in accordance with the Helsinki Declaration, induced sputum and 
nasal secretions were obtained from patients during the grass- pollen 
season from May to July 2014 and 2015 and analyzed as previously 
described.41- 43

2.4  |  Statistics

If not stated otherwise, results are presented as mean ± SEM. One- 
way analysis of variance with subsequent Tukey`s test was used to 
determine significance of differences. Human samples from each 
group were summarized taking the mean ± SD. Mann– Whitney tests 
were used to determine significant differences in expression ratios. 
Statistically significant differences were defined as p values *p < .05, 
**p < .01, ***p < .001, and ****p < .0001.

3  |  RESULTS

3.1  |  IL- 1R5 and IL- 1R8 are expressed by various 
cells associated with asthma pathogenesis

We have previously shown that topic treatment with rhIL- 37 reduces 
the pathophysiologic features of EAA, including mucus hyperpro-
duction, allergic airway inflammation, and release of Th2 type cy-
tokines.25 In order to determine which cells are influenced by IL- 37, 
and to subsequently reveal its mechanism of action on a cellular level, 
we first analyzed the cellular expression of the two chains forming 
the IL- 37 receptor signaling complex, namely IL- 1R5 and IL- 1R8. In 
human cells, we found mRNA expression of both receptor chains in a 
variety of cells associated with asthma pathogenesis, including CD4+ 
T cells, dendritic cells (DCs), ILCs (Suppl. Figure 1A,B), and differ-
ent AECs (Figure 1A). Despite differences in the expression level, 
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we further confirmed mRNA levels of both chains for T cells, DCs, 
ILCs, and AECs (Figure 1B) in mice and on protein level for AECs 
and inflammatory cells infiltrating airway tissue under the pathologic 
conditions of EAA (Figure 1C), suggesting that these cells potentially 
respond to IL- 37.

3.2  |  IL- 37 attenuates Th2 type cytokine 
production in allergen- restimulated MNCs but not in 
anti- CD3/CD28 restimulated Th2 cells: role of IL- 10

In mouse models of inflammatory diseases, such as contact hy-
persensitivity and atherosclerosis, the inhibitory effects of IL- 37 
are associated with recruitment of Tregs and tolerogenic DCs that 
downregulate inflammation by release of anti- inflammatory IL- 
10.44- 46 Therefore, we determined the levels of IL- 10 in BALF of mice 
with EAA. Remarkably, IL- 37 treatment did not enhance IL- 10 levels 
in BALF. Accordingly, addition of IL- 37 did not increase IL- 10 release 
in OVA- restimulated MNCs from these animals (Figure 2A,B) indi-
cating that IL- 37 does not control allergic inflammation through in-
duction of IL- 10 release in Tregs or DCs. Thus, we investigated the 
effect of IL- 37 on Th2 cell stimulation, since these cells are pivotal 
for orchestrating allergic inflammation. CD4+ T cells isolated from 
OVA- sensitized animals were restimulated in vitro by anti- CD3/
CD28, which resulted in markedly increased production of the Th2 
type cytokines IL- 4, IL- 5, and IL- 13. The addition of IL- 37 had no sig-
nificant effect on these cytokine levels (Figure 2C) indicating that 
IL- 37 does not affect T- cell activation via TCR/CD80/CD86. We 
therefore studied the effect of IL- 37 on an allergen- specific restimu-
lation of Th2 cells by stimulating MNCs from OVA- sensitized animals 
that include DCs, ILCs, and OVA- specific Th2 cells with OVA.47 This 
led to enhanced production of IL- 4, IL- 5, and IL- 13 (Figure 2D); IL- 
37 significantly diminished the release of these cytokines mirroring 
the effects of IL- 37 treatment in animals with EAA. IL- 37 induced no 
effects on either restimulated CD4+ T cells or MNCs.

3.3  |  Expression of IL- 1β–  and IL- 33– pathway 
members is upregulated in EAA and differentially 
regulated by IL- 37 treatment

To get a further insight into the mechanisms through which IL- 37 
downregulates allergen- triggered airway inflammation, we com-
piled gene expression profiles of airway tissues from healthy mice, 
mice with EAA, and mice with EAA treated with IL- 37. As expected, 
in animals with EAA numerous genes associated with inflamma-
tory pathways were upregulated compared to healthy controls, 

including those triggered by IL- 1β and IL- 33 (Suppl. Figure 3A,C, 
Tables S2, Table S4), two pro- inflammatory cytokines associated 
with the pathogenesis of asthma.48- 51 Importantly, these two path-
ways were differentially expressed after IL- 37 treatment, with sev-
eral target genes downregulated (Suppl. Figure 3B,D, Tables S3, 
Table S5).

3.4  |  IL- 37 attenuates Th2 type cytokine 
production in allergen- restimulated MNCs dependent 
on IL- 1β and IL- 33 signaling

Based on the finding that increased production of IL- 1β in OVA- 
restimulated MNCs (Figure S4) is not observed in anti- CD3/CD28 
restimulated CD4+ cells, we hypothesized that IL- 37 may exert its 
regulatory functions on MNCs by interfering with pro- inflammatory 
IL- 1β and/or IL- 33 signals that augment cytokine release of both, Th2 
cells and ILC2s.11- 13 We therefore repeated OVA- restimulation of 
MNCs from OVA- sensitized IL- 1R1– deficient mice that cannot react 
to IL- 1β. Again, OVA- restimulation resulted in increased production 
of IL- 4, IL- 5, and IL- 13, although to a lesser extent than MNCs from 
WT animals. However, in contrast to WT cells, co- administration 
of IL- 37 did not result in any reduction in Th2 type cytokines 
(Figure 3A). The same effect was observed in IL- 37– treated WT 
cells, when IL- 1- signaling was inhibited by IL- 1Ra: As observed in 
MNCs from IL- 1R1– deficient mice, IL- 1Ra administration lowered 
Th2 type cytokine release. Consistent with the experiments with 
IL- 1R1– deficient cells, co- administration of IL- 37–  to IL- 1Ra– treated 
and OVA- stimulated MNCs did not show any further reduction in 
Th2 type cytokine release (Figure 3B).

In contrast to IL- 1β, which is produced by APCs, IL- 33 is not pro-
duced in MNC cultures. However, since IL- 33 exerts considerable ef-
fects on Th2 cells and ILCs,11- 13,52,53 we further examined whether IL- 37 
could also impact this cytokine. Therefore, we added IL- 33 to allergen- 
restimulated MNCs from OVA- sensitized WT animals. We observed 
enhanced production of IL- 5 and IL- 13, but not IL- 4; not unexpectedly, 
production of IL- 5 and IL- 13 was largely prevented by co- administration 
of IL- 37 (Figure 3C).

3.5  |  IL- 37 attenuates IL- 1β–  and IL- 33– induced 
expression of pro- inflammatory mediators in AECs

Similar to Th2 cells, AECs not only play a significant role in the 
pathogenesis of asthma but also are putative target cells for IL- 
37 (Figure 1). Thus, we investigated the in vitro effect of IL- 37 
on IL- 1β or IL- 33 stimulation by culturing murine AECs under 

F I G U R E  1  IL- 1R5 and IL- 1R8 are expressed by various cells associated with asthma pathogenesis. (A) Gene expression of IL- 1R5 and IL- 
1R8 in different cell types in the human lung assessed by single- cell RNA- seq. (B) Gene expression of IL- 1R5 and IL- 1R8 in different cell types 
in the murine lung assessed by single- cell RNA- seq. (C) Immunohistochemically stained lung cross- sections of EAA mice with α- IL- 1R5 and 
α- IL- 1R8 antibodies. An isotype- matched IgG was used as negative control instead of the primary antibody. Scale bar, 20 µm. AEC: airway 
epithelial cells, AT1: alveolar epithelial type 1 cells, AT2: alveolar epithelial type 2 cells, IL- 1R5: interleukin- 1 receptor 5, IL- 1R8: interleukin- 1 
receptor 8, and ILC: innate lymphoid tissue cells
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ALI- conditions, before stimulation with either IL- 1β or IL- 33 
in the presence or absence of IL- 37. First, we examined the ef-
fect of IL- 1β stimulation. We observed enhanced expression of 
pro- inflammatory molecules including cytokines such as Il6 and 
Tnf, chemokines such as Kc and Mcp1, Gmcsf, as well as the ad-
hesion molecule Icam1; each of these has been implicated in 

the development and perpetuation of allergic asthma.54 Co- 
administration of recombinant IL- 37 markedly reduced the level of 
mRNA coding for these genes on AECs (Figure 4A).

Stimulation of AECs with IL- 33 also resulted in upregulation of Gmcsf, 
Icam1, and Kc, and importantly, upregulation of these pro- inflammatory 
molecules was also counterbalanced by co- administration of IL- 37 

F I G U R E  2  IL- 37 attenuates Th2 type cytokine production in allergen- restimulated MNCs but not in anti- CD3/CD28 restimulated Th2 
cells: role of IL- 10. (A) Concentration of IL- 10 in BALF. (B) MNCs were isolated from wild- type mice sensitized to OVA and restimulated with 
50 µg/ml OVA for 48 h. (C) CD4+ T lymphocytes were isolated from mice sensitized to OVA and restimulated with α- CD3/α- CD28 coated 
beads in the presence or absence of 100 ng/ml rhIL- 37 for 48 h. (D) MNCs were isolated from mice sensitized to OVA and restimulated 
with OVA in the presence or absence of 100 ng/ml rhIL- 37 for 48 h. Cytokine concentrations in BALF and cell culture supernatants were 
assessed by cytometric bead array. Cytokine concentrations are shown as mean ± SEM. N = 8 (A, B) or 11 (C, D) biological repeats. Statistical 
significance was assessed using one- way analysis of variance and Tukey´s multiple comparison post hoc analyses, **p < .01; ***p < .001. 
BALF: bronchoalveolar lavage fluid, MNC: mononuclear cells, OVA: ovalbumin, and PBS: phosphate buffer solution
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(Figure 4B). IL- 37 alone did not affect the expression of the respective 
genes in AECs.

3.6  |  IL- 37 downregulates allergic airway 
inflammation only in animals with a functional IL- 
1β and IL- 33 signaling

Next, we investigated the effect of IL- 37 on IL- 1β and IL- 33 under 
physiological conditions. WT, IL- 1R1– , and IL- 33– deficient mice 

with EAA were treated with IL- 37. In WT animals, this resulted in 
reduced features of the disease, including eosinophil counts in BAL 
(Figure 5A), goblet cell (GC) hyperplasia (Figure 5B), and BAL lev-
els of IL- 4 (Figure 5C) and IL- 6 (Figure 5D). IL- 37 treatment did not 
reduce these features in IL- 1R1– deficient animals (Figure 5A– D). In 
contrast, in IL- 33– deficient animals, IL- 37 treatment reduced BAL 
levels of IL- 4 and IL- 6, although not reaching statistical significance 
(Figure 5C,D). Eosinophil counts in BAL and GC hyperplasia re-
mained largely unaffected (Figure 5A,B).

F I G U R E  3  IL- 37 attenuates Th2 cytokines production in allergen- restimulated MNCs dependent on IL- 1β and IL- 33 signaling. MNC were 
isolated from IL- 1R1– deficient mice (A) or wild- type mice (B, C) sensitized to OVA and restimulated with 50 µg/ml OVA in the presence 
or absence of 100 ng/ml rhIL- 37 and/or 1 µg/ml IL- 1Ra (B) or 10 ng/ml IL- 33 (C) for 48 h. Cytokine concentrations in the supernatant 
were assessed by cytometric bead array. Cytokine concentrations are shown as mean ± SEM. N = 7 (A), N = 16 (B), N = 6 (C) biological 
repeats. Statistical significance was assessed using one- way analysis of variance and Tukey´s multiple comparison post hoc analyses, 
*p < .05; **p < .01. IL- 1Ra: interleukin- 1 receptor antagonist, MNC: mononuclear cells, OVA: ovalbumin
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3.7  |  Lower and upper airways in asthma display 
increased expression/production ratios of IL- 1β/IL- 
37 and IL- 33/IL- 37

Since our in vitro and in vivo experiments demonstrated that 
IL- 37 limits the pro- inflammatory effects of IL- 1β and IL- 33 of 
cells in the pathogenesis of asthma (eg, MNCs and AECs), we 
hypothesized that patients with asthma exhibit an imbalance 
between anti- inflammatory IL- 37 versus pro- inflammatory 

IL- 1β and IL- 33. Since glucocorticoids directly and indirectly 
inhibit the expression and production of IL- 1β,55- 57 IL- 33,58- 60 
and IL- 37,61 we determined the mRNA expression and se-
creted protein levels of these cytokines in sputum cells of the 
lower airways and nasal secretions from healthy individuals 
and patients with allergic asthma (after glucocorticoid ther-
apy had been discontinued) (Figure 6 and Suppl. Table S1). 
Asthma patients showed significantly increased expression 
levels for Il1beta, Il33, but decreased Il37 mRNA expression 

F I G U R E  4  IL- 37 attenuates IL- 1β–  and IL- 33– induced expression of pro- inflammatory mediators in AECs. After differentiation at ALI 
for 8– 11 days, cells were incubated with or without 100 ng/ml rhIL- 37 and two hours later stimulated with 10 ng IL- 1β (A) or IL- 33 (B), 
respectively. Four hours later, mRNA was isolated and the expression of different genes was analyzed via qRT- PCR. Rpl32 was used as 
housekeeping gene. Expression values were normalized to IL- 1β alone group (A) or IL- 33 alone group (B). The fold changes were calculated 
and are graphed as mean ± SEM of N = 3 biological repeats. Statistical significance was assessed using repeated measure one- way analysis 
of variance and Tukey´s multiple comparison post hoc analyses, *p < .05; **p < .01, ***p < .001; ****p < .0001. AEC: airway epithelial cells, 
ALI: air- liquid interface, Gmcsf: granulocyte- macrophage colony- stimulating factor gene, Icam1: intercellular adhesion molecule 1 gene, Il6: 
interleukine- 6 gene, KC: keratinocytes- derived chemokine gene, Mcp1: monocyte chemotactic protein- 1 gene, qRT- PCR: quantitative real- 
time polymerase chain reaction, and Tnfa: tumor necrosis factor α gene
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in sputum cells (Figure 6A– C). Accordingly, patients with 
asthma displayed significantly higher expression ratios of 
Il1beta and Il33 to Il37 (Figure 6D,E). These differences were 
also confirmed at the protein level in sputum supernatants 
(Figure 6F– J) and nasal lining fluids (Figure 6K– O), suggest-
ing an impaired counterbalance of these pro- inflammatory 
cytokines by IL- 37.

4  |  DISCUSSION

This study aimed to elucidate the mechanisms through which 
IL- 37 controls allergic airway inflammation underlying the de-
velopment of asthma. We identified various cells involved in the 
pathogenesis of asthma (including Th2 cells, DCs, ILC2s, and 
AECs) as potential responders to this cytokine and demonstrated 

F I G U R E  5  IL- 37 downregulates allergic airway inflammation only in animals with a functional IL- 1β and IL- 33 signaling. (A) Total numbers 
of eosinophils in BALF, (B) area of EBM covered by goblet cells per epithelial basal membrane, and (C, D) cytokine level in BALF of healthy 
(PBS), asthmatic (OVA) and IL- 37– treated asthmatic (OVA+IL- 37) wild- type, IL- 1R1– deficient, and IL- 33– deficient mice. Data are shown as 
mean ± SEM. N = 6– 9. Statistical significance was assessed using ordinary one- way analysis of variance and Tukey´s multiple comparison 
post hoc analyses, *p < .05; **p < .01; ***p < .001. BALF: bronchoalveolar lavage fluid, EBM, epithelial basal membrane, OVA: ovalbumin, and 
PBS: phosphate buffer solution
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that IL- 37 limits the pro- inflammatory signals of IL- 1β and IL- 33 on 
a cellular level as well as in an EAA mouse model. Our additional 
finding that adult patients with asthma had enhanced expression/
production ratios of the pro- inflammatory IL- 1β and IL- 33 to its 
anti- inflammatory counterpart IL- 37 further supports the concept 
that impaired IL- 37 production and, thus an impaired capacity to 
counterbalance pro- inflammatory signals in order to maintain the 
local immuno- homoeostasis, is of central importance in asthma 
pathogenesis.

We have previously shown that the therapeutic effects of local 
IL- 37 administration require IL- 1R5 and IL- 1R8,25 acting as the 

receptor for this cytokine.17 Expression of these receptor chains 
was confirmed in a variety of cells involved in asthma pathogene-
sis in both, humans and mice. The differences in the expression 
level of the respective receptor chains between both species could 
be explained by the lack of pro- inflammatory stimuli that impact 
the expression of IL- 1R5 and IL- 1R8 in mice housed under specific 
pathogen- free conditions.62 We hypothesized that co- expression of 
both receptors indicates putative responders to IL- 37 and selected 
MNCs (including Th2 cells, ILC2s, and DCs) and AECs for further 
experiments, since they play central roles in asthma pathogenesis: 
Th2 cells and ILC2s orchestrate allergic inflammatory reactions and 

F I G U R E  6  Lower and upper airways in asthma display increased expression/production ratios of IL- 1β/IL- 37 and IL- 33/IL- 37. Expression 
levels of (A) Il1beta, (B) Il33, and (C) Il37 as well as ratio of expression levels of (D) Il1beta to Il37 or (E) Il33 to Il37 in induced sputum cells 
from healthy controls and patients with allergic asthma. Secreted protein levels were measured in sputum supernatants of healthy controls 
and patients suffering from allergic asthma for (F) IL- 1β, (G) IL- 33, (H) IL- 37 and the ratio of secreted levels of (I) IL- 1β to IL- 37 and (J) IL- 33 
to IL- 37. Levels of secreted cytokines were also measured in upper airway lining fluids in healthy controls (n = 23) and patients suffering 
from allergic asthma (n = 12) for (K) IL- 1β, (L) IL- 33, (M) IL- 37 and the ratio of secreted levels of (N) IL- 1β to IL- 37 and (O) IL- 33 to IL- 37. Data 
are presented as mean ± SD. Statistical significance was assessed using Mann– Whitney tests, *p < .05; **p < .01; ***p < .001; ****p < .0001
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enhance mucus production by releasing the Th2 type cytokines IL- 4, 
IL- 5, and IL- 13.63- 65 In turn, AECs provide part of the physical barrier 
of the airways that is repeatedly exposed to allergens and patho-
gens, which trigger the release of several pro- inflammatory media-
tors (eg, TNF- α, IL- 6, and IL- 8/KC) thereby initializing and supporting 
acute inflammatory reactions.66

Since successful treatment of EAA in mice is associated with 
a reduced inflammatory response in the airways, we first checked 
for an enhanced IL- 10 release (eg, by Tregs or DCs) as described in 
other mouse models of inflammatory disease.44,45 As we found no 
increased release of IL- 10 in vivo or in vitro, such an effect can be 
excluded. This rather surprising finding suggests that the short- term 
effects of IL- 37 as described in this study are different from its long- 
term effects caused by ten weeks of treatment or transgenic over-
expression.18 We therefore further tested whether IL- 37 impacts 
Th2 cell restimulation with anti- CD3/CD28. Unexpectedly, this was 
not the case, indicating that IL- 37 does not interfere directly with 
the activation of these cells via the TCR and/or co- stimulation via 
CD80/86. Subsequently, we mimicked allergen- specific restimula-
tion of MNCs isolated from OVA- sensitized animals with its specific 
antigen. Co- culture with IL- 37 resulted in significant reduction in 
Th2 type cytokine production, consistent with our previous animal 
experiments. In contrast to our first experiment, MNC cultures com-
prised Th2 cells, ILC2s, and APCs, in which IL- 37 could affect acti-
vation of APCs and ILC2s or interfere with the signals provided by 
these cells.16 Thus, we returned to the animal model and created dif-
ferential gene expression profiles from airway tissues from mice with 
EAA undergoing IL- 37 or sham treatment. Among the several path-
ways that revealed differential expression upon IL- 37 treatment, we 
observed those induced by IL- 1β and IL- 33. Thus, we hypothesized 
that IL- 37 could exert its anti- inflammatory effects by interfering 
with their signals. We started by delineating the interrelationship of 
IL- 1β and IL- 37, since IL- 1β release was elevated in mice with EAA as 
well as in allergen- restimulated MNCs. IL- 1β is central for the activa-
tion, development, and proliferation of Th2 cells and ILC2s.11- 13,67- 73 
Accordingly, increased release of IL- 1β is observed in patients with 
asthma.20,74,75 Furthermore, administration of IL- 1β worsens allergic 
airway inflammation and hallmarks of EAA in mice,76 while block-
ing of IL- 1β signaling leads to the opposite.77,78 Our in vitro findings 
are consistent since allergen- restimulation of MNCs from IL- 1R1– 
deficient mice that cannot respond to IL- 1β displayed markedly 
reduced release of IL- 4, IL- 5, and IL- 13. This is also the case for OVA- 
restimulated MNCs from WT animals receiving IL- 1Ra. Importantly, 
in both settings co- application of IL- 37 had no further impact on the 
production of Th2 type cytokines. As the regulatory effect of IL- 37 
is not observed if the pro- inflammatory effect of IL- 1β is absent, we 
suggest that IL- 37 counterbalances the pro- inflammatory effect of 
IL- 1β on MNCs. This is supported by both, the in vivo experiment 
demonstrating that IL- 37 has no significant reduction on Th2 type 
cytokine production, airway eosinophilia, or mucus hyperproduction 
in IL- 1R1– deficient mice, and also by the AEC ALI- cultures. Here, 
upregulation of pro- inflammatory molecules, which have been im-
plicated in asthma pathogenesis and mouse models of EAA,79,80 by 

IL- 1β could be directly reduced by addition of IL- 37. Hence, IL- 37 lim-
its the effects of IL- 1β, in terms of both its promotion of Th2 type cy-
tokine production by MNCs and the expression of pro- inflammatory 
molecules by AECs, ultimately suppressing its amplifying effects on 
allergic airway inflammation.

Since we also found IL- 33 pathway members to be differentially 
expressed by IL- 37 treatment of mice with EAA, we speculated on 
a counterbalancing effect of IL- 37 on this pathway. Alike IL- 1, IL- 33 
considerably impacts allergic inflammation: It promotes Th2 cell dif-
ferentiation,48,81 activates ILCs and enhances their production of IL- 5 
and IL- 13,11- 13,49,50 and activates AECs and amplifies their release of 
pro- inflammatory mediators such as IL- 8/KC.82 Accordingly, local ap-
plication of IL- 33 alone to mice induces all the pathophysiologic fea-
tures of EAA.83 We therefore cultured allergen- restimulated MNCs 
with IL- 33, which indeed resulted in markedly enhanced release of 
IL- 5 and IL- 13. Similarly, in AEC cultures, IL- 33 stimulation resulted in 
upregulation of pro- inflammatory molecules including gmcsf, icam1, 
and kc. Strikingly, both effects were dampened by presence of IL- 
37. Furthermore, the effects of IL- 37 on Th2 type cytokine levels in 
BAL, airway eosinophilia, and mucus production were considerably 
diminished in IL- 33– deficient animals indicating an inhibiting effect 
of IL- 37 on pro- inflammatory IL- 33.

Finally, we sought to translate our experimental findings to the 
clinical situation. We determined the levels of IL- 1β and IL- 33 and 
their counterpart IL- 37 in patients with mild allergic asthma who dis-
continued glucocorticoid treatment. Without the inhibiting effect of 
glucocorticoids on the release of all these cytokines,55- 61 patients 
with asthma had a dramatically enhanced ratio of both IL- 1β to IL- 37 
and IL- 33 to IL- 37 as compared to healthy individuals. This predom-
inant release of pro- inflammatory cytokines that is not counterbal-
anced by comparable IL- 37 could be the basis for the persistence 
of allergic airway inflammation in adult patients. The reasons for 
this imbalance and for an impaired release of IL- 37 in patients with 
asthma patients remain unclear. However, this finding is in line with a 
previous study that described loss of anti- inflammatory functions of 
four different genetic variants of IL- 37 in patients with gout, charac-
terized by severe IL- 1- mediated joint inflammation.84 Together with 
this, our findings highlight the therapeutic potential of recombinant 
IL- 37 for the treatment of inflammatory diseases.

Taken together, we demonstrate that IL- 37 exerts its anti- 
inflammatory action on allergic airway inflammation by counter-
balancing the disease- amplifying effects of two pro- inflammatory 
cytokines that are central to asthma pathogenesis, namely IL- 1β and 
IL- 33. We demonstrated this mechanism in MNCs and AECs, which 
play pivotal roles in asthma pathogenesis. However, we suggest that 
the same mechanism also affects other cells that are influenced by 
IL- 1β and/or IL- 33 and IL- 37. As we did not find any signs for the in-
duction of IL- 10, we suggest that our findings describe a new mech-
anism by which IL- 37 directly controls allergic inflammation. We 
suggest that over prolonged time this mechanism could contribute 
to the development of tolerogenic DCs and/or Tregs by persistent 
abrogation of pro- inflammatory signals, which is in line with the re-
cent presentation of IL- 37 as an active inhibitor of trained immunity 
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effects.85 Together with its previously described balancing effects 
on the immunometabolism, this regulatory effect of IL- 37 on allergic 
inflammation establishes IL- 37 as a central factor for the mainte-
nance of the local immuno- homoeostasis.86,87 Consequently, these 
findings suggest specifically targeting these pro- inflammatory cyto-
kine effects (eg, by compensating for the impaired IL- 37 response or 
by inhibiting IL- 1R3)51 will be superior to glucocorticoid treatment 
that also decreases the inherent regulatory effects of IL- 37.
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