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Abstract: In any research field, data access and data integration are major challenges that even large,
well-established consortia face. Although data sharing initiatives are increasing, joint data analyses on
nutrition and microbiomics in health and disease are still scarce. We aimed to identify observational
studies with data on nutrition and gut microbiome composition from the Intestinal Microbiomics
(INTIMIC) Knowledge Platform following the findable, accessible, interoperable, and reusable (FAIR)
principles. An adapted template from the European Nutritional Phenotype Assessment and Data
Sharing Initiative (ENPADASI) consortium was used to collect microbiome-specific information and
other related factors. In total, 23 studies (17 longitudinal and 6 cross-sectional) were identified from
Italy (7), Germany (6), Netherlands (3), Spain (2), Belgium (1), and France (1) or multiple countries (3).
Of these, 21 studies collected information on both dietary intake (24 h dietary recall, food frequency
questionnaire (FFQ), or Food Records) and gut microbiome. All studies collected stool samples. The
most often used sequencing platform was Illumina MiSeq, and the preferred hypervariable regions
of the 16S rRNA gene were V3–V4 or V4. The combination of datasets will allow for sufficiently
powered investigations to increase the knowledge and understanding of the relationship between
food and gut microbiome in health and disease.

Keywords: microbiome; dietary intake; metadata; data integration; data sharing; observational
studies; metabolome

1. Introduction

Microbiome research has gained popularity over the past 15 years thanks to a reduc-
tion in the cost of high-throughput sequencing technology and the increased availability of
sophisticated mathematical and computational techniques, allowing for a better quantifica-
tion of the microbial composition and, therefore, an understanding of its impacts on human
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health [1,2]. Firmicutes and Bacteroidetes are the two dominant phyla. Together, Firmicutes
and Bacteroidetes represent approximately 90% of the total community of the adult human
gut microbiota. Other subdominant phyla, namely Proteobacteria, Actinobacteria, and
Verrucomicrobia, are also present [3,4]. The primary determinants capable of modulating
the gut microbial composition are diet and interindividual variations, such as epigenetic
variations of the host [2]. A diverse diet leads to a diverse microbiome, which, in turn, is
considered a healthy microbiome [5]. However, intra- and interindividual variations, as
well as the temporal dynamics of the microbiome, preclude a single narrow definition of a
healthy human gut microbiome [6].

Previous research projects such as the National Institutes of Health (NIH) Human Mi-
crobiome Project (HMP) [7] in the USA (2007–2014) and the Metagenomics of The Human
Intestinal Tract (MetaHIT) [8] in Europe (2008–2012) have applied advanced sequenc-
ing and bioinformatics tools. These projects have undertaken impactful research on the
influence of diet and nutrition on the gut microbiota in health and diseases, including in-
flammatory bowel disease (IBD) and cardiometabolic diseases. The term “microbiome” can
be defined—according to a consensus definition recently suggested by Berg et al. [9]—as “a
characteristic microbial community occupying a reasonable well-defined habitat which has
distinct physio-chemical properties”, which may help to improve the standardization of
microbiome studies in the future. The term “metagenome” refers to the collective genomic
content from the members of a microbiota [6]. For conditions such as obesity, some stud-
ies using high-throughput sequencing technology have suggested that obese individuals
have a higher proportion of Firmicutes and a lower proportion of Bacteroidetes compared
to lean people, although the results from various studies have not been consistent [10].
Other studies have shown that obesity is associated with lower proportions of the family
Rikenellaceae (phylum Bacteroidetes) and the genus Oscillospira (phylum Firmicutes, family
Ruminococcaceae), and with higher proportions of genera Blautia and Roseburia (phylum
Firmicutes) [11]. Whereas Akkermansia muciniphila (phylum Verrucomicrobia) has been
consistently linked to improved metabolic health and leanness [12], Collinsella (phylum
Actinobacteria) has been associated with obesity [3]. However, the results from different
studies vary substantially, and to date, no consistent taxonomic signature of obesity has
been identified in the human gut microbiome [13,14]. A meta-analysis showed much more
consistent reports of taxonomic shifts in IBD than those observed for obesity, including
a depletion of Firmicutes and Bacteroidetes and enrichment in Proteobacteria and Acti-
nobacteria, although no individual microbes were consistently associated with IBD across
studies [15]. Further, it is unclear to what extent differences in diets (or dietary behavior)
account for differences in the microbiome between obese and non-obese individuals. For
example, it is known that high-fiber diets influence the human microbiome and immune
system in healthy adults [16,17], and that obese individuals consume less fiber as compared
to non-obese individuals [18–20]. However, one study found sex differences regarding
fiber intake, which could be possibly explained by the fact that women tend to be more
conscious about their health and better informed about food and nutrition compared to
their male counterparts [19].

Overall, inconsistent results from individual studies limit our current understanding
of the exact associations between the human gut microbiome and disease [21], which could
be due to selection bias, geographic differences, unknown confounding factors, differences
on taxonomical resolution, or a lack of standard sampling collection, processing, and
analysis methods, among other factors [22]. The Knowledge Platform (KP) on Food, Diet,
Intestinal Microbiomics and Human Health (KP-INTIMIC) consortium (2019–2021) (https:
//dashin.eu/jpi-kp/pages/home/, accessed on 10 July 2021) aims to foster transnational
and multidisciplinary collaboration and networking to accelerate, further develop, and
increase the impact of gut microbiome research related to human health. The KP-INTIMIC
further aims to develop strategies to standardize and harmonize datasets to minimize bias
in data analysis, provide the necessary infrastructure for data sharing and data integration,
and conduct use cases using data from animal and human studies identified within the

https://dashin.eu/jpi-kp/pages/home/
https://dashin.eu/jpi-kp/pages/home/
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consortium. The use cases will also help to move from association to causality between gut
microbiome and disease.

Here, we present a description of the design, characteristics, methods, and available
data and metadata of epidemiological observational studies on food, diet, and gut micro-
biomics identified within the context of KP-INTIMIC. As in a previous JPI Knowledge
Hub, the European Nutritional Phenotype Assessment and Data Sharing Initiative (EN-
PADASI) [23,24], the identified studies may be used in future federated individual-level
joint data analyses examining the human gut microbiome and the role of diet in health and
disease in the areas of early infancy, the development of sub-chronic and chronic diseases
during lifespan, and aging. “Federated” refers to the joint analyses of individual-level data
using the statistical platform DataSHIELD, a flexible, modular, free, open-source solution
that allows the conduct of analysis without the need of individual studies to physically
transfer their data into a single central database, as a way to circumvent privacy, ethical,
and legal constrains of observational studies that often preclude the physical sharing of
data [25].

2. Materials and Methods
2.1. Consortium Assembly

KP-INTIMIC is a knowledge hub comprising 55 partners from 9 countries with the aim
of fostering studies on the microbiome, nutrition, and health, making them findable, accessi-
ble, interoperable, and reusable (FAIR) to the scientific community to reduce fragmentation.
The consortium also aims to (1) standardize and harmonize data for comparability, (2) move
from association to causality, and (3) facilitate data sharing [25,26]. The consortium was
assembled in response to a call by the Joint Programming Initiative “A Healthy Diet for a
Healthy Life” (JPI-HDHL) ERA-Net Cofund “Interrelation of the INtesTInal MICrobiome,
Diet and Health” (HDHL-INTIMIC). The research groups that showed an interest in the
call submitted an “Expression of Interest” letter to the Call Secretariat. Subsequently, the
research groups networked to frame the KP-INTIMIC program proposal, in which an initial
list of 36 human studies (17 observational and 19 intervention) and 11 model organism
studies potentially available within the consortium were provided.

2.2. Steps to Develop a Template for Study Metadata Collection

We developed a template to gather meta-information from each observational study
identified in the KP-INTIMIC network using an already existing template from the pre-
vious JPI European Nutritional Phenotype Assessment and Data Sharing Initiative (EN-
PADASI) [23]. The template was adapted for the collection of microbiome-specific metadata.
A three-step approach was followed to develop a template suitable for the KP-INTIMIC
needs. The first step was to agree with our partners on the type of information we would
like to collect from the identified studies. To this end, a virtual Working Group meeting
was organized, and discussions were held regarding types of metadata. The second step
was to seek advice from an expert in computational science to discuss relevant microbiome
metadata that would be interesting to collect for the use cases. The third step was to
hold a meeting with the partners responsible for the creation of the templates (human
(intervention and observational) and animal studies) to further discuss the templates for
metadata collection of human and animal studies, as well as the strategies to harmonize
the metadata related to the microbiome. To capture all relevant observational studies,
human studies of various designs (cohort, case-control, or cross-sectional) were collected.
However, in the present report, we only describe studies that collected data on nutrition
(e.g., dietary assessment), as well as stool samples.

Most of the information included in the template was taken from the template of
a previous JPI-HDHL call [23]. Briefly, the following metadata were obtained from the
studies: (1) general study information (study name, link to study website, funding body,
coordinating center), (2) scope of the study, (3) study design and recruitment, (4) exposure
measurements (dietary intake, alcohol and tobacco consumption, physical activity, seden-
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tary behavior, anthropometric measurements, sociodemographic information, and health
status), (5) main health-related outcome, and (6) laboratory measurements in biological
samples (traditional biomarkers, omics biomarkers, e.g., proteomics, genomics, and micro-
biomics). Furthermore, the template also aimed to collect information on signed informed
consent, ethics committee approval, and whether the data owners wanted to share the raw
data and/or metadata within and outside the KP-INTIMIC consortium.

We first circulated the template among the principal investigators (PIs) from the
17 observational studies listed in the KP-INTIMIC program proposal for the confirmation
of participation. Then, we circulated the template among all KP-INTIMIC partners to
identify more studies. The PIs filled in the template and sent it back with the requested
meta-information to the Max Delbrück Center for Molecular Medicine, where they were
kept and aggregated into a single meta-database for integration in KP-INTIMIC. An initial
list of 27 studies was obtained, but 4 were finally excluded, resulting in 23 studies. Reasons
for exclusion were as follows: intervention design (n = 2), no collection of data on dietary
intake, and no collection of stool samples for gut microbiome measurement (n = 2).

3. Results

Within the KP-INTIMIC, we identified 23 observational studies conducted in Italy
(n = 7), Germany (n = 6), the Netherlands (n = 3), Spain (n = 2), Belgium (n = 1), and France
(n = 1), and multinational studies conducted in two or more countries (including Burkina
Faso, Cyprus, Denmark, Estonia, France, Germany, Hungary, Italy, and Sweden) (n = 3)
(Table 1). Sixteen studies were population-based, whereas seven were disease-based (eating
disorders; Parkinson’s disease; chronic kidney diseases; cardiometabolic diseases, including
IBD (including ulcerative colitis and Crohn’s disease); and irritable bowel syndrome). Of
the 16 population-based studies, 13 were of cohort design and 3 were of cross-sectional
design. Of the seven disease-based studies, four were of cohort design and three were
of cross-sectional design. Of the seven disease-based studies, one had no controls and
exclusively recruited diseased individuals with chronic kidney disease (Medika, Italy),
whereas the other six primarily recruited disease-based participants but also included a
non-diseased control group, which was mainly recruited through advertisements. Of the
23 studies, 8 studies recruited children, of which 3 (birth cohort) studies recruited children at
birth (LISA, Germany; LucKI Gut Study, Netherlands; DORIAN-PISAC, Italy), 3 in the first
year of life (Infant microbiome studies, Italy; EarlyMicroHealth, Spain; DONALD study,
Germany), and 2 studies recruited children and adolescents (IDEFICS/I.Family cohort,
TransMic, Multinational). The other 15 studies recruited adult populations. Six studies
were still ongoing. Of the 23 observational studies, 15 studies recruited <1000 individuals,
4 recruited ≥1000 individuals (FoCus, and LISA, Germany; Metacardis, Multinational; IBD
South Limburg Cohort, Netherlands), and 3 recruited over 10,000 individuals (DONALD,
EPIC-Potsdam, IDEFICS/I.Family cohort, and NAKO, Germany), although data on the gut
microbiome or collected stool samples were often available only in subsamples.

Table 1. Characteristics of the identified observational studies within the KP-INTIMIC consortium.

Study [Ref.] Country Study Design
Number of
Participants

[n (M/F)]
Recruitment

Years
Population

[Age at Recruitment]

DONALD 1 study [27] Germany Cohort 10,172 (4960/5212) 1985-current
(open)

Population-based
Convenient sampling

(3–6 mo)

EPIC-Potsdam [28] Germany Cohort 27,548
(10,904/16,644) 1994–1998 Population-based

(35–65 y)

LISA 2 [29] Germany Cohort 3094
(1584/1510) 1997–1999 Population-based

(0 y)

NAKO 3 [30] Germany Cohort
205,184

(101,658/103,52)
(Germany)

2014–2019
(baseline)

Population-based
(20–69 y)
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Table 1. Cont.

Study [Ref.] Country Study Design
Number of
Participants

[n (M/F)]
Recruitment

Years
Population

[Age at Recruitment]

Diet4MicroGut [31] Italy Cohort 153
(64/89) 2012–2013 Population-based

(18–60 y)

DORIAN-PISAC 4 [32] Italy Cohort
90 parent-children

trios
([31] 48/42 children)

2011–2014 Population-based
(0 y)

Infant microbiome
studies (full term,

moderately preterm and
preterm infants with

VLBW 5) [33]

Italy Cohort 87
(N.A.) 2013–2015 Population-based

(1–20 days)

Italian Elderly Cohort
[34] Italy Cohort 201

(101/100) 2012–2015 Population-based
(65–79 y)

Octopus (PLIC 8) Italy Cohort 93
(N.A.) 2021-current PLIC 8: Population-based

(N.A.)

IDEFICS/I.Family
cohort [35]

Multinational
(Cyprus,

Estonia, Germany,
Hungary, Sweden)

Cohort

IDEFICS baseline:
n = 16,229; 2-y FU:
n = 13,596; 6-y FU

(I.Family): n = 9617
(≈50%/≈50%)

2007–2014
(ongoing:

web-based
follow-up)

Population-based
(2–9.9 (in 2007/2008,
IDEFICS children);
2–18 (for siblings of
IDEFICS; children

recruited in 2013/2014 in
the I.Family study))

TransMic [36] Multinational (Italy
and Burkina Faso) Cohort 300

(N.A.) 2018–2020 Population-based
(1–50 y)

LucKI Gut Study [37] Netherlands Cohort 107
(63/44) 2017-current Population-based

(0 y)

EarlyMicroHealth [38] Spain Cohort 151
(84/67) 2015/2020 Population-based

(0–24 mo)

ErNst Germany Cross-sectional 106
(53/53) 2018 Population-based

(20–79 y)

Elderly microbiome
studies (centenarians &

semi-
supercentenarians) [39]

Italy Cross-sectional 54
(15/39) 2007–2015 Population-based

(65–109 y)

DIMISA [40] Spain Cross-sectional 184
(52/132) 2012–2015

Population-based
Recruitment in

wild-living population
and elderly homes

(19–95 y)

EDILS 6 [41] France Cohort 280
(47/233) 2015–2021

Disease-based (eating
disorders)

Recruitment through
clinics and through
advertisement (for

controls)
(18+ y)

Medika Study [42] Italy Cohort 60
(49/11) 2015–2019

Disease-based (CKD 7)
Patients from the

nephrology, dialysis, and
transplantation section of

the hospital
(56–80 y)

IBD 9 South Limburg
Cohort [43]

Netherlands Cohort

4000 (1700 in
biobank)

(50–55% UC 10,
40–45% CD 11, &
2–3% IBD 9-U)

1991-current

Disease-based (UC 10,
CD 11, IBD 9)

recruitment through
outpatient department &

advertisements (for
controls)
(18+ y)

Maastricht IBS 12

Study [44] Netherlands Cohort 627
(214/413) 2008-current

Disease-based (IBS 12)
recruitment through
primary, secondary,

tertiary care &
advertisements (for

controls)
(18+ y)
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Table 1. Cont.

Study [Ref.] Country Study Design
Number of

Participants [n
(M/F)]

Recruitment
Years

Population
[Age at Recruitment]

Effect of fibers on gut
microbiota and SCFA 13

in Parkinson patients and
healthy references

Belgium Cross-sectional 63
(N.A.) 2018–2019

Disease-based
(Parkinson)

Convenience sampling
(healthy controls)

(55+ y)

FoCus 14 [45] Germany Cross-sectional 1811
(1133/678)

2014–2015
(Baseline)

Disease- based (Obesity)
& Population-based (for

controls)
Recruitment through

population office (1309)
and obesity clinic (502)

(18–83 y)

MetaCardis [46]
Multinational

(Germany, France
and Denmark)

Cross-sectional 2189
(1101/1088) 2013–2015

Disease-based (CMD 15)
Recruitment through
clinics and through
advertisement (for

controls)
(18–75 y)

1 DONALD: DOrtmund Nutritional and Anthropometric Longitudinally Designed; 2 LISA: Influences of Lifestyle-Related Factors on the
Human Immune System and Development of Allergies in Children; 3 NAKO: German National cohort; 4 DORIAN-PISAC: Developmental
ORigins of healthy and unhealthy AgeiNg: The Role of Maternal Obesity-Pisa Birth Cohort; 5 VLBW: very low birth weight; 6 EDILS:
Eating Disorders Inventory and Longitudinal Survey; 7 CKD: chronic kidney disease; 8 PLIC: Progression of Lesions in the Intima of the
Carotid; 9 IBD: inflammatory bowel disease; 10 UC: Ulcerative Colitis; 11 CD: Crohn’s disease; 12 IBS: irritable bowel syndrome; 13 SCFA:
short chain fatty acids; 14 FoCus: Food Chain Plus; 15 CMD: cardiometabolic disease. N.A.: not available.

3.1. Assessment of Dietary Intake and Covariates

Twenty-two studies collected data on dietary intake, whereas one did not (Effect of
food on gut microbiota and metabolites in Parkinson patients, Belgium). Seventeen studies
collected dietary intake using a single method, such as the food frequency questionnaire
(FFQ) (n = 9), food records (n = 4), and other forms (n = 4). Four studies collected informa-
tion using two methods (24 h dietary recall and FFQs), and none used all three methods
(24 h dietary recall, FFQs and food records) (Table 2). Multiple 24 h dietary recalls were
administered in five studies. FFQs were semiquantitative (n = 13) and qualitative (n = 1).

Table 2. Methods used for dietary assessments in the identified observational studies participating in the KP-
INTIMIC consortium.

Study Country Dietary
Intake 24-h Recall FFQ 1 Food

Records Other

DONALD study Germany
√

— —
√

—

EPIC-Potsdam Germany
√ √

M 2 √
SQ 3 — —

LISA Germany
√

—
√

SQ 3 — —

NAKO Germany
√ √

M 2 √
SQ 3 — —

Diet4MicroGut Italy
√

— —
√

—

DORIAN-PISAC Italy
√ √

M 2 √
SQ 3 — —

Infant microbiome studies Italy
√

— — — Interview or visits 4

Italian Elderly Cohort Italy
√

— —
√

—

Octopus Italy
√

— — — Questionnaires

IDEFICS/I.Family cohort Multinational
√ √

M 2 √
QU 5 — —

TransMic Multinational
√

—
√

SQ 3 —

LucKI Gut Study Netherlands
√

—
√

SQ 3 — —

EarlyMicroHealth Spain
√

—
√

SQ 3 — —

ErNst Germany
√

—
√

SQ 3 — —

Elderly microbiome studies Italy
√

— —
√6 —
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Table 2. Cont.

Study Country Dietary
Intake 24-h Recall FFQ 1 Food

Records Other

DIMISA Spain
√

—
√

SQ 3 — —

EDILS France
√

— — — Interview

Medika Study Italy
√

— — —
√

IBD South Limburg Cohort Netherlands
√6 —

√
SQ 3,6 — —

Maastricht IBS Study Netherlands
√

—
√

SQ 3 — —

Effect of fibers on gut
microbiota and SCFA in
Parkinson patients and

healthy references

Belgium — — — — —

FoCus Germany
√

—
√

SQ 3 — —

MetaCardis Multinational
√ √

M 2,6 √
SQ 3 — —

1 FFQ: food frequency questionnaire; 2 M: multiple; 3 SQ: semiquantitative; 4 The following information is available: feeding with human
(mother’s or donor’s) milk, formula, or mixed; 5 QU: qualitative; 6 available for a subset of participants.

Information on further collected data, such as alcohol and tobacco consumption,
physical activity, anthropometry, socioeconomic status (SES) (including sex, age, residence,
country of birth, country of citizenship, marital status, income, and education level, among
other variables), medication use, and health status are described in Supplement Table S1.

3.2. Biological Samples and Microbiome Measurements

All the studies collected stool samples, and all but one study (NAKO, Germany)
already had microbiome data available from the stool samples. Three studies also collected
saliva (NAKO, Germany; Diet4MicroGut, Italy) or oral swabs (Infant microbiome studies,
Italy) for the microbiome, although data on the microbiome was only available in the
two Italian studies (Table 3).

Table 3. Microbiome data available in the observational studies participating in the KP-INTIMIC consortium.

Study Country

Gut Microbiome Other Microbiome

Stool Sample
Collected

Gut
Microbiome

Measured

Other Samples
Collected

Other
Microbiome

Measured

DONALD study Germany
√ √

— —

EPIC-Potsdam Germany
√ √

— —

LISA Germany
√ √

— —

NAKO Germany
√

— Saliva —

Diet4MicroGut Italy
√ √

Saliva
√

DORIAN-PISAC Italy
√ √

— —

Infant microbiome studies Italy
√ √

Oral swabs
√

Italian Elderly Cohort Italy
√ √

— —

Octopus Italy
√ √

— —

IDEFICS/I.Family cohort Multinational
√ √

— —

TransMic Multinational
√ √

— —

LucKI Gut Study Netherlands
√ √

— —

EarlyMicroHealth Spain
√ √

— —

ErNst Germany
√ √

— —

Elderly microbiome studies Italy
√ √

— —
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Table 3. Cont.

Study Country

Gut Microbiome Other Microbiome

Stool Sample
Collected

Gut
Microbiome

Measured

Other Samples
Collected

Other
Microbiome

Measured

DIMISA Spain
√ √

— —

EDILS France
√ √

— —

Medika Study Italy
√ √

— —

IBD South Limburg Cohort Netherlands
√ √

— —

Maastricht IBS Study Netherlands
√ √

— —

Effect of fibers on gut microbiota
and SCFA in Parkinson patients

and healthy references
Belgium

√ √
— —

FoCus Germany
√ √

— —

MetaCardis Multinational
√ √

— —

The preferred sequencing platform was the Illumina MiSeq (n = 18), and the preferred
method was amplicon sequencing of the 16S rRNA gene (variable regions V3–V4 or V4).
Seven studies conducted shotgun metagenome sequencing (Elderly microbiome studies
(centenarians and semi-supercentenarians), Diet4MicroGut, Italy; MetaCardis, TransMic,
Multinational; IBD South Limburg cohort, Maastricht IBS Study, The Netherlands; EarlyMi-
croHealth, Spain). The microbiome sequencing platforms used in shotgun metagenomic
studies were the Illumina HiSeq (n = 2), Illumina NextSeq (n = 2), Illumina NovaSeq (n = 1),
Illumina MiSeq (n = 1) and Ion-Proton (n = 1). Only two studies (IDEFICS/I.Family cohort,
TransMic, Multinational) collected information on the type of meal last eaten prior to
sample extraction (Table 4).

Table 4. Gut microbiome assessment in stool samples from the observational studies participating in the KP-INTIMIC
consortium.

Study Name Country

Gut Microbiome

Number of
Participants

with Samples
Method 1 Sequencing

Platform

Info on Type of
Meal Last Eaten

Prior Sample
Extraction

DONALD study Germany 128 16S (V3–V4) Illumina MiSeq No

EPIC-Potsdam Germany 3299 16S (V3–V4) Illumina MiSeq No

LISA Germany 166 2 16S (V3–V4) Illumina MiSeq No

NAKO Germany 76,000 — — No

Diet4MicroGut Italy 153 16S (V1–V3)
454 Junior (16S seq),

Illumina NextSeq
(shotgun)

No

DORIAN-PISAC Italy 30–80 3 16S (V3–V4) Illumina MiSeq No

Infant microbiome studies Italy 87 16S (V3–V4) Illumina MiSeq No

Italian Elderly Cohort Italy 201 16S (V3–V4) Illumina MiSeq No

Octopus Italy 93 16S (V3–V4) Illumina MiSeq No

IDEFICS/I.Family cohort Multinational 140 16S (V3–V4) Illumina MiSeq Yes

TransMic Multinational —
Shotgun
ITS1-4 4

Illumina NovaSeq
Illumina MiSeq

No

LucKI Gut Study Netherlands 898 16S (V3–V4) Illumina MiSeq No

EarlyMicroHealth Spain 900 16S (V3),
shotgun, qPCR

Illumina MiSeq (16S
and shotgun) No

ErNst Germany 212 16S (V4) Illumina MiSeq No
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Table 4. Cont.

Study Name Country

Gut Microbiome

Number of
Participants

with Samples
Method 1 Sequencing

Platform

Info on Type of
Meal Last Eaten

Prior Sample
Extraction

Elderly microbiome studies Italy 54; 51 16S (V3–V4),
shotgun

Illumina MiSeq;
Illumina NextSeq

(shotgun)
No

DIMISA Spain 184 qPCR — No

EDILS France 280 5 16S (V5–V6) Illumina MISeq No

Medika Study Italy 27 16S (V1–V3) Illumina MiSeq No

IBD South Limburg Cohort Netherlands 114 16S (V4),
shotgun

Illumina MiSeq
(16S seq), Illumina

HiSeq
(shotgun)

—

Maastricht IBS Study Netherlands 181 16S (V4),
shotgun

Illumina MiSeq (16S
seq), Illumina HiSeq

(shotgun)
—

Effect of fibers on gut
microbiota and SCFA in
Parkinson patients and

healthy references

Belgium — 16S and culture — No

FoCus Germany 1545 16S (V1–V2 &
V3–V4) Illumina MiSeq No

MetaCardis Multinational 2189 shotgun Ion-proton No
1 16S: 16S rRNA gene amplicon sequencing (amplified variable regions), shotgun: shotgun metagenomic sequencing; 2 in a subset at
6 years; 3 depending on the follow-up; 4 ITS: internal transcribed spacer; 5 at 0-, 18-, and 36-month follow-ups. NR: not reported.

Information on biomarkers, such as blood lipids, glucose/insulin, inflammatory mark-
ers, adiposity biomarkers, and metabolome data, are described in Supplement Table S2.
In total, 14 studies had data on blood lipids (HDL, LDL, and total cholesterol) and glu-
cose/insulin (glucose, HbA1c, fasting insulin, C-peptide), 16 studies had data on inflam-
matory biomarkers (C-Reactive Protein (CRP), interleukin 6 (IL-6), tumor necrosis factor
(TNF)-α), and 10 studies had data on adiposity biomarkers (adiponectin, leptin). More-
over, 15 studies collected metabolome data from stool, urine, plasma, or serum. These
studies mainly used nuclear magnetic resonance (NMR) and mass spectrometry (MS) in
different forms, such as gas chromatography/mass spectrometry (GC/MS) and liquid
chromatography/tandem mass spectrometry (LC/MS/MS).

3.3. Informed Consent, Ethics and Data Sharing

All the studies were approved by an Ethics Committee and had collected the informed
consent from the individuals participating in their study. In total, 12 studies showed inter-
est in the storage and data sharing within the KP-INTIMIC consortium, although some of
them needed confirmation or requested an agreement form. Storing and sharing raw data
directly within KP-INTIMIC is restricted by study agreements or consent, necessitating a
federated approach similar to the one proposed here for fully exploring their potential. All
studies expressed their will to store and share raw data for specific research projects outside
the INTIMIC, with the exception of three studies (Effect of food on gut microbiota and
metabolites in Parkinson patients, Belgium; EPIC-Potsdam, Germany, TransMic, Multina-
tional). Regarding metadata, all but the Belgian study agreed to share metadata, although
some of them needed confirmation or required board approval (Supplement Table S3).

4. Discussion

Within the KP-INTIMIC, we identified a total of 23 observational studies which
were mainly of longitudinal or cross-sectional design. These studies were conducted in
12 European countries and 1 African country, with data on dietary intake, microbiome,
and/or health outcomes. Sixteen studies recruited individuals from the general population
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whilst seven were disease-based. Most of the studies included adults. Twenty-one studies
had data both on dietary assessment and the gut microbiome, whereas one study had data
on dietary intake but not on the gut microbiome, although stool samples were collected.
Another study had data on the microbiome but not on dietary intake. The studies mostly
amplified and sequenced hypervariable regions of the 16S rRNA gene, such as the V3
and V4, using the Illumina MiSeq sequencing platform. Seven studies conducted shotgun
metagenome sequencing mostly using the Illumina (MiSeq, NextSeq, NovaSeq, or HiSeq)
sequencing platform, and fifteen studies had also data on the urine, stool, plasma, or
serum metabolome.

Whereas observational studies cannot prove causality, they have the advantage of
recruiting individuals from the general population. Therefore, their results are more
generalizable. In addition, observational studies are usually able to assess habitual dietary
intake in relation to the gut microbiome. Conversely, intervention studies may select
specific population groups (e.g., obese only), which can hinder the application of their
results to the general population. Further, dietary intervention studies usually focus
on specific short-term multimodal interventions, which often limit interpretability and
generalizability. The impact of short-term dietary changes on the gut microbiome is also
transient. Of the 16 (70%) population-based studies of the KP-INTIMIC, 14 recruited
individuals from the general population, and 2 recruited individuals from a convenience
sample. Of the disease-based studies, individuals were recruited from primary, secondary,
or tertiary healthcare settings. In addition, 17 studies (74%) were of longitudinal design,
which may have allowed the researchers to examine the temporal relationships of the
gut microbiota, as well as the dynamic nature of those factors that may modulate the gut
microbiota composition, such as dietary intake [22]. Though the identified studies in the
KP-INTIMIC used various types of dietary assessment methodologies, successful federated
joint meta-analysis can still be conducted, as shown previously [24]. Another advantage
of conducting joint data analysis using data from the identified studies is related to the
increase in the statistical power [13]. Sufficiently powered studies may find more consistent
dysbiosis–disease associations, and may be able to identify taxonomic signatures that may
help define and characterize the composition of a dysbiotic gut microbiome [22]. Moreover,
larger and representative sample populations of healthy individuals covering different
ages and cultures (races or ethnicities) offer an opportunity to examine how the dynamics
of gut microbiomes shift during the lifespan, vary between populations, and respond to
lifestyle changes [47].

Divergences between individual microbiome studies with similar designs may be
explained, among others, by technical factors, which may lead to systematic or nonsys-
tematic errors. In turn, this may lead to misclassification, which can be differential (e.g.,
systematic, which would be a bias) or nondifferential (e.g., random, which would not be a
bias). Technical factors cover stool sampling and preservation methods, as well as DNA
isolation and extraction. These aspects are interrelated, since it is thought that both sample
collection and preservation methods may have a profound effect on the output of high-
throughput sequencing-based technologies used for microbiome determination [22,48].
For example, a cohort study, which quantified technical factors during sample preparation
that may affect the characterization of the gut microbiome, showed that DNA extraction
methods had the highest impact on the observed microbiome variability, precluding a
clear picture of the microbiome signatures of various health and nutrition factors [48].
Research in food, diet and the gut microbiome would largely benefit from initiatives joining
efforts to propose guidelines to standardize stool collection and preservation methods. In
this regard, the KP-INTIMIC provides an overview on relevant initiatives to develop a
collection of standard operating procedures (SOPs) tools for the standardization of wet
lab procedures, and data integration of different omics technologies. It has been shown
that different storage conditions have significant effects on the health status indicators of
the microbiota, such as its richness (quantity of microbes) and its biodiversity (quantity
of species), measured by means of alpha diversity (Shannon Diversity index (SDI)), beta
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diversity measurements (e.g., UniFrac, Bray-Curtis dissimilarity (BC)), and taxa abun-
dances in comparison to immediate freezing (at −20 ◦C or −80 ◦C) [22]. By conducting
federated joint data analyses using studies from the KP-INTIMIC consortium, we will
gain insights on whether study-specific differences in technical factors play a role in the
studied associations.

Traditionally, gut microbiota modulation has been characterized using culture-dependent
techniques, which have failed to culture the majority of the microbial ecosystem [6]. Nowa-
days, high-throughput techniques such as the 16S or shotgun metagenomics (the so-called
next generation sequencing techniques) are increasingly used to study the microbiome
to identify the genetic material of the microbes [2]. Therefore, results from studies us-
ing culture-dependent techniques cannot be easily compared with those using culture-
independent techniques. Next-generation sequencing approaches include metagenome
sequencing and marker gene sequencing [47]. Whereas the former focuses on sequencing
all of the microbial genes from a given sample to provide a more refined and comprehen-
sive knowledge of the composition and genetics of the gut microbiota, the latter focuses
on sequencing one or more specific gene regions, such as the 16S rRNA gene, specific to
the bacteria and archaea of taxonomic relevance, providing a broad picture of the types
of microbes present in the gut [2]. Thus, the two approaches show both advantages and
disadvantages. Because metagenome sequencing generates larger volumes of data, it
requires more computationally intensive analysis compared to marker gene sequencing,
which increases the overall cost dramatically together with an increased sequencing cost
and an increase in working hours. However, though cheaper, one of the main caveats
of marker gene sequencing is its limited resolution when it comes to the identification
of microbial taxa since it only depicts the relative abundance of targeted organisms [2].
Moreover, marker gene sequencing is highly dependent on the primers used for region
amplification, which can lead to bias if the selected primers lack sensitivity to certain
microorganisms. Studies using marker gene sequencing can only be comparable if the
same region is amplified. In addition, marker gene sequencing is not the best approach
to identify low abundant and rare microbial groups [6]. Despite these limitations, our
collection of studies enables comparisons since multiple studies amplified the same region,
e.g., V4 (n = 3 studies) and V3–V4 (n = 11), and five have conducted both marker gene
and shotgun metagenome sequencing. This underlines the importance of standardizing,
providing detailed descriptions of methods, and determining technical factors that are
critical for the comparability of studies [48].

Another relevant aspect that needs to be addressed to advance the microbiome field
is the examination of the functional products of the microbes by means of metabolomics
and the underutilized meta-transcriptomics technology approach [49]. Of the 23 studies,
15 identified in the KP-INTIMIC have also collected data on metabolomics using differ-
ent strategies such as the targeted and untargeted metabolomics in urine, stool, plasma,
or serum. The metabolomics investigations in microbiome studies are fundamental in
assessing the role of diet in shaping the functions of the gut microbiome. In fact, many
health-related microbial metabolites, such as short-chain fatty acids, TMAO, urolithins,
and bile acids, have dietary nutrients as precursors. Targeted metabolomics is a strategy
characterized by a predefined list of molecules, which can be detected and quantified with
high-quality standards. A caveat is that targeted metabolomics does not allow for the
discovery of molecules that are not in the predetermined list [50], whereas untargeted
metabolomics does. The molecules detected by metabolomics are metabolites resulting
from the action of the microbiota and their quantification provide a clear portrait of the alter-
ations in the metabolic performance of the microbiota under any condition [6]. One study,
which used data from a population-based twin study (TwinsUK), estimated stool metabo-
lite associations with adiposity and gut microbial composition. The researchers found that
stool metabolites, which were strongly associated with obesity, explained nearly 68% of
the variance in gut microbial composition [51]. Thus, understanding how microbiome–
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metabolome associations relate not only to obesity but also to other chronic disease risk
factors could shed light on disease etiology and identify targets for intervention [10].

5. Conclusions

In conclusion, 23 observational studies with a wealth of data on dietary intake, micro-
biome, biomarkers, and health outcomes were identified within KP-INTIMIC for future
combined analysis. Crucially, due to common data sharing restrictions, a federated ap-
proach similar to the one proposed here appears to be a necessity to make full use of this
body of knowledge. The identified studies may promote collaboration initiatives using
FAIR data to conduct secondary data analysis that may shed light on the understanding of
the role of the human gut microbiome in health and disease, as well as the effects of diet on
the composition of the gastrointestinal ecosystem in early infancy, ageing, and in health
and disease both within and outside the KP-INTIMIC consortium.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nu13093292/s1, Table S1: Description of other measurements assessed in the observational
studies participating in KP-INTIMIC, Table S2: Description of biomarkers and metabolome assessed
in the observational studies participating in KP-INTIMIC, Table S3: Availability of observational
studies to store and share data.
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