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ABSTRACT
Background: The circulatory system distributes nutrients, signaling molecules, and immune cells
to vital organs and soft tissues. Epidemiological, animal, and in vitro cellular mechanistic studies
have highlighted that exposure to ionizing radiation (IR) can induce molecular changes in cellular
and subcellular milieus leading to long-term health impacts, particularly on the circulatory system.
Although the mechanisms for the pathologies are not fully elucidated, endothelial dysfunction is
proven to be a critical event via radiation-induced oxidative stress mediators. To delineate connec-
tivities of events specifically to cardiovascular disease (CVD) initiation and progression, the adverse
outcome pathway (AOP) approach was used with consultation from field experts. AOPs are a
means to organize information around a disease of interest to a regulatory question. An AOP
begins with a molecular initiating event and ends in an adverse outcome via sequential linkages
of key event relationships that are supported by evidence in the form of the modified Bradford-
Hill criteria. Detailed guidelines on building AOPs are provided by the Organisation for Economic
Cooperation and Development (OECD) AOP program. Here, we report on the questions and dis-
cussions needed to develop an AOP for CVD resulting from IR exposure. A recent workshop jointly
organized by the MELODI (Multidisciplinary European Low Dose Initiative) and the ALLIANCE
(European Radioecology Alliance) associations brought together experts from the OECD to present
the AOP approach and tools with examples from the toxicology field. As part of this workshop,
four working groups were formed to discuss the identification of adverse outcomes relevant to
radiation exposures and development of potential AOPs, one of which was focused on IR-induced
cardiovascular effects. Each working group comprised subject matter experts and radiation
researchers interested in the specific disease area and included an AOP coach.
Conclusion: The CVD working group identified the critical questions of interest for AOP develop-
ment, including the exposure scenario that would inform the evidence, the mechanisms of tox-
icity, the initiating event, intermediate key events/relationships, and the type of data currently
available. This commentary describes the four-day discussion of the CVD working group, its out-
comes, and demonstrates how collaboration and expert consultation is vital to informing AOP
construction.
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Cardiovascular disease

Ionizing radiation (IR) can impact the circulatory system,
leading to diseases of the brain and heart. Among the dis-
eases of the circulatory system, cardiovascular disease
(CVD) is the leading cause of death worldwide, with 1 in 10
people aged 30–70 dying from diseases of the cardiovascular
system (CVS) (Ahmad & Anderson 2021; Roger et al. 2012).

It encompasses a variety of heart pathology sub-classes
including stroke, peripheral artery disease, cardiomyopathy,
cardiac hypertrophy, and ischemic heart disease (Figure 1).
Reviews on the subject are extensive and many mechanisms
have been proposed for IR-induced CVD (Little 2016; EPRI
2020). Historically, the adult heart has been considered
radio-resistant due to the low proliferation rate of cardio-
myocytes (ICRP 1984). However, new research suggests that
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the CVS is relatively sensitive to IR, with subclinical changes
detectable as early as a week following an acute exposure
and leading to chronic disease over time, depending on dose
(ICRP 2012).

Epidemiological reports clearly show that cardiac expos-
ure to moderate (0.5–1Gy) and high doses (1–5Gy) of IR
increases the risk of CVD (Kreuzer et al. 2015; Little 2016).
For example, a significantly increased risk of mortality is
observed in patients with left-sided breast cancer who
received the heart doses ranging from 3 to 17Gy (Reinders
et al. 1999; Guldner et al. 2006; Darby et al. 2010;
Andratschke et al. 2011; Bouillon et al. 2011; Darby et al.
2013). Moreover, it is now proposed that doses of irradi-
ation much lower than previously considered can cause
adverse effects on the CVS. Cardiac exposure to low doses
of IR has been shown to induce marked structural, cellular,
and molecular alterations in the irradiated heart, with mild
but significant functional impairment. An increased risk of
radiation-associated CVD after chronic and low to moderate
dose (0.1-0.5Gy) exposures has been shown in epidemio-
logical studies on accidentally or occupationally exposed
populations (Preston et al. 2003; Azizova et al. 2010;
Shimizu et al. 2010; Simonetto et al. 2014; Azizova et al.
2015a, 2015b). Data from the Japanese atomic bomb survi-
vors suggest that the injury to the vascular system may be
an important component of the heart risk (Takahashi et al.
2017). Further evidence is provided by animal models that
support this notion (Tapio 2016; Baselet et al. 2019;
Hamada et al. 2020). Single acute high dose exposure (2, 8
and 16Gy) in a mouse model suggests that irradiation dir-
ectly induces stress signals by triggering an inflammatory
response that further results in progressive structural dam-
age of the myocardium and microvasculature (Seemann
et al. 2012; Baselet et al. 2016). These studies have impli-
cated the vascular endothelium as a target for radiation

exposure. Oxidative stress and chronic inflammation associ-
ated with radiation exposure may trigger endothelial dys-
function and downstream vascular remodeling (Baselet et al.
2019). However, clear mechanisms have not been delineated,
particularly at the low doses. With decades of research in
this field, there is a significant need to organize and consoli-
date the information into a structured framework.

Adverse outcome pathways

The adverse outcome pathway (AOP) approach helps to
assemble current knowledge on well-accepted critical events
linked to disease progression. The approach is being used in
chemical toxicology to understand key events (KEs) causing
diseases that are of relevance to the human population
(Villeneuve et al. 2014). AOPs begin with a molecular ini-
tiating event (MIE) defined as the first interaction of the
stressor with a cell. This initiation then leads to downstream
KEs that are critical hallmarks along the path to the adverse
outcome (AO). A KE is represented at the molecular, cellu-
lar, tissue, organ, and individual level and linked by key
event relationships (KERs) that are supported by in silico,
in vitro, and in vivo experimental data (OECD 2016a).

The Organisation for Economic Cooperation and
Development (OECD) launched a program in 2012 to sup-
port the AOP approach (Ankley et al. 2010; OECD 2016b).
Currently, there are over 500 AOPs in their AOP Wiki
(www.aopwiki.org), of which only a few are built using radi-
ation studies, while the remainder are chemical/ecotoxico-
logical-centric. Although there are only a few radiation
AOPs, a number of the KEs and KERs in the AOP Wiki are
relevant and can be populated with radiation-relevant stud-
ies. This facilitates interconnectivity across simple AOPs,
allowing them to form networks that more accurately depict

Figure 1. Proposed cell types in the heart, key events and adverse outcomes that may contribute to cardiovasular disease. Not all potential cell types and key
events are listed, only those that were discussed in the working group meetings. Also some of the key events listed may be common across the different cell types.
Heart schematic was created in BioRender.com. ECM: extracellular matrix; NO: nitric oxide; ROS: reactive oxygen species.
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the complexity of a given disease. An example of effective
collaboration between the chemical and radiation commun-
ities has already been shown through a case study of an
AOP developed for lung cancer outcomes relevant to the
stressor of radon gas (Chauhan et al. 2019; Chauhan et al.
2021; Stainforth et al. 2021). This AOP contains shared KEs
leading to different AOs and is supported by evidence from
both chemical and radiation stressors.

Effective building of AOPs is dependent on available
information from studies that support each KER. The pro-
cess of finding evidence to support an entire AOP, or even
individual KERs, is a challenge requiring an understanding
of the scientific literature and subsequently, organization of
those studies to evaluate the weight of the evidence of caus-
ality, plausibility, consistency and specificity for each and
whole KERs according to the modified Bradford-Hill criteria
(Becker et al. 2015). This is best achieved through collabora-
tions and expert consultations. Such an approach can be
facilitated through working groups with subject matter
experts in the AO of interest and with knowledge spanning
biological levels of organization.

MELODI workshop

The Workshop on AOP development for IR effects, organ-
ized by the Multidisciplinary European Low Dose Initiative
(MELODI) and the European Radioecology Alliance associa-
tions, was held virtually on April 12-16, 2021. The main
objective was to raise the level of interest for the use of the
AOP approach in radiation protection, leveraging experience
from the chemical toxicology field. The workshop fostered
discussions on the AOP approach among different commun-
ities: health and environmental effects, radiation protection
and chemical toxicity, scientists and regulators. As part of
the workshop, four working groups were formed to focus
discussions on AOP development for specific diseases of
interest to the radiation field: leukemia, vascular effects,
reproduction, and fetal development. Meetings were held
over a four-day period to promote the exchange of ideas
and information and detail next steps.

Vascular effects is an important area of interest for AOP
development. It encompasses many disease pathologies with
different underlying mechanistic basis. Within vascular dis-
ease it was highlighted that there was available epidemio-
logical evidence to demonstrate an increased risk of CVD
following exposure to IR. The decades of available in vitro
and in vivo studies on this topic make IR-induced CVD an
attractive candidate for AOP development. The findings of
these studies facilitate structuring of a framework and pro-
vide the evidence needed to support the KERs, including
any areas of uncertainty.

Over the course of the workshop, the AOP approach was
explored and discussions centered on identifying the domin-
ant mechanistic events associated with CVD progression,
including the relevant information sources such as review
articles and existing work in the AOP Wiki (https://aopwiki.
org/). The working group members were knowledgeable in
the field of CVD and from institutions of both regulatory

and research-based interests. Daily discussions were guided
by a CVD subject matter expert and an AOP coach.
Although it was not feasible to develop a full AOP in the
short timeframe of this workshop, the ensuing working
group discussions described in the following sections pro-
vided the opportunity to review, distill, and organize a broad
amount of information. A final consensus was reached with
a focus on several KEs and distinct disease sub-classes that
were organized into a proposed CVD AOP, which is pre-
sented in the last section of this paper.

CVD Working group discussions

State of the science

Day 1 of the CVD working group focused on examining the
landscape of radiation-induced CVD by discussing the key
findings of a recent review by Tapio et al. (2021). The
review summarizes available human data across occupa-
tional, environmental, and diagnostic studies. Together,
these studies in the field of IR show that at moderate doses
(0.5–1Gy), there is suggestive evidence of effects whereas
from low doses (<0.1Gy) evidence is still emerging.
Mechanistically, the topic of radiation effects on the CVS is
well-studied, and much information is available from data
generated by in vitro and in vivo studies. The group deliber-
ated on the need to distinguish low dose from high dose
effects and how these would inform AOPs. It was high-
lighted that the development of an AOP would not be critic-
ally affected by the selection of a specific radiation dose.
The goal is to compile key evidence, focusing on studies
that support the evidence streams of the modified Bradford-
Hill criteria for causality (Becker et al. 2015). The working
group agreed that the best path forward was to examine the
entire body of evidence, irrespective of dose, dose-rate and
ionizing radiation types. Particularly, since the evidence in
the area of low dose and low dose-rate (<100 mGy, <5
mGy/h) is somewhat still limited and sometimes variable, it
would be practical to start structuring findings from high
doses (1-5Gy) where evidence would be rich and more con-
sistent (Tapio et al., 2021). It was also noted that datasets
for both acute and chronic radiation exposures could poten-
tially be available. However, there is uncertainty on the
extent that this data meets the stringent requirements of the
modified Bradford-Hill criteria for incorporation in AOP. It
was acknowledged that the potential contribution of dose,
dose-rate, and different exposure scenarios (acute, chronic
and fractionation) in a quantitative AOP needs to be sys-
tematically evaluated. Such a quantitative AOP can provide
information for dose-response relationships among
the MIEs.

The CVD working group also deliberated on several
known KEs following irradiation including protein/DNA
damage, cellular senescence, endothelial dysfunction, and
specifically epigenetic changes, all based on a recent report
(Tapio et al. 2021) (a summary schematized in Figure 1). It
was agreed that endothelial dysfunction is an important etio-
logical event following radiation exposure that impacts mul-
tiple KEs related to CVD development. Radiation-induced
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endothelial dysfunction is characterized by decreased levels
of nitric oxide (NO) and perturbation of the NO signaling
pathway (Yentrapalli, Azimzadeh, et al. 2013; Yentrapalli,
Azimzadeh, et al. 2013; Azimzadeh et al. 2015; Azimzadeh,
Subramanian, et al. 2017; Hamada et al. 2020). Deficient NO
bioavailability is a known hallmark of endothelial dysfunc-
tion, resulting in impaired endothelium-dependent vasodila-
tion (Yu et al. 2011; Farah et al. 2018). However, whether
the availability of studies would support these as independ-
ent KEs or a combined broad KE would need further inves-
tigation. Additionally, both cardiac metabolic and structural
remodeling, especially fibrosis, were highlighted as import-
ant endpoints (Tapio et al. 2021; Yang et al. 2021).
Together, these KEs could be formulated into multiple
AOPs that target specific pathologies of vascular disease.

Oxidative stress as MIE

Day 2 focused on the importance of oxidative stress in radi-
ation-induced CVS injury and its potential as the MIE for
the AOP. Other MIEs were proposed including deposition
of energy, hydrolysis, and ionizing events. The ionizing
events would be distinguishable from minuscule thermal
effects of deposition of energy. The MIE may also need to
be discernable from a chemical stressor, as the origin of
damage may be important when building a quantitative
AOP, which brings together numerical dose- and time-
response data. Participants of the working group came to a
consensus that although oxidative stress is central to the
process of CVD, ‘deposition of energy’ may be the more
accurate event defining initiation and progression of dam-
age. While some working group members argued that
including both deposition of energy and oxidative stress in
the AOP would be redundant, the relevance and essentiality
of both these events could be delineated in terms of evi-
dence, which underscored the need for each to be independ-
ent events in the AOP. Discussions also focused on a review
by Higashi et al. (2009) that provided an overview of mech-
anistic events following oxidative stress in the development
of CVD. The review documents that lipoproteins are central
targets of oxidative stress, leading to oxidized low-density
lipoproteins and NO inactivation. Loss of NO initiates a cas-
cade of events including thrombosis, apoptosis, and altered
vasomotion (spontaneous rhythmic low frequency oscilla-
tions of the arteries), eventually resulting in cardiovascular
complications. This same series of events potentially contrib-
utes to similar vascular pathologies following radiation
exposure (Higashi et al. 2009).

Space stressors: AOP as an example

Day 3 of the CVD working group discussions focused on
existing AOPs – those found in the AOP Wiki as well as in
an AOP being developed by Health Canada on health out-
comes resulting from space travel. This AOP comprises a
network of four AOs (cognitive disorders, CVD, cataracts,
and bone loss) from exposure to space environmental stres-
sors. It was noted that, although there is no evidence of

cardiovascular effects from the relatively short-term space
travel experienced by astronaut crews to date (Cucinotta
et al. 2016; Ade et al. 2017; Elgart et al. 2018), the risk
would be relevant after longer missions to Mars, where
astronauts would be exposed to multiple stressors including
galactic cosmic rays (Patel et al. 2020; Simonsen et al. 2020).
However, due to the small cohort size, studies on astronauts
will likely lack statistical power to detect these effects even
at higher levels of exposure (Elgart et al. 2018). The space
flight AOP begins with an MIE of deposition of energy lead-
ing to oxidative stress, resulting concurrently in the modifi-
cation of proteins and the activation of pro-inflammatory
mediators, leading to altered signaling pathways, endothelial
dysfunction, and eventually, to vascular remodeling. Studies
supporting this pathway are available and were recently
reviewed by Meerman et al. (2021). The review highlights
that space radiation can cause endothelial dysfunction in the
aortic wall and in the myocardium. Such damage was shown
to activate tissue resident immune cells and increase nuclear
factor kappaB (NF-kB) activity, causing sustained inflamma-
tion and reactive oxygen species production, eventually lead-
ing to increased cellular apoptosis and decreased DNA
methylation levels, which is an epigenetic hallmark (Tungjai
et al. 2013; Koturbash et al. 2016; Meerman et al. 2021). The
role of epigenetic changes in radiation-induced CVD was
further discussed by the working group. A concern was
raised that this was an emerging KE with insufficient evi-
dence to show relevance to disease progression in the form
of causation. It was also highlighted that in the space
research field, the evidence to support causation of KERs
may be lacking; therefore, a stressor-agnostic approach to
building AOPs would be of benefit. The evidence for sup-
porting interconnectivities could be made using clinical
studies and ground-based animal studies that have identified
potential mechanisms to CVD (Boerma et al. 2016).
Additionally, there was a discussion on the interconnectiv-
ities of the space flight AOP with existing ones in the AOP
Wiki (www.aopwiki.org) including AOPs on hypertension
and atherosclerosis, which are under development and rele-
vant to exposures involving airborne particulate matter.
Discussions also highlighted that there are various compo-
nents to CVD including fibrosis, atherosclerosis, and meta-
bolic remodeling by virtue of fetal cardiac gene expression
leading to myocardial pathology that could be included in
the network (S�ark€ozy et al. 2019) (Figure 1). Many bio-
logical events were identified for each of these diseases;
however, there was uncertainty on how these interconnectiv-
ities would be made.

Identifying KEs and data

The last day of the working group session focused on the
crosstalk between molecular events and tissue events. It
began with discussions across three different cell types in
the heart tissue: (1) endothelial cells (endothelium), (2) car-
diomyocytes (myocardium), and (3) fibroblasts (extracellular
matrix). These may lead to three different AOs (atheroscler-
osis, myocardium pathology, and fibrosis) contributing to
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progression of CVD (Figure 2). It was highlighted that there
are a sufficient number of studies to support KEs to each of
these pathologies at the cellular level (Baselet et al. 2016;
Tapio 2016; Azimzadeh & Tapio 2017; Banfill et al. 2021).

In the context of endothelial cells, it has been shown that
the effect of radiation exposure on endothelial cells is char-
acterized by impairment of endothelial signaling pathways,
increased adhesiveness, accelerated senescence, enhanced
release of pro-inflammatory cytokines, and accelerated ath-
erosclerotic process (Yentrapalli, Azimzadeh, et al. 2013;
Yentrapalli, Azimzadeh, et al. 2013; Azimzadeh et al. 2015;
Sievert et al. 2015; Azimzadeh, Subramanian et al. 2017;
Baselet et al. 2017).

Atherosclerosis, defined as a chronic inflammatory dis-
ease affecting large and medium arteries and considered to
be a major underlying cause of CVD, would be a key out-
come to endothelial dysfunction. The pathophysiologic pro-
cess by which atherosclerosis occurs is complex, driven by
inflammation, and the different steps are connected and
usually appear simultaneously (Libby et al. 2019; Libby
2021). Radiation has been shown to initiate and accelerate
atherosclerosis in atherogenesis-prone animal models such
as apolipoprotein E-deficient (ApoE�/�) mice following
acute, chronic, high and low dose exposure (Hoving et al.
2008; Stewart et al. 2006; Yu et al. 2011; Hoving et al. 2012;
Monceau et al. 2013; Mancuso et al. 2015; Ebrahimian et al.
2018). Experimental studies have shown that high doses of
IR promote inflammatory reaction and hemorrhages of ath-
erosclerosis plaques (Ebrahimian et al. 2018). However, low
and moderate dose studies have shown immunomodulatory
response in the context of atherosclerosis and can lead to a
decrease in plaque inflammatory profile and lesion size in a

disease-prone mouse model (Ebrahimian et al. 2018; Rey
et al. 2021). Recently, the pathologic sequence to atheroscler-
osis has been implemented into a biologically based risk
model to describe the incidence of myocardial infarction in
the German KORA (Cooperative Health Research in the
Augsburg Region) population (Simonetto et al. 2021). The
discussions also highlighted the differences between low and
high dose irradiation effects on the development of athero-
sclerotic plaques.

In terms of cardiomyocytes, thoughts within the working
group noted that the effect of radiation exposure on cardio-
myocytes would be centered on mitochondrial dysfunction,
leading to metabolic changes due to the impairment of the
peroxisome proliferator-activated receptor (PPAR)-alpha
pathway and energy production (Azimzadeh et al. 2013;
Barjaktarovic et al. 2013; Subramanian et al. 2017;
Azimzadeh, Azizova et al. 2017; Subramanian et al. 2018;
Azimzadeh et al. 2020). This energy deposition subsequently
affects heart contraction, leading to myocardium injury and
pathology. Dose- and time-response effects on cardiomyo-
cytes following radiation exposure are available and would
inform the causality linkages in the AOP.

Lastly, the effect of IR on fibroblasts was discussed.
Irradiation of fibroblasts can result in activation of trans-
forming growth factor (TGF) beta signaling and onset of
fibroblast to myofibroblast differentiation, resulting in extra-
cellular matrix remodeling due to collagen deposition. A ser-
ies of pathological events that accompany endothelium
injury and inflammation leads to chronic tissue dysfunction
and fibrosis (Seemann et al. 2012; Monceau et al. 2013;
Stewart et al. 2013; Subramanian et al. 2017; Subramanian
et al. 2018; Kosmacek & Oberley-Deegan 2020). Together,

Figure 2. A hypothetical simplified adverse outcome pathway network to cardiovascular disease (CVD) derived from knowledge of working group members and
subject matter experts. These connectivities may be modified upon a complete systematic assessment of the literature using OECD AOP guidelines. Not all non-adja-
cent linkages are shown.
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the three pathologies of endothelial dysfunction, myocardial
injury, and fibrosis would provide a more complete picture
of radiation-induced damage on the CVS. The proposed net-
work was identified as a potential path forward to collabora-
tive AOP building. The role of the inflammatory process in
IR-induced CVD was discussed and subsequently, it was
emphasized that all types of cardiac cell injury are tightly
associated with changes in the local and systematic inflam-
matory events and immunological responses. An increase in
the levels of several inflammatory mediators such as inter-
leukin (IL)-1, IL-6, IL-8, and TGF-beta, have been shown
following high and moderate irradiation in in vitro or
in vivo studies (Baselet et al. 2017; Tapio et al. 2021). In
contrast, the studies using low doses identified pathways
contributing to the anti-inflammatory effect of irradiation
(Lumniczky et al. 2021). These findings indicate that the
relation between radiation exposures and alterations in
immunological events, including inflammation, is complex
and sometimes not proportional to each other. The inflam-
matory response is strongly affected by the initial inflamma-
tory state of the exposed tissue, the dose and dose-rate and
quality of exposure.

Discussions on this day also emphasized the role of
AOPs in identifying critical knowledge gaps for future IR-
induced CVD research. For example, the establishment of
an experimental model dedicated to the investigation of
heart responses to low doses of IR is necessary, as current
experimental model systems are not ideal. The uncertainties
observed in the development of vascular injuries, especially
atherosclerosis in available animal models, need to be
addressed. Although wild-type mice were shown to be resist-
ant to the development of atherosclerotic lesions after irradi-
ation, the findings obtained from disease mouse models,
particularly in ApoE-/- mice after low dose irradiation,
remain inconsistent (Monceau et al. 2013; Mitchel et al.
2013; Mancuso et al. 2015). Additionally, understanding epi-
genetic effects induced by radiation is also a topic of interest
with currently limited available data. Genome-wide associ-
ation studies (GWAS) have identified hundreds of loci asso-
ciated with coronary artery disease and myocardial
infarction. A majority of these variants are located in the
non-coding regions of the genome, indicating that epigenet-
ics plays an important role in the disease process. However,
functional analyses of these variants are needed to determine
which cell types and processes are involved (€Ord et al.
2021). There is limited information on epigenetic effects, but
research on the topic is underway in context of radiation
exposures (Lowe and Raj 2014; Koturbash et al. 2016;
Miousse et al. 2019)

It was also highlighted that the study of IR-induced CVD
in human cohorts remains challenging. In contrast to early-
onset subclinical changes in heart function observed after
high dose exposures applied in radiotherapy (Walker et al.
2019; van den Bogaard et al. 2021), there is a long latency
time (�10 years) at low and moderate dose before any meas-
urable clinical complications can be detected (ICRP 2012).
Morbidity risk factors such as family history and lifestyle
choices, inevitably influence the final disease outcome.

Contribution of age is also noteworthy, particularly in the
context if an individual has preexisting atherosclerosis and
persistent inflammation compared to a young healthy per-
son. This is an important issue that needs to be addressed
from the radiation protection viewpoint as there is limited
contribution of human data to support AOP development.
This latency time and the uncertainty of CVD development
after low dose exposure also emphasize the importance of
using all available knowledge for AOP development.

Proposed hypothetical AOP
Based on the four-day discussion, it was evident that map-
ping out a simplified, linear, unidirectional AOP from
deposition of energy from radiation exposure to CVD would
be challenging. As a result, the proposed AOP evolved from
a complex pathway to three distinct sub-classes of diseases
for AOP development: vascular remodeling, myocardium
pathology, and fibrosis (Figure 2). Deposition of energy is
designated as the MIE in this AOP and leads to a KE of
increased oxidative stress at the macromolecular level.
Oxidative stress would be instrumental in the initiation of
further tissue- and organ-level responses resulting in inflam-
mation, an event that contributes to the more severe CVD
adverse outcomes.

This proposed AOP is a starting point for the collation of
data and appropriate studies meeting the modified
Bradford-Hill criteria. Next steps include the compilation of
evidence to support the KERs (linkages) in the AOP. That
will need to be done systematically and transparently to
identify literature that supports the dose-, time- and inci-
dence-concordance as well as biological plausibility. Work is
also required to identify the inconsistencies and controver-
sies in the published literature. Following this evidence
review and mapping, the AOP could be refined to those KEs
that are data-rich and mechanistically well-defined.
Eventually, the KEs that lack sufficient data or have only
emerging data could be excluded.

Conclusions

The CVD working group discussions led to productive con-
versations and highlighted important processes and path-
ways for consideration in AOP development for IR-induced
cardiovascular effects. Discussions centered on the scope of
building AOPs, the potential KEs, MIE, data composition,
and relevant scenarios of exposure. Knowledge gaps in the
area of low dose and low dose-rate (<100 mGy, <5 mGy/h)
irradiation were highlighted, emphasizing the need for more
studies in the context of the cellular communication where
the interplay of cardiac cells contributes to heart injury fol-
lowing exposure (Tapio et al. 2021). Moreover, the retro-
spective studies on archival autopsies such as collected from
nuclear workers can be a better alternative for animal or cel-
lular models to investigate the late and lasting effect of low
dose, chronic radiation exposure on the human heart
(Rybkina et al. 2014; Azimzadeh, Azizova, et al. 2017;
Azimzadeh et al. 2020).
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The AOP proposed here allows for structuring and sim-
plification of the available mechanistic information about
radiation-induced CVD and can facilitate predictive inter-
pretations, beyond cellular or animal models, at the human
population level. Collation of data will provide the linkages
from macromolecular events to population relevance using
the large body of epidemiological data supporting the
relationship between IR and CVD, thus making this AOP
directly relevant for regulatory applications. Overall, organ-
ization of the literature surrounding this disease within an
AOP framework could provide avenues for prioritizing
experiments and targets for the development of mitigation
strategies to address the population health issues.

The final proposed network is complex, with interconnec-
tivities and communication across different cell types (endo-
thelial cells, cardiomyocytes, and fibroblasts), which results
in three distinct pathologies across the cardiac and vascular
structures. This shows the difficulty in attempting to sim-
plify the knowledge using the AOP framework where some
KEs and KERs are commonly and clearly defined while
knowledge gaps exist for others and require further research.
The productive discussions in these working group sessions
highlighted, once more, the importance of interactions
between diverse research communities to identify areas of
relevance for AOP development. As screening and identify-
ing relevant studies is critical to AOP construction, it was
acknowledged that this resource-intensive, time-consuming
process would benefit from collaboration availing expertise
across various levels of biological organization. Together,
through cross-disciplinary collaborations, a developed AOP
in the area of CVD and radiation can effectively identify
areas of knowledge gap and guide future research.
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