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EpiScanpy: integrated single-cell epigenomic
analysis
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EpiScanpy is a toolkit for the analysis of single-cell epigenomic data, namely single-cell DNA

methylation and single-cell ATAC-seq data. To address the modality specific challenges from

epigenomics data, epiScanpy quantifies the epigenome using multiple feature space con-

structions and builds a nearest neighbour graph using epigenomic distance between cells.

EpiScanpy makes the many existing scRNA-seq workflows from scanpy available to large-

scale single-cell data from other -omics modalities, including methods for common clustering,

dimension reduction, cell type identification and trajectory learning techniques, as well as an

atlas integration tool for scATAC-seq datasets. The toolkit also features numerous useful

downstream functions, such as differential methylation and differential openness calling,

mapping epigenomic features of interest to their nearest gene, or constructing gene activity

matrices using chromatin openness. We successfully benchmark epiScanpy against other

scATAC-seq analysis tools and show its outperformance at discriminating cell types.
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Epigenetic single-cell measurements, where the epigenetic
status of single cells is evaluated using next generation
sequencing techniques, are becoming mainstream. Cur-

rently, two such measurements are performed routinely in the
laboratory: DNA methylation can be assessed at the single-cell
level with the use of bisulfite sequencing1, and open chromatin
patterns are investigated at individual cells using Assay for
Transposase-Accessible Chromatin using sequencing (scATAC-
seq)2. Thanks to well described protocols and advances in
microfluidics techniques, current experimental designs afford to
interrogate the epigenome of thousands of cells at a time3–7.
These data represent a rich layer of regulatory information that
stands between the genome and the transcriptome, and new
analysis methods are needed to leverage it.

While many tools for analysing single-cell transcriptomics data
exist8, fewer are available for scATAC-seq9–11, and even less for
single-cell DNA methylation data12,13. For scATAC-seq data
analysis, cisTopic14 is the only tool that does both clustering of
cells and of open peaks, using Latent Dirichlet allocation (LDA).
scABC15 and scasat16 are methods that use the reads that map
into peaks for grouping the cells with k-medoids clustering. Other
tools rather consider openness of certain sequence features (like
transcription factor motifs17, TSSs18 or k-mer motifs19) to assign
cells into groups. The snapATAC20 method instead considers the
whole genomic information, splitting the genome in equally sized
windows, to perform clustering of cells. Meanwhile, other tools
are not particularly focused on cell clustering: Cicero21 has been
developed as a tool to predict cell-type regulatory landscapes
given co-accessibility profiles, while Seurat-v322 allows for the
anchoring between scATAC-seq and scRNA-seq datasets prior to
conversion of the scATAC-seq into a putative gene expression
matrix (the so-called gene activity matrix). For single-cell DNA
methylation data, only a couple of dedicated analysis tools exist.
They mainly aim at the imputation of missing data12,23 or at
Bayesian clustering of single cells12.

In this paper, we present epiScanpy, a method for the analysis
of scATAC-seq and single-cell DNA methylation data, which
integrates into the scanpy platform for single-cell transcriptomics
data analysis24. EpiScanpy is therefore the only available tool that
offers all analysis options for both scATAC-seq data, single-cell
DNA methylation data, as well as scRNA-seq data (via scanpy);
and since it builds on scanpy, it makes the full model-zoo of
machine learning methods developed for single-cell RNA-seq
available to single-cell epigenomics data.

EpiScanpy enables pre-processing of epigenomic data and
building of count matrices considering any genomic feature of
interest, from open chromatin peaks to whole genome (i.e.,
windows), as well as any genomic annotation provided as a
coordinate or .bed file (genes, enhancers, TFBS, promoters, etc.).
Using these constructed count matrices, epiScanpy performs
quality control and different downstream analyses such as clus-
tering, marker identification, manifold learning, visualisation and
lineage estimation. To take advantage of the multiple scATAC-
seq datasets that are currently being generated, epiScanpy also
features a function for integration of single-cell open chromatin
atlases generated by different laboratories or using different
technologies. We have benchmarked epiScanpy to other
scATAC-seq tools at their ability to cluster cell types, using four
different datasets, and found that epiScanpy is overall superior to
them. EpiScanpy works with a flexible data structure, the so-
called AnnData24, making it a general-purpose platform for
future single-cell multi-omics data integration. Since its down-
stream analyses extend the popular scanpy framework, it inherits
properties such as fast and scalable runtime behaviour and
modular extensibility.

Results
Feature space engineering and data pre-processing. From .bam
files (scATAC-seq) or methylation count files (single-cell DNA
methylation), epiScanpy generates count matrices for any geno-
mic features of interest by quantifying the openness or the DNA
methylation levels in every feature. These features can cover the
entire genome (i.e., windows) or can be based on genomic
annotations (such as known open chromatin peaks, gene pro-
moters, enhancers, etc.), or can be any feature coordinates of
interest provided as a .bed file (Fig. 1a and Supplementary
Methods). To integrate with the often used Chromium Single-
Cell ATAC protocol, count matrix construction is also possible
from the standard 10x Cell Ranger output, as well as from mul-
tiplexed files.

For DNA methylation data, the CG or CH methylation level
per feature is calculated as the average methylation level of all the
covered cytosines in the feature. For scATAC-seq data, epiScanpy
calculates openness summing up all the reads covering a feature.
The generated count matrices serve as feature space that retains as
much variation of the data as possible without being too high-
dimensional—a feature space at single base-pair resolution can in
principle be assembled but would impede downstream analysis
through memory and runtime issues as well as though data
sparsity (Fig. 1b).

After the count matrices have been constructed, epiScanpy
proceeds with quality control and data pre-processing (Supple-
mentary methods). For scATAC-seq data, the count matrix is
binarised to account for presence/absence of reads at every
feature, and library size is normalised. For DNA methylation
data, CG or CH methylation level per feature is computed. We
differentiate non-methylated features (zero signal) from non-
observed features (missing signal) and impute missing data. Note
that this is different from imputing zeros in scRNA-seq or
scATAC-seq, which are not inherently non-observed data points,
but may also be zero count observations. For both single-cell
DNA methylation and scATAC-seq data, we discard non-
informative features and low-quality cells based on the percentage
of cells sharing a feature and the number of covered features per
cell (Supplementary Methods and Supplementary Figs. 1 and 2),
and select the top most variable features for analysis. EpiScanpy
features a series of quality control functions to help the user
visualise coverage per cell, as well as coverage and variability per
feature, and to select cells and features for downstream analyses
(Supplementary methods and Supplementary Figs. 1 and 2).

Analysis methods for single-cell epigenomic data. After count
matrix construction, epiScanpy features the common analysis
methods used in single-cell data (Supplementary Methods). In
particular, to leverage algorithms that are based on a k-nearest
neighbour (kNN) graph, we implement a cell–cell distance metric
based on epigenetic features. To assess the global heterogeneity
present in the data, epiScanpy uses unsupervised (or manifold)
learning algorithms, such as tSNE25, UMAP26, graph
abstraction27, Louvain clustering28 or diffusion pseudotime29

(Fig. 1c). These analyses can be performed on both scATAC-seq
and single-cell DNA methylation data (Fig. 2a, c) and using any
feature space of interest. To explore unwanted correlations
between dataset artefacts (such as coverage) and the variation
observed, epiScanpy allows to inspect the relationship between
any cell covariate and the principal components (Supplementary
Methods and Supplementary Fig. 3). The discovered technical
sources of variation can then be regressed out using epiScanpy
functions. We also provide a function to optimise the analysis
parameters used for Louvain clustering (such as number of PCs
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and nearest neighbours) based on silhouette scores or adjusted
rand index (ARI) (if a cell cluster ground truth is known).

Finally, to determine cell types, epiScanpy includes a
differential methylation and differential open chromatin calling
strategy, enabling the ranking of genomic features (such as peaks,
genes, promoters or other regulatory elements) based on their
relevance in the discovered cellular identities (Figs. 1c and 2b, d;
and Supplementary methods). This allows to correlate variation
across clusters or along trajectories with marker loci to support
cell type annotation and to generate hypotheses on the
mechanisms that underlie the identified population structure.
For scATAC-seq data, epiScanpy also constructs gene activity
matrices21,22 based on promoter and gene body openness,
allowing to call differential gene activity between cell groups.
To facilitate cell type annotation, epiScanpy also includes
functions to assign any epigenomic feature of interest to its
closest gene, or to its closest feature from another single-cell
AnnData object (Supplementary Methods). A virtual reality
visualisation of epiScanpy’s results can also be done thanks to the
virtual reality interface of singlecellVR30.

Applications. We used publicly available scATAC-seq and single-
cell DNA methylation datasets to exemplify epiScanpy’s func-
tionalities. For single-cell DNA methylation, we considered a
brain dataset with 3,377 prefrontal cortex neurons (4.7% average
genomic coverage) from Luo et al.3 and built count matrices
based on CG methylation levels for different segmentations of the
genome: 100 kb non-overlapping windows, promoters, gene
bodies and enhancers; as well as CH gene body methylation
(Supplementary Fig. 2). The impact of these different genomic
feature spaces on the variation retained in the data can be
explored using Louvain clustering as an example method for
unsupervised learning (Fig. 2a and Supplementary Fig. 4). In

general, cells grouped similarly across all feature spaces used,
illustrating the fact that different genomic features contain par-
tially redundant information (Supplementary Fig. 4). To quantify
clustering results, epiScanpy computes silhouette scores31 (Sup-
plementary methods), a measure of how similar a cell is to its
own cluster compared to other clusters. Interestingly, the
enhancer feature space provided the clearest cell-type separation,
with an average silhouette score of 0.41 (average of the silhouette
score across all cells), compared to 0.32, 0.28 and 0.09 for win-
dows, promoters and gene bodies (Supplementary Fig. 5). This
result highlights the relevance of DNA methylation at non-genic
regulatory elements for determining cell identity. To identify cell
type labels, epiScanpy features a differential methylation test
between clusters (Fig. 2b and Supplementary methods). We
ranked the top most differentially methylated promoters per
cluster and identified 17 different cell types using known neu-
ronal marker genes (Fig. 2a, b and Supplementary Figs. 6 and 7).

We next used a chromatin accessibility dataset from the 10x
platform containing 10,000 PBMC cells (10k Peripheral blood
mononuclear cells (PBMCs) from a healthy donor). After calling
open chromatin peaks using MACS232 on the pseudo-bulk
dataset, we built a peak accessibility count matrix and used it to
perform dimensionality reduction and Louvain clustering (Sup-
plementary methods), identifying 6 clusters in the dataset
(Fig. 2c). To assign cell identity labels to every cluster, epiScanpy
performed differential openness tests, ranking peaks by their
differential openness between clusters. To facilitate gene marker
identification from the identified differential peaks, epiScanpy
features a function to assign every differential peak to its most
proximal promoter. We used these most proximal genes to
perform broad cell type identification, namely progenitors, B
cells, T cells (CD4+ and CD8+), myeloid cells and natural killer
(NK) cells (Fig. 2d and Supplementary Fig. 8).

Fig. 1 EpiScanpy analysis workflow. a epiScanpy quantifies chromatin openness and DNA methylation at different sets of genomic regions to b construct
count matrices (1) with read counts (for scATAC-seq) or DNA methylation levels (for single-cell DNA methylation). c After data pre-processing (2),
unsupervised learning algorithms (clusters, trajectories, lineage trees) are applied (3). Differential openness and methylation callings allow for
identification of marker loci, which can be used for cell type and lineage tree identification (4).
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EpiScanpy can also be used to integrate scATAC-seq datasets
produced by different laboratories and using different experi-
mental protocols, using the batch corrected k-nearest neighbours
(BBKNN) algorithm33 (Supplementary methods). Other available
algorithms for epigenomic data integration are snapATAC20

(which uses Harmony34) or LIGER35 (which uses integrative
non-negative matrix factorisation), and other scRNA-seq integra-
tion methods can also be applied to scATAC-seq data36. To
exemplify scATAC-seq data integration, we integrated a chro-
matin accessibility dataset from Satpathy et al.5, featuring 63,882
blood cells (Fig. 3a and Supplementary Fig. 9), to the scATAC-seq
PBMC dataset from the chromium 10x platform described above.
For the integration, we used the union of the peaks from the two
datasets to construct a concatenated open chromatin count
matrix (Supplementary Method) and to find the set of common
nearest neighbours between the datasets. We generated a joint
kNN graph and embedding using the BBKNN algorithm33

(Supplementary Information). After integration, the cells from
the two different origins were well mixed, and the cell types

correctly merged (Fig. 3b). ScATAC-seq atlas integration also
works well for other cell types and organs and can be done using
other feature spaces. For example, we also integrated two
scATAC-seq brain datasets from 10x37 and Fang et al.20, which
contain terminally differentiated neurons, using 5 kb windows as
the common feature space (Supplementary Fig. 10).

The Satpathy et al.5 dataset contains >60,000 blood cells. Since
blood is in continuous differentiation, from hematopoietic stem
cells to fully differentiated cells via a variety of intermediate
progenitors, it is best characterised by a continuous representa-
tion instead of a clustering in fully differentiated cell types. For
that, we used epiScanpy to produce continuous representations of
that data, using the more detailed cell type annotation from
Satpathy et al. (Supplementary Fig. 9). We used partition-based
graph abstraction (PAGA)27 and Force-directed graph drawing38

(Fig. 3c, d) to generate a topology-preserving map of single cells
based on their peak openness. PAGA has the ability to preserve
both continuous and disconnected structure in the data at
multiple resolutions. Finally, diffusion pseudotime can also be

Fig. 2 Clustering, visualisation and cell-type annotation for single-cell DNA methylation data and scATAC-seq data. a UMAP with annotated cell types
for neurons from single-cell DNA methylation data from Luo et al.3, performed on the enhancer feature space (left, 3,288 cells x 54,932 enhancers) and
promoter feature space (right, 3,224 cells x 32,610 promoters). Annotation: m mouse, DL deep layer, L layer, Ndnf neuron-derived neurotrophic factor, Pv
parvalbumin, Sst somatostatin, Vip vasoactive intestinal peptide, In interneurons. b UMAP with methylation level at the Neurod2 promoter (a marker of
inhibitory neurons) per cell (left) and violin plot with the distribution of Neurod2 promoter methylation per cluster (same colour code as in a). Excitatory
neurons (mDL-1, mDL-2, mL2/3, mL4-1, mL4-2, mL5-1, mL5-2, mL6-1, mL6-2) have lower methylation at the Neurod2 promoter than inhibitory neurons
(mNdnf, mPv, mSst, mVip, mIn). c UMAP with annotated cell types for PBMCs from scATAC-seq data from the 10x platform37, performed on the open
chromatin peak feature space (9,891 cells x 75,226 peaks). d Heatmap and track plot indicating openness of the top differential open peaks and their
associated genes, which are markers of B cells (CHRND, KDM4B and PLEKHG3, marked in dark blue), T cells (CCDC40, REV3L, ZNHIT6 for CD4+,
marked in light grey and RGPD1, TAF1B and ALK for CD8+, marked in light pink), myeloid cells (COA8, RNA5SP207 and ABAT, marked in dark pink), NK
cells (RNU4-65P, GFOD1 and DMC1, marked in burgundy) and hematopoietic progenitors (EYA4, SGMS1, and MIR5589, marked in blue). On the heatmap
plot, the mean openness per cluster is indicated with a colour scale from 0 (closed) to 1 (open). On the track plot, the openness per cell inside of every
cluster is plotted from 0 (closed) to 1 (open). These different cell type identification plots are shown here for DNA methylation (b) and ATAC-seq (d), but
all plots are available for all modalities (Supplementary Figs. 7–9).
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utilised in this dataset (Supplementary Fig. 11) as a tool for
dimensionality reduction, ordering the cells by changes in peak
openness along diffusion components. In all cases, the connec-
tions between cell types can be identified, and the most likely
differentiation paths can be explored. For example, monocytes
originate from hematopoietic stem cells, and after transitioning
through multipotent progenitors, common myeloid progenitors,
granulocyte-macrophage progenitors, and monocyte-dendritic
cell progenitors arrive at two distinct populations of monocytes
(Fig. 3e). Along any trajectory, the cells can be ordered according
to their diffusion pseudotime, and the peaks that become
progressively open and closed can be identified and associated
with genes in their proximity and visualised (Fig. 3f and
Supplementary Fig. 12).

EpiScanpy scATAC-seq analysis is benchmarked in comparisons
with established packages. We have compared epiScanpy’s ability
to discriminate cell types to 11 other scATAC-seq data analysis
tools, using the framework and results proposed by Chen et al.11.
We find that epiScanpy scores consistently among the top tools in
all the tested datasets and is only outperformed by another
method, CisTopic14, in one dataset (Fig. 4, Supplementary Fig. 13
and Supplementary Information). Interestingly, compared to
epiScanpy, all other top methods assessed have less robust

performance across datasets (Fig. 4), performing well in some
scenarios but dropping in performance in the other datasets.

An important feature of epiScanpy is its ability to scale to large
datasets in a very competitive runtime, for example, analysing the
whole mouse scATAC-seq atlas from Cusanovich et al.4, con-
sisting of 81,173 cells, in a mere runtime of 18.19 min using 14.19
GB of memory (Supplementary Fig. 13). This ability to scale up to
large datasets with such fast runtimes allows for a much needed
interactive exploration of large scATAC-seq datasets. Such
competitive runtimes and scalability to large datasets is an asset
of epiScanpy, which is missing in competing R-based analysis
tools because of inherent memory limitations in R. We have
compared epiScanpy speed and memory usage to the other top
performing method, cisTopic, using CentOS Linux 7, on an AMD
Opteron 6376 2.3 GHz machine with 8 cores of CPU, 180GB of
memory, and 245/45.2 MB/s of input/output speeds. EpiScanpy
consistently outperformed in terms of memory consumption in
all datasets and comparably performed in terms of runtime for
the smaller datasets while it outperformed for the larger ones
(Supplementary Fig. 13).

Discussion
EpiScanpy is a fast and versatile tool for the analysis of single-
cell epigenomic data, and it offers the common framework for

Fig. 3 Data integration, partition-based graph abstraction (PAGA) and diffusion pseudotime in scATAC-seq. a UMAP with annotated cell types from
scATAC-seq for blood cells from Satpathy et al.5, performed on the peak feature space (57,177 cells x 83,823 peaks). Only the broad cell type annotation is
shown. b Joint UMAP for two scATAC-seq datasets with experiment label (10x Genomics and Satpathy et al.) for concatenated count matrices (left) and
mixed using BBKNN with experiment label (middle) and cell type label (right) (62,284 cells x 123,280 peaks). c Force-directed graph drawing of the
Satpathy et al. dataset. d PAGA plot for the same cells using the same Force-directed graph embedding. eMonocyte differentiation path depicted on top of
the force-directed graph drawing, and f openness of peaks at marker genes during pseudotime progression (distance) in the monocyte differentiation path
(16,004 cells x 83,823 peaks).
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the analysis of both single-cell DNA methylation and
scATAC-seq data, as well as single-cell transcriptomic data
thanks to its embedding in the scanpy platform. Its flexible
data structure is ready to handle other new types of single-cell
omic data, such as Hi-C or NOME-seq, as well as multi-omics
single-cell data. EpiScanpy performs common analysis like
low-dimensional data visualisation, clustering, single-cell
graph abstraction, trajectory inference, and differential call-
ing, based solely on epigenomic features. It also features a
series of useful downstream functions, such as the mapping of
epigenomic features of interest to their closest gene, or the
construction of gene activity matrices based on promoter
openness. It includes an atlas comparison tool that effectively
integrates scATAC-seq datasets generated in different
laboratories and/or using different platforms. Such
chromatin-centric data integration strategies will be necessary
to leverage the large number of single-cell open chromatin
datasets being generated. EpiScanpy was benchmarked against
other 11 scATAC-seq methods, and it consistently scores
among the top tools on its ability to discriminate cell types.
EpiScanpy is available as an open-source python package
through Github (https://github.com/colomemaria/epiScanpy,
https://colomemaria.github.io/episcanpy_doc) and is built
upon the scanpy analysis toolbox24, opening the scRNA-seq
toolchain to the commonly measured single-cell epigenomic
data.

Methods
EpiScanpy DNA methylation count matrix construction. For single-cell DNA
methylation, epiScanpy builds count matrices from cytosine summary tables.
EpiScanpy can build count matrices for any feature space of interest (for example, a
set of genomic regions/annotations inputted as a .bed file, or windows spanning the
whole genome), retrieving the methylation status of cytosines in CG, CH or both
genomic contexts in every feature. To account for the low cytosine content of
certain features (either CG, CH, or both) and to account for the low coverage
intrinsic to single-cell DNA methylation data, epiScanpy can filter out features
containing too little number of cytosines or too little number of reads. The user can
specify the minimum number of cytosines covered per feature to return a
methylation level. Then epiScanpy filters out features that are covered in too few
cells and cells that do not have enough covered features. After this filtering step,
there are features which, for some cells, have still a missing value. These methy-
lation values are then imputed as the average methylation level of the feature across
all cells. EpiScanpy can save the data matrix before imputation in a different layer
of the AnnData object.

EpiScanpy ATAC-seq count matrix construction. For scATAC-seq, epiScanpy
constructs count matrices starting from multiplexed .bam files and fragment files,
such as the 10x Cell Ranger output, or directly from demultiplexed files. EpiScanpy

generates count matrices for any genomic annotation of interest (peaks, windows,
enhancers, promoters, etc., or any provided annotation as a .bed file) (Fig. 1a and
Supplementary Figs. 4, 5, 7). For scATAC-seq data, the number of reads in every
feature are added up and then the count matrix is binarised to account for pre-
sence/absence of reads at every feature, and library size is normalised. Additional
linear regression of covariates is available for both ATAC and DNA methylation
data. For scATAC-seq, epiScanpy also calculates gene activity matrices by summing
the reads intersecting the promoter (default value: 5000 bp from TSS) and the gene
body for every gene8,21. To assign epigenomic features such as peaks to their closest
genes, epiScanpy features a function that finds either the closest gene to any feature
or finds the genes in a given proximity (number of bp to be specified by the user).

EpiScanpy workflow. Several functions are implemented in epiScanpy to explore
the data and perform quality control, to identify the best parameters for discarding
low covered cells and low covered genomic features:

● A histogram plot of cell coverage to identify lowly covered cells
(Supplementary Figs. 1 and 2).

● A function to filter low-quality cells based on the coverage histogram.
● A histogram plot of feature coverage in the cellular population to identify

features which are not covered in enough cells (Supplementary Figs. 1 and 2).
● A function to filter features based on the above coverage histogram (filter

based on a number of cells being covered).
● A function to rank features based on their variability in the population of

cells. Maximum variable features (variability= 1) are these where half the
cells are open and half the cells are closed. Minimum variable features
(variability= 0) are these where all cells are closed or all cells are open.

● A function to select the most variable features based on the ranking of
feature variability, top variable features are selected either as a percentage
of features to retain or as a number of features to retain (Supplementary
Fig. 1).

● A plot of any cell covariate (stored in AnnData.obs) versus any principal
component (PC). This plot is made specially to explore the existence of a
correlation between cell total coverage and the PC of interest (by default
PC1), which is an indication that library size per cell needs to be
normalised (Supplementary Fig. 3).

● A plot to show the variance ratio per principal component to guide the
selection of the number of PCs to retain for the analysis (Supplementary
Fig. 3).

After quality control and filtering, the count matrix (cells times features) is
normalised to account for differences in library size and/or technical artefacts using
count per million normalisations and/or linear regressions. The normalised matrix
is then used to calculate a cell–cell distance metric based on Euclidean distance
between the epigenomes of pairs of cells and to construct a k-nearest neighbour
(knn) graph. Afterwards, common algorithms that use that knn graph can be
applied, such as Louvain clustering28, diffusion pseudotime29 and UMAP26. Other
unsupervised learning algorithms, such as tSNE25 and graph abstraction27 can also
be used.

EpiScanpy provides multiple functions to explore the best analysis parameters
(such as the number of PCs to consider, number k of nearest neighbours) to
optimise the best cell clustering possible. To this end, epiScanpy offers multiple
clustering functions such as hierarchical clustering, kmeans, Louvain and Leiden.
The validity and relevance of the resulting clusters can be explored further using
different metrics available in epiScanpy like silhouette scores (wrapper of scikit-

Fig. 4 Benchmarking of cell clustering performance. Adjusted rand index (ARI) for Louvain clustering in a Buenrostro et al.40 dataset for bulk peaks with
2,034 cells, b Buenrostro et al.40 dataset with 150,429 open features and 2,034 cells, c Cusanovich et al.4 mouse atlas downsampled to 12,178 cells, d full
Cusanovich et al.4 mouse atlas with 81,173 cells. EpiScanpy performance results are compared to the results of 11 other scATAC-seq methods
benchmarked in Chen et al.11. The dotted lines indicate epiScanpy’s ARI value.
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learn function). Sometimes a ground truth (cell type) is also known. In these cases,
epiScanpy can also calculate the adjusted rand index (ARI), Adjusted Mutual
Information (AMI) and a homogeneity metric using the known cell identity
(wrapper of scikit-learn functions).

To identify differential features between cell groups, we take advantage of the
large cell number and use logistic regression on the epigenomic levels of features
between groups (whether these groups are defined by Louvain clusters or by
experimental cell type annotations or any other grouping of interest), following
Ntranos et al.39. EpiScanpy outputs a list of ranked features with the results of the
differential test, that the user can utilise for downstream analysis.

If the user has several count matrices for the same organism, organ or tissue,
that need to be compared (for example, to compare -omics layers, where there is
one AnnData object per layer), the user can upload the different count matrices at
the same time. After pre-processing of every matrix separately, epiScanpy has
functions to identify the closest features between count matrices. For example, if
one count matrix contains genes and the other one epigenomic features such as
peaks, epiScanpy identifies the closest gene to every epigenomic feature, given a
search size specified by the user (by default 5000 bp around the epigenomic
feature). The user can also focus on a set of interesting features, for example, a list
of differentially open peaks in the scATAC-seq dataset, and match the coordinates
of every one of them to its closest gene from the gene expression count matrix, or
its closest methylation locus from the single-cell DNA methylation count matrix.
Functions like label_transfer, transfer_obs or transfer_var help to compare
different -omics, datasets and feature spaces. If the interest is, for example, in
differential features, a comparison of features between -omics will reveal which
ones are differentially open+ differentially expressed+ differentially methylated
between -omic layers, versus features that are differential in only one -omic layer
but non-differential in the other ones

EpiScanpy chromatin data integration workflow. In the advent of having mul-
tiple datasets of the same omic (single-cell ATAC-seq or DNA methylation) to
analyse jointly, it is important to remove potential batch effects. EpiScanpy offers
this possibility using the bbKNN33 batch correction method. In order to integrate
the different batches, it is required to use a common feature space. Thus, a pre-
liminary step is to build count matrices using a shared set of features like
windows or a common set of peaks between datasets. To obtain a good embedding
of the different datasets together, it is important that the set of features used is
representative of all datasets. For that, we select the most variable features on each
dataset separately. Then we concatenate the datasets keeping the intersect of the
variable features. Alternatively, epiScanpy can merge the datasets using the
union of the different feature spaces. Additional quality controls and
filtering are recommended to remove features that are not covered in enough
cells, and cells which do not contain enough covered features. Finally, we
proceed to library size normalisation and run the integration method on this
concatenated matrix.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The following publically available datasets analysed in this study can be downloaded
from the GEO with accession codes GSE129785 and GSE97179. Access to the genome
annotation used: mm10 [ftp://hgdownload.soe.ucsc.edu/goldenPath/mm10/]. All pre-
processed data used in the paper can be accessed in the Zenodo platform with the
identifier https://doi.org/10.5281/zenodo.4292082.

Code availability
EpiScanpy is available through Github (https://github.com/colomemaria/epiScanpy) and
the documentation is available at https://colomemaria.github.io/episcanpy_doc. All code
used for the analysis of the data, as well as for the benchmarking, is available at https://
github.com/colomemaria/episcanpy-paper (https://doi.org/10.5281/zenodo.4564324).
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