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COVER LETTER 

 

 

Dear Editorial Board of Plant Physiology and Biochemistry, 

 

Hereby, please find our review manuscript entitled „ Computational prediction of NO-

dependent posttranslational modifications in plants: current status and perspectives” written 

by Zsuzsanna Kolbert and Christian Lindermayr for consideration to publish in Plant Physiol 

Biochem. Previously, we contacted Professor Hiroshi Ezura, who has approved the proposal of this 

review topic.  

This review collects, categorizes and characterizes the currently available online software tools 

for predicting nitric oxide (NO)-dependent posttranslational modifications (GPS-SNO, iSNO-PseACC, 

iSNO AAPair, SNOSite, RecSNO, PreSNO, GPS-YNO2, iNitro-Tyr, PredNTS, iNitroY-Deep 

DeepNitro). Additionally, the recently developed software tools are tested and their performances are 

compared on plant proteins for the first time. The aim of this work is to give a state-of-the-art overview 

for plant biologists about the computational prediction tools which are useful to establish and support 

laboratory experiments. Considerations for the future (e.g. what developments will be needed in the 

future) are also included. Previously two papers have been published in the topic by the authors. 

Chaki et al. (2014, PLOS ONE) evaluated S-nitrosation prediction software tools which were 

available at that time. In 2017, Kolbert et al. published a highly cited (32 independent citations) 

review paper in Plant Physiology and Biochemistry, in which they tested software tools for predicting 

protein tyrosine nitration on plant proteome. Compared to the previously published papers, this 

review paper would cover a wider topic evaluating both S-nitrosation and tyrosine nitration predicting 

software tools. The further novelty of this work is that it evaluates the recently developed algorithms 

(e.g. PreSNO, RecSNO, PredNTS) which hasn’t been tested on plant proteins so far. 

We prepared the manuscript to our best knowledge and we are confident about its positive 

evaluation. 

9th of June, 2021           

        

                                                      
                Zsuzsanna Kolbert, PhD                                      Christian Lindermayr, PhD 
     

                 Corresponding author                                            Corresponding author 

Cover Letter



Highlights: 

 

 Eleven computational tools for predicting S-nitrosation and/or tyrosine nitration have 

been developed in the last ten years. 

 

 On plant proteins, the predictors show distinct performances. 

 

 The predictors can efficiently assign potentially modified amino acids in plant 

proteins. 
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Abstract 12 

The perception and transduction of nitric oxide (NO) signal is achieved by NO-dependent 13 

posttranslational modifications (PTMs) among which S-nitrosation and tyrosine nitration 14 

has biological significance. In plants, 100-1000 S-nitrosated and tyrosine nitrated proteins 15 

have been identified so far by mass spectrometry. The determination of NO-modified 16 

protein targets/amino acid residues is often methodologically challenging. In the past 17 

decade, the growing demand for the knowledge of S-nitrosated or tyrosine nitrated sites 18 

has motivated the introduction of bioinformatics tools. For predicting S-nitrosation seven 19 

computational tools have been developed (GPS-SNO, SNOSite, iSNO-PseACC, iSNO-20 

AAPAir, PSNO, PreSNO, RecSNO). Four predictors have been developed for indicating 21 

tyrosine nitration sites (GPS-YNO2, iNitro-Tyr, PredNTS, iNitroY-Deep), and one tool 22 

(DeepNitro) predicts both NO-dependent PTMs. The advantage of these computational 23 

tools is the fast provision of large amount of information.  In this review, the available 24 

software tools have been tested on plant proteins in which S-nitrosated or tyrosine 25 

nitrated sites have been experimentally identified. The predictors showed distinct 26 

performance and there were differences from the experimental results partly due to the 27 

fact that the three-dimensional protein structure is not taken into account by the 28 

computational tools. Nevertheless, the predictors excellently establish experiments, and 29 

it is suggested to apply all available tools on target proteins and compare their results. In 30 
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the future, computational prediction must be developed further to improve the precision 31 

with which S-nitrosation/tyrosine nitration-sites are identified. 32 

Keywords: computational prediction, nitric oxide, posttranslational modification, S-33 

nitrosation, tyrosine nitration.  34 

Introduction  35 

Nitric oxide (NO), previously known as an air pollutant gas, has been shown to be an 36 

endogenously produced jack-off-all-trades plant signal molecule. In higher plants, nitrite 37 

is the major substrate for NO formation (Astier et al., 2018), while in primitive algae, 38 

similar to animals, NO is primarily derived from the amino acid L-arginine (Astier et al., 39 

2021), indicating that reductive pathways of endogenous NO formation have become 40 

dominant during the evolution of terrestrial plants (Fröhlich and Durner, 2011). NO is an 41 

integral regulator in a wide range of physiological processes such as vegetative-42 

reproductive development (Sánchez-Vicente et al., 2019), photosynthesis (Lopes-43 

Oliveira et al., 2021), stomatal movements (Van Meeteren et al., 2020), abiotic stress 44 

responses (Fancy et al., 2017), symbiotic interactions (Berger et al., 2019) and defence 45 

mechanisms against phytopathogens (Lubega et al., 2021; Jedelská et al., 2021). In 46 

biological systems, NO reacts among other things, with molecular oxygen, reactive 47 

oxygen species, glutathione, and amino acids to form the diverse group of reactive 48 

nitrogen species (RNS) including peroxynitrite (ONOO-) and S-nitrosoglutathione (GSNO) 49 

as the most relevant ones. While the blood pressure regulating effect of NO in animals 50 

and humans is mediated by cGMP-dependent signalling and soluble guanylate cyclase 51 

(sGC) functions as a NO receptor (Horst et al., 2019), in plants NO-induced cGMP 52 

signalling seems to be unlikely (Astier et al., 2019). In recent years, the view has become 53 

prevalent that the transfer of NO’s bioactivity is conveyed mainly through posttranslational 54 

modifications (PTMs) of specific protein targets. PTMs occurring following or during 55 

translation aim to increase the size and complexity of the proteome. Protein modifications 56 

result from enzymatic or nonenzymatic bounding of specific chemical groups to amino 57 

acid side chains (Santos and Lindner, 2017). Due to the alterations in the protein 58 

structure, protein activity, stability, localization, and molecular interactions may be 59 

modified (Vu et al., 2018). The biological function of more than 200 different enzymatic 60 

and non-enzymatic PTMs has been revealed so far (Virág et al., 2020). Among them, 61 

NO and its reaction products are responsible for the induction of non-enzymatic PTMs 62 

called nitration, S-nitrosation and metal nitrosylation. Nitration may covalently modify 63 
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tyrosine, tryptophan, cysteine and methionine (Corpas et al., 2009), S-nitrosation affects 64 

cysteine-containing proteins (Hess et al., 2005), and during metal nitrosylation NO reacts 65 

with metallo-enzymes (Ignarro et al., 1999). In biological systems, the most actively 66 

studied NO-dependent PTMs are S-nitrosation and tyrosine nitration affecting a large 67 

number of proteins thus having wide-ranging impact in the cells. Protein S-nitrosation has 68 

been established as a significant route by which NO transmits its ubiquitous cellular 69 

function (Hess et al., 2005; Spadaro et al., 2010; Astier and Lindermayr, 2012), while 70 

tyrosine nitration seems to have a major role as an irreversible modification leading to 71 

protein inactivation (Kolbert et al., 2017). 72 

 73 

S-nitrosation: mechanism, specificity, selectivity, identification in plants 74 

The mechanism of S-nitrosothiol formation is an important issue for understanding 75 

the biological actions of NO. Often thiol-containing molecules like cysteine and 76 

glutathione have been used for S-nitrosation to yield low-molecular-weight S-nitrosothiols 77 

such as S-nitrosocysteine (CysNO) and GSNO and to study the S-nitrosation mechanism. 78 

However, the reactivity of NO with thiol groups is very low. Therefore, the formation of 79 

SNOs depends on the generation of reactive intermediates (Hill et al., 2010; Broniowska 80 

and Hogg, 2012). As a free radical (●NO), it can lose or gain electrons to become oxidized 81 

nitrosonium cation (NO+) or reduced nitroxyl anion (NO-) species, each with different 82 

oxidation state for the nitrogen atom (+2, +3, and +1 respectively) (Arnelle and Stamler, 83 

1995). Moreover, in aerobic, biological milieu, NO can be oxidized to its +5 oxidation state 84 

to form non-reactive nitrate anion (NO3
-). The existence of NO in different redox status 85 

multiplies the possibilities to form S-nitrosothiols via various pathways (Fig 1). For 86 

instance, NO can be oxidized to the highly reactive dinitrogen trioxide (N2O3), which is an 87 

effective S-nitrosating agent. Moreover, the NO radical can react with highly electrophilic 88 

thiyl (RS●) radicals. Furthermore, redox-active metals, e. g. such as those present in 89 

heme groups, can catalyze SNO formation. Finally, S-nitrosothiols can transfer their NO 90 

moiety to cysteine thiol in a trans-nitrosation reaction. This is of special importance in 91 

context of the physiological NO donors CysNO and GSNO (Hess et al., 2005; Smith and 92 

Marletta, 2012; Kovacs and Lindermayr, 2013). But also S-nitrosated protein cysteine 93 

residues can function as NO donors. Several nitrosated proteins are described to 94 

transferring their NO group to target proteins or low molecular weight thiols, e. g. 95 

hemoglobin (Pawloski et al., 2001), thioredoxin (Mitchell and Marletta, 2005; Mitchell 96 
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et al., 2007; Wu et al., 2010), caspase-3 (Nakamura and Lipton, 2013), cyclin-97 

dependent kinase 5 (Qu et al., 2011), glyceraldehyde 3-phosphate dehydrogenase 98 

(Kornberg et al., 2010; Zaffagnini et al., 2013), and non-canonical catalase ROG1 99 

(Chen et al., 2020).  100 

The microenvironment around a cysteine residue defines its NO accessibility and 101 

reactivity. Cysteine residues exhibiting a low-pKa sulfhydryl group are particularly 102 

susceptible to certain types of redox modification (Spadaro et al., 2010). In the past, 103 

different consensus motifs for S-nitrosation have been defined by comparing the amino 104 

acid sequences around identified target cysteine residues. In general, such NO sensitive 105 

cysteine residues are often located within an acid-base or hydrophobic motif (Stamler et 106 

al., 2001), while Greco et al. (2006) supported the idea of extending the motif beyond 107 

the primary sequence including hydrophobic motifs nearby the target cysteine residues 108 

(Greco et al., 2006). Based on amino acid sequence comparison of S-nitrosated proteins, 109 

several different consensus sequences for S-nitrosation have been described. Stamler 110 

and colleagues (1997) proposed an acid-base motif for protein S-nitrosylation and 111 

denitrosylation. The acid-base motif comprises flanking acidic (Asp (D), Glu (E)) and basic 112 

(Arg (R), His (H), Lys (K)) residues to the reactive thiol cysteine sites ([KRHDE]-C-[DE]). 113 

Moreover, a GSNO binding motif is described ([HKR]-C-[hydrophobic]X[DE]) (Hess et al., 114 

2005). Analysis of 1195 sequences of S-nitrosated peptides identified in GSNOR-KO 115 

plants (Hu et al., 2015) revealed 10 motifs, including EXC, EC, CD, CE, CXXE, CXD, 116 

CXE, DXXC, DC, and EXXXC, harboring conserved negatively charged amino acids 117 

glutamate (E) or aspartate (D) in close proximity of the S-nitrosated cysteine residue. 118 

Although such charged motifs have been shown to be predictive in a number of cases, 119 

the common features of acid-base motifs are still object of intense discussions and there 120 

are still no general rules, which can explain which cysteine residue is a target for NO.  121 

In contrast, other studies have demonstrated on the peptide level that the 122 

sequence of the surrounding amino acids has no significant effect on the reactivity of 123 

cysteines towards S-nitrosation (Taldone et al., 2005). Moreover, analysis of 70 S-124 

nitrosation sites revealed that proximal acid–base motif, Cys pKa, sulfur atom exposure, 125 

and hydrophobicity in the vicinity of the modified cysteine do not predict S-nitrosation 126 

specificity. Instead, a revised acid-base motif that is located farther from the target 127 

cysteine and in which the charged groups are exposed has been identified (Marino and 128 

Gladyshev, 2010). This emphasizes also the importance of the three-dimensional 129 
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folding, which needs to be considered whenever defining the NO sensitivity of a cysteine 130 

residue (Kovacs and Lindermayr, 2013). 131 

In recent two decades, much effort has been made to identify S-nitrosated proteins 132 

in plants. A number of indirect mass spectrometry (MS)-based proteomics approaches 133 

have been developed to identify S-nitrosated proteins and their modification sites from 134 

complex biological samples (Jaffrey and Snyder, 2001; Hao et al., 2006, Camerini et 135 

al, 2007; Chouchani et al., 2010; Hu et al., 2015). The biotin switch technique (BST) is 136 

the most widely used method and is based on the conversion of S-nitrosated Cys to 137 

biotinylated Cys (Jaffrey and Snyder, 2001). Such a labelling allows the detection of S-138 

nitrosated proteins using specific anti-biotin antibodies and their enrichment by affinity 139 

chromatography using neutravidin matrices. Finally, the enriched proteins are identified 140 

by MS. Variants of the BST assay, including quantitative approaches and the use of 141 

protein microarrays have been reported and successfully used (Torta et al., 2008; Astier 142 

et al., 2011; Seth and Stamler, 2011; Wang and Xian, 2011; Lee et al., 2014). Including 143 

a digest step before purification allows the enrichment of peptides containing NO-targeted 144 

cysteine residues (SNOSID) (Hu et al., 2015). Modification of the BST method enabled 145 

quantification of S-nitrosated proteins via fluorescent labelling (Santhanam et al., 2008) 146 

or via the use of isobaric iodoacetyl tandem mass tags (iodoTMT) (Qu et al., 2014). 147 

Furthermore, proteins can also react with a thiol-reactive resin allowing on-resin 148 

enzymatic digestion before MS analysis. This resin-assisted capture (SNO-RAC) requires 149 

fewer steps, detects high-mass S-nitrosated proteins more efficiently, and facilitates 150 

identification and quantification of S-nitrosated sites by mass spectrometry (Forrester et 151 

al., 2009; Kolbert et al., 2019).  152 

Until now, several hundreds of endogenously S-nitrosated proteins have been 153 

identified in proteome wide-scale studies in plants, whereas NO donor treatments are 154 

often used to increase the amount of S-nitrosated proteins. S-nitrosated proteins function 155 

in major cellular activities of the primary and secondary metabolism and regulate 156 

processes related to biotic and abiotic stress response (Astier et al., 2012). However, 157 

these candidates need confirmation by candidate-specific approaches for the 158 

physiological relevance. This includes also the identification of the NO-sensitive cysteine 159 

residue(s) of these proteins. 160 

 161 

Tyrosine nitration: mechanism, specificity, selectivity, identification in plants 162 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6 
 

Tyrosine is a moderately hydrophilic aromatic amino acid, which is therefore often on 163 

the surface of the protein and thus subject to modifications. Nitration reaction may be 164 

catalysed by ONOO- or by nitrogen dioxide radical formed in the reaction between 165 

hydrogen peroxide and nitrite in the presence of hemoperoxidase enzyme. Peroxynitrite 166 

is a strong oxidizing and nitrating agent resulting from the reaction between superoxide 167 

anion radical and NO, mainly at the sites of superoxide formation (Radi et al., 2001, 168 

Szabó et al., 2007, Fig 1). During nitration of tyrosine amino acid, a nitro group is 169 

attached to the hydroxyl group of the ortho carbon atom in the aromatic ring leading to 170 

the formation of 3-nitrotyrosine (YNO2). The process takes place in two steps, since the 171 

attachment of the nitro group is preceded by a one electron oxidation of the tyrosine 172 

aromatic ring to tyrosyl radical. The major oxidants are hydroxyl radical and carbonate 173 

radical which originate from ONOO- due to diverse reactions (Kolbert et al., 2017). As a 174 

consequence of YNO2 formation, the key physical and chemical properties including pKa, 175 

redox potential, hydrophobicity/hydrophilicity, molecular size of amino acids may be 176 

modified (Sabadashka et al., 2021). Due to these physico-chemical alterations, the 177 

structure and function of the target protein may be changed. In animal systems, 178 

accumulating evidence suggest the reversibility and consequently the signalling function 179 

of tyrosine nitration (Sabadashka et al., 2021). In contrast, most of the nitrated plant 180 

enzyme proteins examined in detail so far show activity loss indicating that tyrosine 181 

nitration may be a signal for degradation (Kolbert et al., 2017).   182 

Protein tyrosine nitration is a relatively widespread PTM because it affects numerous 183 

proteins in different organs of plants grown under diverse conditions (both unstressed 184 

and stressed). At the same time tyrosine nitration can be considered as highly selective, 185 

since only 1-2% of the total tyrosine proteome (3% of the whole proteome) may be 186 

exposed to in vivo nitration (Bartesaghi et al., 2007). Consequently, the total yield 187 

(expressed as mole of 3-nitrotyrosine/mole tyrosine) is low, as was determined in 188 

hypocotyls of sunflower grown under physiological conditions (Chaki et al., 2009). 189 

Nitration of protein tyrosine is a selective process despite the fact that no consensus 190 

sequence ensuring selectivity has been convincingly confirmed (Bartesaghi and Radi, 191 

2018). Rather, some common features appear to affect YNO2 formation such as the 192 

presence of acidic residues next to the YNO2 site, cysteine or methionine neighbouring 193 

the target tyrosine residue and the presence of loop-forming amino acids such as proline 194 

or glycine (Souza et al., 2008). Beyond the amino acid sequence, additional factors 195 
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influence the nitration process including the centrifugal-centripetal position of the tyrosine 196 

residue within the three-dimensional (3D) structure of the protein and the cellular and 197 

redox environment of the target protein (Yeo et al., 2015; Bartesaghi and Radi, 2018). 198 

In plant studies, the one- and two-dimensional gel electrophoresis followed by 199 

immunochemical detection of nitrated proteins are frequently used approaches. Protein 200 

identification by regular MS/MS in combination with immuno-enrichment of tyrosine-201 

nitrated peptides is possible. For detecting the nitrated peptides matrix-assisted laser 202 

desorption/ionization-time of flight (MALDI-TOF) MS and LC-MS/MS can be used (Yeo 203 

et al. 2015; Batthyány et al., 2017). In most plant studies, immune-affinity based 204 

approaches was optimized for identifying tyrosine nitrated-proteins (e.g. Corpas et al., 205 

2008; Lozano-Juste et al., 2011; Cecconi et al., 2009; Tanou et al., 2012; Begara-206 

Morales et al., 2013ab, 2019; Takahashi and Morikava, 2019). However, false positive 207 

detection may happen due to non-specific antibody binding and the identified protein 208 

occasionally mismatch the protein database (Corpas et al., 2013a). Thus MS assays are 209 

being continuously improved in order to provide more accurate detection of tyrosine 210 

nitrated proteins and peptides (Ng et al., 2013; Tsikas and Duncan, 2013; Yeo et al., 211 

2015; Batthyány et al., 2017; Chaki et al., 2018). To date, large-scale studies identified 212 

more than one hundred plant proteins as in vivo targets of tyrosine nitration in the organs 213 

of healthy and stressed plants. For most of these proteins, the YNO2 site and the change 214 

in activity/function have not been studied.  215 

 216 
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Fig 1. Reactions leading to the formation of reactive nitrogen species which are 217 
responsible for posttranslational modifications such as S-nitrosation and tyrosine 218 

nitration. See explanations in the text. Abbreviations: NO, nitric oxide; GSH, glutathione; 219 
GSNO, S-nitrosoglutathione; M, metal; RS●, thiyl radical; O2, oxygen; N2O3, dinitrogen 220 

trioxide; N2O4, dinitrogen tetroxide, O2
●-, superoxide anion radical; ONOO-, peroxynitrite; 221 

NO2
-, nitrite; H2O2, hydrogen peroxide; HPO, hemoperoxidase; ●NO2, nitrogen dioxide 222 

radical.  223 

 224 

 225 

Computational tools for predicting NO-dependent PTMs 226 

Although many different experimental methods have been developed for accurate 227 

identification of NO target cysteine residues, these are often still associated with technical 228 

difficulties based on the instability of SNOs. For instance, direct detection of NO-modified 229 

thiols by MS or X-ray crystallography is still very challenging and only possible on 230 

recombinant proteins. Moreover, such approaches are time-consuming and cost-231 

intensive. The situation is similar with the analytical determination of YNO2, as there are 232 

methodological challenges during the detection: (i) endogenous levels of YNO2 are very 233 

low, (ii) the vast excess of tyrosine in the samples disturbs the detection and quantification 234 

of YNO2 (iii) special precautions must be taken since YNO2 may be formed during sample 235 

preparation (Tsikas and Duncan, 2013). Therefore, the computational approach of 236 

screening proteins for NO sensitive cysteine or tyrosine residues is an attractive 237 

alternative since the recent progress of machine learning makes possible the efficient use 238 

of computational prediction preceding the laboratory experimentation. With the availability 239 

of a huge amount of amino acid sequences, it is possible to develop computational 240 

methods for predicting SNO or YNO2 sites in proteins. Such kind of information is very 241 

useful for both basic research and application. Table 1 summarizes the developed tools 242 

either for predicting SNO sites or YNO2 sites, or both.  243 

 244 

Table 1 List of software tools developed so far for predicting NO-dependent PTMs (S-245 

nitrosation and tyrosine nitration). Modified from Bignon et al. (2018).  246 

Name 
Yea

r 

Availibil

ity 
Link 

numbe

r of 

citatio

ns (1st 

of 

June 

2021) 

Citatio

n 
Note 

SNO prediction             

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
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GPS-SNO 
201

0 

web 

server, 

standalo

ne 

http://sno.biocuckoo.org/ 157 

Xue et 

al., 

2010 
  

SNOSite 
201

1 

web 

server http://csb.cse.yzu.edu.tw/SNOSite

/ 

69 

Lee et 

al., 

2011 

link 

does

n't 

work 

iSNO-PseACC 
201

3 

web 

server 

http://app.aporc.org/iSNO-

PseAAC/index.html 
345 

Xu et 

al., 

2013a   

iSNO-AAPAir 
201

3 

web 

server 
http://app.aporc.org/iSNO-AAPair/ 249 

Xu et 

al., 

2013b   

PSNO 
201

4 

web 

server 
http://59.73.198.144:8088/PSNO/ 82 

Zhang 

et al., 

2014 

link 

does

n't 

work 

PreSNO 
201

9 

web 

server 
http://kurata14.bio.kyutech.ac.jp/P

reSNO/ 

21 

Hasan 

et al., 

2019   

RecSNO 
202

1 

web 

server 
http://nsclbio.jbnu.ac.kr/tools/Rec

SNO/ 

1 

Siraj et 

al., 

2021   

              

YNO2 prediction             

GPS-YNO2 
201

1 

web 

server, 

standalo

ne 

 http://yno2.biocuckoo.org/ 66 

Liu et 

al., 

2011 
  

iNitro-Tyr 
201

4 

web 

server 
http://app.aporc.org/iNitro-Tyr/ 209 

Xu et 

al., 

2014   

PredNTS 
202

1 

web 

server 

http://kurata14.bio.kyutech.ac.jp/P

redNTS/ 
1 

Nilamy

ani et 

al., 

2021   

iNitroY-Deep 
202

1 

webserv

er 
http://3.15.230.173/ 0 

Naseer 

et al., 

2021 

link 

does

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
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n’t 

work 

              

Both SNO and YNO2 

prediction 
          

  

DeepNitro 
201

8 

web 

server 
http://deepnitro.renlab.org 33 

Xie et 

al. 2018   

 247 

Tools for computational prediction of S-nitrosation sites and testing their 248 

performance 249 

 250 

The algorithms developed to identify NO-sensitive cysteine residues include GPS-251 

SNO, SNOSite, iSNOPseAAC, iSNO-AAPair, RecSNO, PreSNO, and DeepNitro (Lee et 252 

al., 2011; Xu et al., 2013a; Xu et al., 2013b; Xue et al., 2010; Hasan et al., 2019; Xie 253 

et al., 2018; Siraj et al., 2021; Zhang et al., 2014). A big disadvantage of these 254 

computational methods is still the non-consideration of the 3D structure of the proteins. 255 

Cysteine residues, which might be predicted as target for S-nitrosation could be buried 256 

inside the protein and in this way inaccessible for NO. Moreover, for calculating the NO-257 

sensitivity of a cysteine residue, the algorithms consider only amino acids, which are 258 

nearby a cysteine residue in the primary structure. However, in the folded protein amino 259 

acids, which are far away in the primary structure, could get in close vicinity of a cysteine 260 

residue and affect its microenvironment.  261 

The first released online tool for SNO-site prediction was GSP-SNO 1.0 in 2010 262 

(Xue et al., 2010). The leave-one-out validation and 4-, 6-, 8-, 10-fold cross-validations 263 

were calculated to evaluate the prediction performance and system robustness. The GPS 264 

3.0 algorithm performed quite well with an accuracy of 75.70%, a sensitivity of 55.32% 265 

and a specificity of 80.11% under the low threshold. The online service and local 266 

packages of GPS-SNO 1.0 were implemented in JAVA 1.4.2 and freely available at: 267 

http://sno.biocuckoo.org/. 268 

One year later, the software tool SNOSite was presented (Lee et al., 2011). The 269 

authors used a total of 586 experimentally identified S-nitrosation sites from S-nitroso-L-270 

penicillamine (SNAP)/L-cysteine-stimulated mouse endothelial cells for an informatics 271 

analysis on S-nitrosation sites including structural factors such as the flanking amino 272 

acids composition, the accessible surface area and physicochemical properties, i.e. 273 

positive charge and side chain interaction parameter. Maximal dependence 274 
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decomposition (MDD) has been applied to obtain statistically significant conserved motifs. 275 

Support vector machine (SVM) is applied to generate predictive model for each MDD-276 

clustered motif. According to five-fold cross-validation, the MDD-clustered SVMs could 277 

achieve an accuracy of 0.902, and provides a promising performance in an independent 278 

test set. The MDD-clustered model was adopted to construct an effective web-based tool, 279 

named SNOSite (http://csb.cse.yzu.edu.tw/SNOSite/), for identifying S-nitrosation sites 280 

on the uncharacterized protein sequences. At the time of writing this review, SNOSite is 281 

not available. 282 

In 2013, a new predictor, called iSNO-PseAAC, was developed for identifying the 283 

SNO sites in proteins by incorporating the position-specific amino acid propensity 284 

(PSAAP) into the general form of pseudo amino acid composition (PseAAC) (Xu et al., 285 

2013a). The predictor was implemented using the conditional random field (CRF) 286 

algorithm. The overall cross-validation success rate achieved by iSNO-PseAAC in 287 

identifying nitrosylated proteins on an independent dataset was over 90%, indicating that 288 

the new predictor is quite promising. A web server for iSNO-PseAAC is available at 289 

http://app.aporc.org/iSNO-PseAAC/, where users can easily obtain the desired results 290 

without the need to follow the mathematical equations involved during the process of 291 

developing the prediction method. Then same group published another prediction tool 292 

called iSNO-AAPair (Xu et al., 2013b). This algorithm was developed by considering the 293 

coupling effects for all the pairs formed by the nearest residues and the pairs by the next 294 

nearest residues along protein chains. A web server for iSNO-AAPair was established at 295 

http://app.aporc.org/iSNO-AAPair/. 296 

In 2014, Zhang and co-workers presented a new bioinformatics tool, named 297 

PSNO, to identify SNOs from amino acid sequences (Zhang et al., 2014). They explored 298 

various promising sequence-derived discriminative features, including the evolutionary 299 

profile, the predicted secondary structure and the physicochemical properties and used 300 

the relative entropy selection and incremental feature selection approach to select the 301 

optimal feature subsets. Afterwards, they trained their model by the technique of the k-302 

nearest neighbour algorithm. Using both informative features and an elaborate feature 303 

selection scheme, the PSNO method achieved good prediction performance with a mean 304 

Mathews correlation coefficient (MCC) value of about 0.5119 on the training dataset using 305 

10-fold cross-validation. The PSNO web server was established at 306 

http://59.73.198.144:8088/PSNO/, but at the time of writing this review it is not accessible.  307 
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Four years later, Xie and colleagues developed a computational tool for predicting 308 

nitration and nitrosation sites in proteins (Xie et al., 2018). They constructed positional 309 

amino acid distributions, sequence contextual dependencies, physicochemical 310 

properties, and position-specific scoring features, to represent the modified residues. 311 

Based on these encoding features, they established a predictor called DeepNitro using 312 

deep learning methods for predicting S-nitrosation. Using n-fold cross-validation, the 313 

evaluation shows great AUC value for DeepNitro, of 0.70 for cysteine nitrosation, 314 

demonstrating the robustness and reliability of the predictor. The application of deep 315 

learning method and novel encoding schemes, especially the position-specific scoring 316 

feature, seems to improve the accuracy of S-nitrosation site prediction. DeepNitro is 317 

implemented in JAVA and PHP and is freely available for academic research at 318 

http://deepnitro.renlab.org. 319 

A novel predictor PreSNO has been developed that integrates multiple encoding 320 

schemes by the support vector machine and random forest algorithms (Hasan et al., 321 

2019). The PreSNO achieved an accuracy and MCC value of 0.752 and 0.252 322 

respectively in classifying between SNO and non-SNO sites when evaluated on the 323 

independent dataset, outperforming the existing methods. The web application of the 324 

PreSNO and its associated datasets are freely available at 325 

http://kurata14.bio.kyutech.ac.jp/PreSNO/. 326 

The latest SNO-site prediction tool is called RecSNO and was published in 2021 327 

by Siraj and colleagues (Siraj et al., 2021). They proposed an end-to-end deep learning 328 

based S-nitrosation site predictor with an embedded layer and bidirectional long short-329 

term memory. This method uses amino acid sequences as inputs without any need for 330 

complex features interventions. This sequence-based protein prediction method is 331 

associated with a significant improvement in identification of S-nitrosation sites. The best 332 

prediction of the proposed architecture showed an improvement of in MCC 3% on 5-fold 333 

cross validation and 5% on an independent test dataset. The user-friendly publicly 334 

available web server is accessible at http://nsclbio.jbnu.ac.kr/tools/RecSNO/.  335 

It has to be emphasized that the prediction tools GPS-NO and DeepNitro have 336 

both an option for selecting a threshold (low, medium, high) allowing to altering the 337 

stringency of the SNO site prediction. Similarly, a threshold between 0 and 1.0 can be 338 

selected in RecSNO. All other available SNO site prediction tools work with a fixed 339 

stringency. 340 
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NO-sensitive cysteine residues can be experimentally identified/verified by MS or 341 

by generation and analysis of cysteine mutants. Although MS allows the direct 342 

identification of the modified cysteine residues, cysteine mutants are often additionally 343 

analysed, especially if the physiological function of the S-nitrosated protein needs to be 344 

characterized. In this case, knock-out/knock-down plants of the NO-sensitive protein is 345 

complemented with corresponding cysteine mutants to get hints to the physiological 346 

function of the S-nitrosated proteins and to verify the NO-sensitivity of the cysteine 347 

residue(s) in vivo. This approach is the gold standard for characterisation of protein S-348 

nitrosation. However, because of different reasons such as in vivo analyses are not 349 

always possible, e. g. if knock-out/knock-down lines are not available. In this case, 350 

recombinant proteins of the cysteine mutants can be produced and analysed for their NO-351 

sensitivity, provided, that enzymatic or functional assays are available. Until now, 32 NO-352 

sensitive cysteine residues have been identified/verified in 26 plant proteins by MS or by 353 

generation and analysis of cysteine mutants (Table 2). We have chosen these 26 proteins 354 

to compare the prediction efficiency of the available SNO site prediction software. Table 355 

2 shows that the different computational programs have predicted SNO sites in the 356 

selected proteins with different efficiency. GPS-SNO, iSNO-PseAAC, iSNO-AAPair and 357 

RecSNO identified between 20 and 22 of the 26 analysed proteins as targets for S-358 

nitrosation, whereas DeepNitro and PreSNO identified 15 and 10, respectively. Moreover, 359 

the first published online tool for SNO site detection, GPS-SNO, as well as the newer 360 

tools DeepNitro and PreSNO predict 31, 24 and 16 putative SNO sites, respectively, 361 

including 13 (GPS-SNO) and 9 (DeepNitro and PreSNO) verified SNO sites. These three 362 

prediction tools have a hit rate (number of matched SNO sites divided by the total number 363 

of predicted SNO sites) of 42% (GPS-SNO), 38% (DeepNitro) and 56% (PreSNO). The 364 

other computational tools, such as iSNO-PseAAC, iSNO-AAPair or RecSNO predict a 365 

much higher number of putative NO-sensitive cysteine residues - 83, 39, and 60, 366 

respectively – whereas only 11 (iSNO-PseAAC), 7 (iSNO-AAPair) and 10 (RecSNO) are 367 

matching with experimentally identified/verified SNO sites. This quite high rate of mis-368 

prediction is making these three tools less useful. The prediction efficiency of the different 369 

online tools is further characterized by calculating their sensitivity (Sn), specificity (Sp) 370 

and accuracy (AC) as described by Nilamyani et al. (2021) (Table 3). Sensitivity is the 371 

proportion of true positives that are correctly identified by the prediction algorithm, 372 

specificity is the proportion of the true negatives correctly identified by the software and 373 
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accuracy is the proportion of true results, either true positive or true negative, in a 374 

population (Wihinen, 2012). 375 

 376 

 377 

378 
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Table 2 List of plant proteins in which the S-nitrosated cysteine residues have been 379 

experimentally identified. S-nitrosated sites in the listed proteins were computationally 380 

predicted using GSP-SNO 1.0, iSNO-PseAAC, iSNA-AAPair, DeepNitro, PreSNO and 381 

RecSNO software. Bold indicates matched cysteine residue. 382 
 383 

Protein 

name 

Accessio

n 

number 

Total 

numb

er of 

Cys 

Identifi

ed by 

LC-

MS/M

S or 

mutati

on 

 

Predict

ed by 

GPS-

SNO 

1.0 

(2010) 

(mediu

m 

thresho

ld) 

Predict

ed by 

iSNO-

PseAA

C 

(2013) 

Predict

ed by 

iSNO-

AAPair 

(2013) 

Predict

ed by 

DeepNi

tro 

(2018) 

(mediu

m 

thresho

ld) 

Predict

ed by 

PreSN

O 

(2019) 

Predict

ed by 

RecSN

O 

(2020) 

0.6 

thresh

old 

Citation 

NPR1 At1g6428

0 

17 C156 C156, 

C385 

C212, 

C306 

C223, 

C306, 

C394, 

C457 

non non C82, 

C212, 

C216, 

C223, 

C378, 

C394, 

C457 

Tada et 

al., 2008 

SAMS1 At1g0250

0 

8 C114 C114 C161 C31, 

C90, 

C161 

non C114 C45, 

C73, 

C90, 

C161 

Linderm

ayr et 

al, 2006 

OST1 

(SnRK2.

6) 

At4g3395

0 

7 C137 non C107, 

C159, 

C203 

C131, 

C203 

non C137 C159, 

 

Wang et 

al., 2015 

ASK1 At1g7595

0 

3 C37, 

C118 

C118 non C59, 

C118 

C118 non C59, 

C118 

Iglesias 

et al., 

2018 

SCE1 At3g5787

0 

4 C139 non C94, 

C139 

C139 C139 non non Skelly et 

al., 2019 

SRG1 At3g4608

0 

7 C87 C87 C87 C28 non non C18, 

C28, 

 

Cui et 

al., 2018 

AHP1 At3g2151

0 

4 C115 non C104 C115 non non non Feng et 

al., 2013 
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cALD2 At2g3646

0 

6 C173 C68, 

C326 

C326 C208 C326 non C197, 

C208, 

C326 

van der 

Linde et 

al., 2011  

TIR1 At3g6298

0 

23 C140 C516, 

C551 

C34, 

C53, 

C121, 

C140, 

C155, 

C210, 

C269, 

C288, 

C311, 

C405, 

C480, 

C491 

C121, 

C140, 

C405, 

C551 

C53, 

C516 

non C53, 

C121, 

C551 

Terrile 

et al., 

2012 

MC9 At5g0420

0 

7 C147 C17, 

C147 

C17, 

C29 

C117 C17, 

C29, 

C147 

C147 C17, 

C29, 

C117, 

C147, 

C251 

Belengh

i et al., 

2007 

PRXII E At3g5296

0 

2 C121 C121 C121, 

C146 

C121 C121 C121 C121, 

C146 

Romero

-Puertas 

et al., 

2007 

GAPDH At1g1344

0 

2 C156, 

C160 

C156, 

C160 

non non C156, 

C160 

C156, 

C160 

C156 Holtgref

e et al., 

2008 

SABP3 At3g0150

0 

7 C280 C34, 

C173, 

C280 

C230, 

C257 

C34 non non C34, 

C173, 

C230 

Wang et 

al., 2009 

NADPH 

Oxidase 

(RBOH

D) 

At5g4791

0 

10 C890 non C208, 

C387, 

C433, 

C480, 

C695 

C412, 

C480, 

C695, 

C890 

C695, 

C890 

non C433, 

C695, 

C890 

Yun et 

al., 2011 
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TGA1 At5g6521

0 

4 C172, 

C287 

C172 non non non C260, 

C266 

non Linderm

ayr et 

al., 2010 

CDC48 Q1G0Z1 

Nicotiana 

tabacum 

14 C110, 

C526, 

C664 

C426, 

C576 

C74, 

C82, 

C110, 

C526, 

C539, 

C576, 

C664, 

C699 

C74, 

C426, 

C539, 

C576 

C110, 

C419, 

C539, 

C664 

C526, 

C539 

C74, 

C82, 

C110, 

C272, 

C539, 

C695 

Astier et 

al., 2012 

MYB30 At3g2891

0 

7 C53 C6 C6, C7, 

C49, 

C53, 

C257, 

C289 

C6, C7 C49 C49, 

C53 

non Tavares 

et al., 

2014 

PDK1 Q5I6E8, 

Solanum 

lycopersic

um 

4 C128 C214 C128, 

C214, 

C244, 

C466 

non non non non Liu et 

al., 2017 

GSNOR At5g4394

0 

15 C10 C10, 

C283 

C10, 

C59, 

C77, 

C117, 

C125, 

C189, 

C283, 

C296, 

C385 

C59 non non C10, 

C382, 

C385 

Guerra 

et al., 

2016; 

Zhan et 

al., 2018 

ROG1 At1g2062

0 

7 C343 non C230, 

C370, 

C402, 

C420 

C402 C230 non C86, 

C230, 

C370, 

C402 

Chen et 

al., 2020 

cFBP1 AAD1021

3, 

Pisum 

sativum 

7 C153 C173 C178 C92, 

C306 

C306 non C49, 

C92, 

C306 

Serrato 

et al., 

2018 
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APX1 At1g0789

0 

5 C32 C119 C32, 

C138 

C19, 

C32 

C138 C32, 

C49 

C32, 

C49, 

C138 

Yang et 

al., 2015 

ABI5 At2g3627

0 

4 C153 C153, 

C440 

C56, 

C440 

non C440 non C153, 

C293 

Albertos 

et al., 

2015 

PRMT5 At4g3112

0 

12 C125 C125 C17, 

C70, 

C125, 

C141, 

C189, 

C238, 

C260, 

C610, 

C611 

C238, 

C260 

non non C125, 

C160 

Hu et 

al., 2015 

GAPC1 At3g0412

0 

2 C149 C156, 

C160 

non non C156, 

C160 

C156, 

C160 

C156 Zaffagni

ni et al., 

2013 

VND7 At1g7193

0 

4 C264, 

C340 

C320 C58, 

C153, 

C264, 

C320 

non non non non Kawabe 

et al., 

2013 

Numbe

r of 

protein

s 

predict

ed as 

targets 

for NO 

  26 21 22 20 15 10 20  

Predict

ed SNO 

sites 

  32 31 83 39 24 16 60  

Cys 

match 

(verifie

d vs. 

   13 

(42%) 

11 

(13%) 

7 

(18%) 

9  

(38%) 

9 

(56%) 

10 

(17%) 
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  384 
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Table 3 Values of sensitivity, specificity and accuracy of SNO predicting software tools. 385 
Metrics were calculated based on the predictions in 26 experimentally identified S-386 

nitrosated plant proteins listed in Table 2. 387 
 388 

  389 

 390 

Tools for computational prediction of tyrosine nitration sites and testing their 391 

performance 392 

 393 

The first software for predicting YNO2 sites in proteins using the FASTA format of 394 

peptide sequence was GPS-YNO2 1.0 which was published in 2011 by Liu and co-395 

workers (Liu et al, 2011). The algorithm is based on the biochemical properties of 396 

neighbouring amino acids and it showed promising performance (accuracy of 76.51%, 397 

sensitivity of 50.09%, specificity of 80.18%) using leave-one-out validation and 4-, 6-, 8-, 398 

10-fold cross-validations. The tool can be used online or as a local package both 399 

implemented in JAVA. It is freely available at: http://yno2.biocuckoo.org/. 400 

In 2014, a novel predictor algorithm called iNitro-Tyr was developed (Xu et al., 401 

2014). It is based on the incorporation of the position-specific dipeptide propensity into 402 

the general pseudo amino acid composition which allows the proper discrimination of the 403 

YNO2 sites from the non-nitrated ones. It was demonstrated by the rigorous jackknife 404 

tests that iNitroTyr shows higher success rate and stability and is less noisy than GPS-405 

YNO2. This algorithm indicates the total number of tyrosine residues within the protein 406 

sequence which is useful information. iNitroTyr is freely available online at: 407 

http://app.aporc.org/iNitro-Tyr/. 408 

In 2018, DeepNitro a predictor simultaneously identifies sites of S-nitrosation, 409 

tyrosine nitration and tryptophan nitration has been developed (Xie et al., 2018). 410 

One of the most recent computational predictors for identifying YNO2 sites is 411 

PredNTS published by Nilamyani et al. (2021). The algorithm was developed by 412 

integrating multiple sequence features including K-mer, composition of k-spaced amino 413 

acid pairs, AAindex and binary encoding schemes. Using a comprehensive dataset, 414 

Software Sensitivity (Sn, %) Specificity (Sp, %) Accuracy (Acc, %)

GPS-SNO (medium threshold) 46.07 67.48 61.59

iSNO-PseAAC 42.66 45.14 46.89

iSNO-AAPair 26.00 63.92 56.64

DeepNitro (medium threshold) 24.66 47.96 43.38

PreSNO 29.20 29.96 29.77

RecSNO (0.6 threshold) 33.20 42.69 44.00
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PredNTS outperformed the previously developed predictors. The software is freely 415 

available at:  http://kurata14.bio.kyutech.ac.jp/PredNTS/. 416 

The other recently developed predictor is iNitroY-Deep which uses pseudo amino 417 

acid compositions and deep neural networks (DNNs) (Naseer et al., 2021). Using widely-418 

accepted model evaluation measures, iNitroY-Deep outperformed the previously 419 

published nitrotyrosine predictor tools. The web server was established at 420 

http://3.15.230.173/, but at the time of writing this review it is not accessible.   421 

In order to evaluate the performance of the available tyrosine nitration predicting 422 

tools, we performed in silico analysis of proteins with nitrated tyrosine residues identified 423 

by LC-MS/MS. Among those, 11 proteins were tested by GPS-YNO2 and iNitro-Tyr in our 424 

previous work (Kolbert et al., 2017) and the list has been supplemented by recently 425 

identified proteins (Table 4). Of the 15 nitrated proteins, 14 were identified as candidates 426 

by GPS-YNO2 software, 12 by iNitro-Tyr, 13 by DeepNitro and 15 by PredNTS. In the 15 427 

proteins, 36 YNO2 sites have been experimentally identified and the number of YNO2 428 

sites predicted by the software tools was variable. The DeepNitro tool assigned 27 429 

tyrosine amino acids as candidates for being nitrated (which is the 75% of the 430 

experimentally identified sites), while the recently developed PredNTS indicated 104 sites 431 

in 15 proteins, which is 3-fold more than the experimentally identified sites. Both GPS-432 

YNO2 and iNitro-Tyr predicted 41 YNO2 sites in 15 proteins. The highest number of YNO2 433 

sites were assigned by PredNTS, and accordingly this tool showed the highest match 434 

rate, since one or more predicted nitrated sites matched the experimentally identified 435 

ones for 12 of the 15 proteins. When we calculated the hit rate, we found that those are 436 

relatively low, and DeepNitro had the highest hit value (26%). It has to be noted that of 437 

the 36 MS-identified YNO2 sites only 18 sites matched the predictions of one of the 438 

programmes indicating 50% agreement between in silico and experimental results. This 439 

number was significantly lower (only 4 out of 26, 15%) when two software tools (GPS-440 

YNO2 and iNitro-Tyr) were tested (Kolbert et al., 2017). It can be concluded that all 441 

available tools are advisable to use for a certain protein in order to predict as many YNO2 442 

sites as possible. 443 

 444 

Table 4 List of plant proteins in which the nitrated tyrosine residues have been 445 
experimentally identified. Nitration sites in the listed proteins were computationally 446 
predicted using GSP-YNO2 1.0, iNitro-Tyr, DeepNitro, PredNTS software. Bold indicates 447 
matched tyrosine reidue.  448 
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Protein 

name 

Acce

sion 

numb

er 

Total 

num

ber 

of 

Tyr 

Identifie

d by LC-

MS/MS 

or 

mutation 

Predicte

d by 

GPS-

YNO2 

(2011) 

(medium 

threshol

d) 

Predicte

d by 

iNitro-

Tyr 

(2014) 

Predicte

d by 

DeepNitr

o (2018) 

(medium 

threshol

d) 

Predicte

d by 

PredNTS 

(2021) 

Citation 

         

MS1 At5g1

7920 

26 Y287 Y463, 

Y469, 

Y698 

Y141, 

Y623, 

Y650 

Y141, 

Y287, 

Y463 

Y8, 

Y132, 

Y141, 

Y161, 

Y188, 

Y226, 

Y243, 

Y287, 

Y453, 

Y463, 

Y581, 

Y740 

Lozano-Juste 

et al., 2011 

OASA1 At4g1

4880 

7 Y302 Y158 non Y302 Y20, 

Y91,Y14

3, Y158, 

Y192, 

Y203, 

Y302 

Álvarez et al., 

2011 

psbA AtCg0

0020 

12 Y262 Y73, 

Y107, 

Y237, 

Y246 

Y246 Y237, 

Y246 

Y262 Galetskiy et 

al., 2011 

IDH 

(NADP) 

Q6R6

M7 

Pisum 

sativu

m 

14 Y392 Y69, 

Y210, 

Y221, 

Y274 

Y172, 

Y185, 

Y221, 

Y233,Y2

41, Y259, 

Y274 

Y274 Y43, 

Y69, 

Y141, 

Y172, 

Y185, 

Y210, 

Y221, 

Y233, 

Begara-

Morales et al., 

2013a 
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Y274, 

Y392 

APX, 

cytosoli

c 

P4853

4 

Pisum 

sativu

m 

7 Y5, Y235 Y5 Y5, Y93 non Y5, Y12, 

Y224, 

Y235 

Begara-

Morales et al., 

2013b 

HPR, 

peroxis

omal 

At1g6

8010 

11 Y97, 

Y108, 

Y198 

Y10, 

Y108, 

Y150 

Y10,Y15

0, Y251 

Y97, 

Y180 

Y97 Corpas et al., 

2013b 

 PYR1 At4g1

7870 

4 Y23, 

Y58, 

Y120 

non non Y23 Y23, 

Y58, 

Y120, 

Y143 

Castillo et al., 

2015 

MnSOD

1, 

mitocho

ndrial 

At3g1

0920 

10 Y38, 

Y40, 

Y63, 

Y67, 

Y198, 

Y199, 

Y202 

Y63, 

Y226 

Y63, 

Y67, 

Y226 

Y63 Y63, 

Y67, 

Y209, 

Y221, 

Y226 

Holtzmeister 

et al., 2015 

Leghem

oglobin-

1 

P0223

2      

Vicia 

faba 

3 Y25, 

Y30, 

Y133 

Y134 non non Y25,Y30, 

Y134 

Sainz et al., 

2015 

MDHA

R 

Q66P

F9 

Pisum 

sativu

m 

22 Y213, 

Y292, 

Y345 

Y154, 

Y34 

Y7, 

Y192, 

Y292 

Y292, 

Y383 

Y7, Y44, 

Y53, 

Y89, 

Y114, 

Y143, 

Y154, 

Y172, 

Y292, 

Y305, 

Y383 

Begara-

Morales et al., 

2015 
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PSBO1 At5g6

6570 

8 Y9 Y94, 

Y102, 

Y328 

Y236 Y94, 

Y102, 

Y131, 

Y236 

Y94, 

Y102, 

Y169, 

Y328 

Takahashi et 

al., 2015 

NADP-

MAE1 

At2g1

9900 

25 Y73 Y129, 

Y204, 

Y235, 

Y248, 

Y522, 

Y528, 

Y550 

Y235, 

Y263, 

Y286, 

Y550, 

Y580 

Y235, 

Y248, 

Y550 

Y66, 

Y92, 

Y99, 

Y114, 

Y235, 

Y148, 

Y263, 

Y343, 

Y522, 

Y528, 

Y550, 

Y573, 

Y577, 

Y580 

Begara-

Morales et al., 

2019  

CDKA1  A0A3

L6F4

W4 

Zea 

mays 

11 Y15, Y19 Y11, 

Y178, 

Y222 

Y78, 

Y231 

Y15 Y11, 

Y15, 

Y73, 

Y78, 

Y178, 

Y194 

Méndez et al., 

2020  

NIA1 At1g7

7760 

30 Y548, 

Y614, 

Y714, 

Y771,  

Y10, 

Y548, 

Y908 

Y10, 

Y83, 

Y431, 

Y851, 

Y908 

Y241, 

Y266, 

Y395, 

Y624 

Y10, 

Y62, 

Y82, 

Y83, 

Y266, 

Y286, 

Y330, 

Y331, 

Y333, 

Y390, 

Y395, 

Y397, 

Y548, 

Y614, 

Y624, 

Y714, 

Costa-Broseta 

et al., 2021  
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Y771, 

Y802, 

Y851, 

Y862, 

Y908 

NIA2 At1g3

7130 

34 Y545, 

Y714, 

Y771 

Y10, 

Y77, 

Y545, 

Y908 

Y77, 

Y392, 

Y428, 

Y568, 

Y802, 

Y908 

Y182, 

Y271 

Y10, 

Y76, 

Y77, 

Y99, 

Y182, 

Y271, 

Y328, 

Y387, 

Y382, 

Y394, 

Y545, 

Y611, 

Y621, 

Y771, 

Y802, 

Y819, 

Y822, 

Y843, 

Y851, 

Y908 

Costa-Broseta 

et al., 2021  

Numbe

r of 

protein

s 

predict

ed as 

targets 

for NO 

  15 14 12 13 15  

Predict

ed 

YNO2 

sites 

  36 41 41 27 123  
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Tyr 

match 

(verifie

d vs. 

predict

ed) 

   5 (12%) 4 (10%) 7 (26%) 21 (17%)  

 449 

 450 

Furthermore, based on the previously identified 15 nitrated proteins, sensitivity, 451 

specificity and accuracy were calculated in order to evaluate the performance of the 452 

software tools (Table 5). The highest Sn value (~62%) was obtained in case of PredNTS, 453 

but the Sp and AC values of this tool were relatively low. The highest AC value was shown 454 

by the DeepNitro software supporting its better performance compared to the other 455 

programmes. In general, the above mentioned values are relatively low which indicates 456 

that the agreement of the in silico predictions with experimental data is moderate. This is 457 

partly due to the limitations of MALDI based methods used for identifying YNO2 sites in 458 

proteins (Ytterberg and Jensen, 2010) and to the fact that prediction algorithms do not 459 

consider the 3D structures of the proteins which greatly affect the sensitivity to tyrosine 460 

nitration. 461 

 462 

Table 5 Values of sensitivity, specificity and accuracy of YNO2 predicting software tools. 463 
Metrics were calculated based on the predictions in 15 experimentally identified nitrated 464 

plant proteins listed in Table 2.  465 

 466 

 467 

 468 

Conclusion and future perspectives 469 

Both S-nitrosation and tyrosine nitration are NO-dependent PTMs affecting plant 470 

proteins of various kinds from structural proteins to transporters and enzymes. S-471 

nitrosation is directly involved in cell signalling while tyrosine nitration is thought to result 472 

in protein instability and degradation and it may indirectly affect signal transduction. Both 473 

PTMs are selective and specific, since not every Cys/Tyr is nitrosated/nitrated in a 474 

Software Sensitivity (Sn, %) Specificity (Sp, %) Accuracy (Acc, %)

GPS-YNO2 (medium threshold) 10.00 65.70 57.36

iNitro-Tyr 7.40 60.66 52.36

DeepNitro (medium threshold) 24.21 77.11 62.86

PredNTS 61.76 39.15 49.38
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protein’s amino acid chain and not every Cys/Tyr-containing proteins are targets of these 475 

modifications. In the case of S-nitrosation various consensus amino acid sequences have 476 

been suggested; however, there is still no general rule explaining which cysteine residue 477 

is a target for NO. Similarly, there is no amino acid motif or any definite pattern in the 478 

protein structure which determines the target tyrosine for nitration. For both NO-479 

dependent PTMs, some common physico-chemical features have been revealed. In the 480 

future, intensive effort should be directed on revealing the high-resolution structure of the 481 

microenvironment around each cysteine/tyrosine residue to get information about the 482 

physicochemical features that determine S-nitrosation/tyrosine nitration specificity. 483 

In order to assign the target Cys and Tyr residues within a certain protein, specific 484 

computational tools have been developed. In the last ten years, 11 computational tools 485 

for predicting S-nitrosation, tyrosine nitration or both based on different algorithms have 486 

been created. In Table 1, the number of references indicates that these tools are 487 

frequently used by the scientific community. This is not surprising, since the predictors 488 

rapidly generate extensive information, while the laboratory experiments are lengthy and 489 

often technically cumbersome. Our tests on plant proteins showed that there are 490 

discrepancies between the experimentally confirmed and the predicted PTM sites, which 491 

may be due in part to the fact that the algorithms don’t take into account the 3D protein 492 

structure.  493 

Therefore, computational prediction of SNO or YNO2 sites can’t substitute 494 

laboratory work but can provide a starting point for experimental verification and the 495 

combination of computer-based prediction and experimental verification represents still a 496 

promising approach for a better understanding of the molecular mechanisms and the 497 

regulatory functions of protein S-nitrosation and tyrosine nitration. Before planning 498 

experiments, it is advisable to use all the available tools on the proteins of interest and 499 

compare the results of the predictions. Based on our analyses on plant proteins, S-500 

nitrosation sites can be predicted by the available tools with higher confidence compared 501 

to the sites of tyrosine nitration. However, computational prediction still must be 502 

developed further to improve the precision with which S-nitrosation/tyrosine nitration-sites 503 

are identified. In this context, probably machine learning systems (artificial intelligence) 504 

based on experimentally verified S-nitrosated cysteine residues and nitrated tyrosine 505 

residues and 3D protein structures could provide a step further to successful prediction 506 

of NO-dependent PTM sites. But all these prediction approaches can finally not replace 507 
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the experimental analysis of the function of S-nitrosated or tyrosine nitrated proteins, 508 

including recombinant proteins, site-directed mutagenesis and in vivo experiments.  509 

 510 
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