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ABSTRACT
Black carbon (BC) mass concentration from internal combustion engines can be quantified
using a variety of different BC measurement techniques. We compare the relative response
of several commercial instruments with different measurement principles to different types
of marine exhaust emissions. Exhaust samples were generated using a high-speed 4-stroke
marine diesel engine at various engine operating conditions from low to high engine loads.
Three different fuel types —diesel, distillate marine oil grade A (DMA) and intermediate fuel
oil (IFO)— were used to generate soot particles with a wide range of physical, chemical and
optical properties. Based on the standard deviation of the results at all engine conditions
evaluated in the present study, the overall spread between the instruments was 24% for
diesel, 30% for DMA and 37% for IFO samples. For samples with extremely high organic
content (at 10% engine power), the agreement was poor and the standard deviation of the
mass concentrations estimated from different instruments was 50% for diesel with OC/EC �
45 and 72% for DMA with OC/EC �280. For IFO particles, more scattered mass concentra-
tions were reported by different instruments at all engine loads, possibly due to very com-
plex chemical composition and different optical properties in comparison with well-
characterized soot particles. We explain the differences in reported values by combining
information on exhaust composition with the measurement principles used in
each instrument.
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1. Introduction

Black carbon (BC), which represents a large fraction
of nonvolatile particulate emissions from incomplete
combustion processes, are refractory, insoluble and
exist as aggregates of carbon spherules called primary
particles (Bond et al. 2013). BC particles from internal
combustion engines have intensive adverse effects on
human health (Sydbom et al. 2001; Kennedy 2007)
and climate (P€oschl 2005; Adachi, Chung and Buseck
2010). Marine diesel engines are one of the most
important particle emission generators in harbor cities
which are often also populous cities (Viana et al.
2014; Donateo et al. 2014). It has been shown that
particles from marine engines have adverse biological
effects on human lung cells (Oeder et al. 2015;

Sapcariu et al. 2016). Wu et al. (2018) showed that
cytotoxicity of the marine engine particles can be even
higher with heavy fuel oil used to run the engine.
Approximately 8–13% of the global diesel BC was
produced by shipping in 2010 (Azzara, Minjares and
Rutherford 2015) compared to 7–9% in 2000 (Bond
et al. 2013; Eyring et al. 2010) and the contribution of
shipping is projected to continue rising. While the
health impacts of black carbon emissions from ship-
ping are mostly focused in coastal areas (Viana et al.
2020), their health and climate impacts also extend
globally as they are transported around the world.

The International Maritime Organization (IMO)
has been exploring measuring black carbon emissions
from marine engines, more recently with a view to
reduce the impact of shipping on the Arctic as the
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shipping routes become increasingly used due to the
lengthening navigation season. While BC is measured
and regulated in the automotive (Andersson et al.
2007; Andersson et al. 2010) and aviation sectors
(Crayford et al. 2014; Lobo et al. 2020) within nonvo-
latile particulate matter, there is no agreed upon
standardized measurement system for black carbon
emissions from ships. The wide range of engines, fuels
and after-treatments available in the marine sector
requires that BC emissions from the shipping sector
be characterized and their impact on the measurement
methods be understood before the emissions can be
measured with enough accuracy to allow for particu-
late emission regulations to be developed and applied.

Nonvolatile particle emissions from engines, which
in the automotive and aviation sectors are considered
to essentially be BC, can be quantified using various
methods. For marine diesel engines, the assumption
that nonvolatile particle emissions and BC are essen-
tially the same may not hold since there may be sig-
nificant amount of metal compounds in the marine
engine exhaust specifically with heavy fuel oils
(Momenimovahed et al. 2021; Corbin et al. 2019).
Traditionally, particulate emissions were measured
directly by collecting particles on a filter for gravimet-
ric analysis (Mohr, Forss and Lehmann 2006; Hu
et al. 2014) but this technique has several downsides
with the requirement for long collection times being
one of the most problematic. Recently, several alterna-
tive techniques including laser induced incandescence
and photoacoustic spectroscopy, were developed to
quantify the mass concentration of BC from combus-
tion sources in real-time, with time resolutions of 1 s
or lower. These real-time BC measurement techniques
offer advantage over the gravimetric method whose
uncertainty is affected by gas-phase artifacts. In other
words, gas-phase volatile and semi-volatile materials
may condense on the surface of the filter resulting in
an overestimation of the mass concentration from the
gravimetric method by 10–50% (Chase et al. 2004).
The gas phase artifacts are expected to be more
important in marine engines with extremely high
organic content, sulfuric acid and sulfates generated at
some engine operating condition and fuel combina-
tions (see Section 3.3).

Soot particles from different sources may be differ-
ent in terms of physical properties including morph-
ology (Fujitani et al. 2016; Graves et al. 2015) and
primary particle size in the aggregates (Dastanpour
and Rogak 2014). Chemical composition and mixing
state of particles are also source dependent (Maricq
2007). All optically based BC measurement techniques

rely on knowledge of the optical properties of the soot
or calibration against a referenced technique. Note
that there is no agreed upon a universal reference
technique for calibration of the real-time BC measure-
ment instruments. The optical properties of soot par-
ticles are not always constant (Bond and Bergstrom
2006) and are a function of particle physical and
chemical properties (Scarnato et al. 2013; Lesins,
Chylek and Lohmann 2002). For instance, the mass
absorption cross section defined as the ratio of
absorption coefficient to the BC mass concentration
might be higher for larger particles (MAC;
Dastanpour et al. 2017). Khalizov et al. (2009) showed
that MAC value of soot particles depends also on
their chemical composition. They compared the fresh
soot aggregates with soot particles with the same
mobility diameter coated with sulfuric acid and
showed that the coating can increase the MAC num-
ber by 45% for some specific particle sizes. MAC
numbers are most often chosen based on assumed
emission optical characteristics and are included in
the software of some BC instrument to transform the
signal into a BC mass concentration. Since the emis-
sion source can influence the optical properties of BC
particles and different instruments utilized different
functional relationships between the measured signal,
the optical properties and the determined mass con-
centration, the relative response of BC diagnostic
methods might not be the same for soot particles
from different sources resulting in biases and/or
uncertainties in the mass concentrations quantified for
a single source using different instruments.
Consequently, depending on the properties of the
sample, some of these techniques might be more
appropriate for measurement of BC particles.

BC measurement techniques are compared in the
literature using combustion samples provided by auto-
motive diesel engines (Kirchen et al. 2010), ship diesel
engines (Buffaloe et al. 2014), gasoline port fuel injec-
tion and direct injection engines (Kamboures et al.
2013), natural gas engines (Momenimovahed et al.
2021), aviation gas turbines (Lobo et al. 2020) and
burners (Slowik et al. 2007). These studies suggest
that the relative BC concentrations reported by differ-
ent techniques as well as the correlation between
them is highly source-dependent. More recently, Jiang
et al. (2018) employed several instruments to measure
BC mass concentrations from a 2-stroke marine
engine under two load conditions (i.e., 25% and 75%
load) using three different fuel types including DMA,
RMB-30 and RMG-380. They showed that the BC
mass emission factor measurements from different
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instruments are generally in better agreement for high
power (i.e., 75%) engine set point. However, at 25%
engine power specifically for RMG-380 with high sul-
fur content, the variation between mass emission fac-
tors quantified by different instruments is remarkable.

Although a few studies compared some of the com-
mercially available black carbon measurement instru-
ments, there is still very limited data comparing these
instruments for simultaneously obtained samples from
a single source, specifically from marine engine
exhaust with very complex chemical compositions.
Therefore, in order to investigate the response of the
BC mass measurement instruments relative to each
other, a wide variety of instruments including Artium
LII 300, DMT Photoacoustic Extinctiometer (PAX) at
870 nm wavelength, AVL Smoke Meter 415S, AVL
Micro Soot Sensor (MSS), Magee Scientific
Aethalometer AE33, DRI 2015 TOCA and Sunset
Laboratory TOA Model 5 L were evaluated in the pre-
sent study. Because different instruments rely on dif-
ferent measurement principles and properties of soot,
it should be noted that the term “BC” in the current
study refers to all types of black carbon including rBC
(LII 300), EC (TOCA and TOA) and eBC (all other
instruments) as described by Petzold et al. (2013). The
samples were extracted from the exhaust of a 4-stroke
ship diesel engine at different engine power settings
ranging from 10% to 100% operating with three dif-
ferent fuels from low-sulfur diesel fuel to high-sulfur
intermediate fuel oil.

2. Experimental methods

2.1. Test engine and test conditions

The engine used was a high-speed single-cylinder
research engine with direct-injection -1VDS18/15CR-
with a nominal output power of 76 kW at 1500 rpm.
This engine is a large-bore high-speed engine which is
normally used as the main power supply on smaller
ships (Corbin et al., 2018). The engine is equipped
with a common rail fuel injection system, which is
suitable for heavy fuel oil operation and an external
mechanical compressor to simulate turbocharging,
with a maximum injection pressure of 1300 bar. All
three fuel types used in this study were injected

through an injection nozzle with 9 holes (0.19mm
bore-diameter) and 155� spray angle. The rail pressure
as well as the injection timing and duration were con-
trolled using a programmable controller. The common
rail system and the programmable controller enable
the optimum injection pressures and times for each
load point and engine speed. The injection pressure
and timing did not vary between the three fuels. More
details about the engine can be found in Streibel
et al. (2017).

The different engine conditions used for testing are
available in Table 1. The engine was allowed to warm
up for 120min at the beginning of every test day, and
a 30-minute stabilization time was built in between
different engine conditions during the day.

Three different fuels were used in conjunction with
the engine conditions listed in Table 1: diesel fuel, dis-
tillate marine oil grade A (DMA), and intermediate
fuel oil (IFO). The specification of the fuels used is
summarized in Table 2.

2.2. Mass measurement instruments

2.2.1. Artium laser-induced incandescence (LII 300)
The LII 300 (Artium Technologies Inc., Sunnyvale,
CA, USA) is a real-time (up to 20Hz acquisition rate)
BC mass-concentration instrument which can detect
BC particles regardless of their mobility diameter. Its
functioning principle is based on a high-energy pulsed
laser applied to a flowing aerosol in a measurement
cell. The pulsed laser heats up particles to near BC’s
sublimation temperature (�4000K) without reaching
the sublimation point (Michelsen et al., 2015). Non-
or less-refractory particles are sublimated and the
remaining particles, assumed to be BC particles, emit
an incandescence signal that is proportional to their
mass concentration. The method theoretically allows a
determination of rBC which is based on optical cali-
bration of the instrument and assumed E(m) value
which is a conversion factor from thermal radiation to
refractory BC mass concentration (Snelling et al.
2002). However, better reproducibility has been found
when the instrument is calibrated against a source
with known concentrations (Dickau et al. 2015). In
the current study, two LII 300 instruments were
employed. The LII 300 s were calibrated within a
month of the measurement campaign following the
aviation standard calibration procedure (SAE
AIR6241A 2020). The measurement cell’s windows
were cleaned every morning before starting the meas-
urements to ensure that there is no window contam-
ination which can bias the results since LII 300

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

Table 1. Engine conditions performed for each fuel in the
order they were performed. Typically, the 9 engine conditions
were performed divided on two days.
Test # 1 2 3 4 5 6 7 8 9

Load (%) 10% 25% 50% 75% 100% 25% 50% 75% 100%
Speed (rpm) 1500 1500 1500 1500 1500 945 1200 1365 1500
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measures the absolute intensity of the soot
incandescence.

2.2.2. Photoacoustic extinctiometer (PAX)
The PhotoAcoustic eXtinctiometer or PAX 870 nm
(Droplet Measurement Technologies Inc., Longmont,
CO, USA) is a PAS-based (photoacoustic spectros-
copy) real-time (1 s time resolution) BC mass-concen-
tration instrument. The PAX uses a photoacoustic
technique to measure the absorption of 870 nm light
by the particles, while a reciprocal nephelometer
measures their total light scattering. The single scatter-
ing albedo as well as the equivalent BC (eBC) mass
concentration can be estimated from these two meas-
urements. The PAX was calibrated according to the
manufacturer’s instructions before and after the cam-
paign and retained very similar values. The MAC
used by this instrument to convert light absorption to
mass concentration was 4.74m2g�1.

2.2.3. Avl smoke meter
The AVL415SE smoke meter measures soot concen-
tration in the exhaust of diesel engines in conform-
ance to ISO 10054. The smoke meter, often referred
to as the FSN in the marine engine industry, collects a
user-defined exhaust gas volume on a filter. The light
absorption-based measurement principle is based on
the reflection of white light from the filter as meas-
ured through a green (560 nm) filter. The instrument
directly reports the filter smoke number (FSN) which
is then converted to eBC using the instrument manu-
facturer’s empirical equation:

C
mg
m3

� �
¼ 1

0:405
� 5:32� FSN � eFSN�0:3062 (1)

The AVL 415SE was calibrated according to the
manufacturer’s instructions.

2.2.4. Avl micro soot sensor (MSS)
AVL MSS (AVL List GmbH, Graz, Austria) is another
PAS-based real-time (up to 10Hz measurement rate)
instrument which uses a modulated laser beam with a
wavelength of 808 nm to increase the temperature of
the particles. It then detects the transfer of energy
from the particles to the surrounding air in the form
of sound waves. The signal is amplified in a

preamplifier and filtered in a "lock-in" amplifier and is
finally converted to mass concentration. The MSS
includes a conditioning and dilution unit with a vari-
able dilution factor ranged between 2–20. The sample
provided for the MSS in the current study was diluted
at a dilution ratio of 6–8. The MSS was calibrated
using the aviation standard calibration procedure
(SAE AIR6241A 2020).

2.2.5. Aethalometer
The Aethalometer Model AE33 (Magee Scientific,
Berkeley, CA, USA) is an optical, filter based device
to measure real time aerosol BC mass concentration.
It measures the light attenuation through a Teflon
coated quartz fiber filter tape at 7 wavelengths from
the near UV-(370 nm) up to the near IR-(950 nm)
while the filter is continuously collecting aerosol. The
concentration of light absorbing aerosols (BC) is
internally calculated from the rate of change of the
attenuation of the light transmitted through the aero-
sol-laden filter while the sample flow rate is constant
(Drinovec et al. 2015). The "filter loading effect" is
corrected by the incorporated patented DualSpotTM

measurement method. The wavelength of 880 nm is
commonly used to report the equivalent BC (eBC)
mass concentration. A mass attenuation coefficient of
7.77m2/g was used to convert the light attenuation
through the filter into the BC mass concentration.

2.2.6. Thermal-optical analysis
Thermal-Optical (Carbon) Analysis (TOA or TOCA)
is an offline measurement method which separates the
mass of organic carbon (OC) and elemental carbon
(EC) collected on a quartz filter. It is generally per-
formed in two phases, following a thermal protocol.
At first, a piece of the filter, a filter punch, is heated
in a helium atmosphere. In a second phase, the sam-
ple is heated in a helium and oxygen (2%) atmosphere
during which the remaining carbonaceous material is
oxidized and released from the filter and quantified.
The transmittance or reflectance of light through or
from the filter punch is monitored throughout the
thermal protocol and an optical correction is applied
to correct for possible pyrolysis of the OC during the
first phase. Darkening of the filter induced by
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Table 2. Selected test fuel characteristics.

Fuel Viscosity (at 40 �C) (cSt]
Density
(kg/m3) Sulfur content (%)

Diesel fuel DIN EN 590 (Diesel)� 2.9 838 6.3� 10-4

Distillate marine oil grade A (DMA) 4.2 877 0.087
Intermediate fuel oil (IFO) 406 988 2.3
�Diesel fuel containing 6% FAME (Fatty Acid Methyl Esters).
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charring leads to a decrease of both light reflectance
and transmittance. In an oxidizing atmosphere, the fil-
ter brightens up due to the EC being oxidized. The
split for the optical correction is set to the point
where the reflectance and transmittance signals reach
their respective initial values determined at the begin-
ning of the measurement. All carbon released from
the filter prior to reaching this point is considered to
be (pyrolytic) OC and all carbon released after this
point is considered to be EC. In this campaign, two
different thermal-optical analyzers and thermal proto-
cols were used: a DRI Thermal-Optical Carbon
Analyzer (TOCA, Model 2015, Aerosol Co., Ljubljana,
Slovenia) with the IMPROVE_A thermal protocol
(Chow et al. 2007) and a Sunset Thermal-Optical
Analyzer (TOA, Model-5L OCEC Analyzer, Sunset
Laboratory Inc., Tigard, OR, USA) with the
EUSAAR_2 thermal protocol (Cavalli et al. 2010).

2.2.6.1. Dri Model 2015 multi-wavelength thermal/
optical carbon analyzer. Filters used for sampling are
pretreated through heating in an oven at 550 �C for
12 h and stored in sealed glass vessels prior to sam-
pling. Emissions sampled from the engine exhaust are
diluted 10- to 25-fold and the diluted PM is collected
on the filters with a flow rate of 4 l min�1.
Immediately after sampling, samples are stored in a
freezer at �20 �C until analysis. A filter punch of
0.5 cm2 are placed into the thermal-optical carbon
analyzer following the IMPROVE_A protocol (Chow
et al. 2007). Organic compounds are volatilized at
temperatures up to 580 �C. All the carbon that evolves
from the filter punch is quantified by non-dispersive

infrared (NDIR). The optical correction in this instru-
ment is carried out by using the radiation of a 635-
nm diode that is directed to the filter.

2.2.6.2. Sunset thermal/optical analyzer. The samples
are collected on pre-fired quartz filters kept in a
sealed plastic box. A front filter and a backer filter are
collected to correct for gas-phase artifacts. All front
and backer filters were kept together in the same stor-
age conditions which include time spent at room tem-
perature in a closed petri dish and in a fridge at 4 �C.
A 1 cm2 filter punch is analyzed by Sunset TOA. The
evolved carbon is measured using FID (Flame
Ionization Detector) and the filter’s carbon loading is
monitored with a red laser (678 nm) to correct for
pyrolysis of organic carbon. The EUSAAR_2 thermal
protocol is used to analyze the filters. The instrument
is regularly calibrated with sucrose solutions following
manufacturer instructions and instrument blanks are
performed twice daily. The OC value obtained from
the analysis is then subtracted by the value obtained
from the backer filter to correct for the gas-
phase artifact.

2.3. Aerosol sampling system

There were essentially two exhaust sampling points
for the instruments used in this study (See Figure 1):
one group of instruments sampled the undiluted
exhaust and another group sampled diluted exhaust
from a sampling tunnel. The Aethalometer was in a
group of its own, sampling 2-stage diluted exhaust,
using the same sampling tunnel as other instruments
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Figure 1. Schematic of the test setup.
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for the first stage of dilution. The instruments directly
connected to the main exhaust line use heated sample
lines to draw exhaust. The other instruments collect
sample from the sampling tunnel downstream of a
heated DI-1000 Dekati dilutor. The heated sample
lines are set to 100 �C, 120 �C, 70 �C and 125 �C for
LII1, MSS, AVL 415SE and Dekati diluter, respect-
ively. The compressed air for the dilution was pro-
vided at 50 �C. While it is good practice to minimize
the condensation of water and semi-volatile com-
pounds on the solid particles when measuring BC,
PAX also required dilution for the concentration to be
within the instrument’s measurement range. A cyclone
with a cutoff diameter of 1 micrometer (aerodynamic
diameter) at 50 LPM was used upstream of the sam-
pling tunnel to remove relatively larger particles. The
mass concentrations for all instruments are reported
at STP (T¼ 0 �C, P¼ 1 atm).

We applied particle loss corrections to reconcile the
different sampling points. The correction applied by
the smoke meter is built into the instrument during
the conversion from the filter smoke number to the
mass concentration. The conversion is based on an
empirical formula which includes corrections. For the
MSS, Tin and Tout is measured and the thermopho-
retic loss correction is automatically applied by the
instrument software. For all other instruments, we
corrected the BC mass concentration for thermopho-
retic loss, which was the dominant loss mechanism,
during post-processing using the relation (Concin/
Concout) ¼ (Tin/Tout)

0.38 (Kittelson and
Johnson 1991).

All concentrations reported here are concentrations
in the exhaust. The concentrations measured by the
instruments sampling diluted exhaust were converted
to raw exhaust concentrations using time-resolved
dilution data. The dilution ratio (measured by CO2

monitoring) varied between 8 and 24 throughout the
whole campaign, across all fuels and engine condi-
tions. The variation of the dilution ratio for different
instruments is reported in Table S1 in the supplemen-
tary information. The broad range of dilution ratios
observed was due to minor clogging of the Dekati
dilutor’s sample orifice. The dilutor was pack-purged
between sampling points to keep the orifice clear. The
uncertainty of the dilution factor varied between �5%
and þ20% below and above the measurement point,
respectively depending on the test point (see Table S2
in the supplementary information for details). In the
case of the MSS, the dilution ratio was approximately
6–8 with an uncertainty of 6%. It should be noted
that the uncertainty in the dilution factor does not

affect the mass concentration from LII1 and AVL 415
SE since these two instruments analyze raw sample
and their reported mass concentrations are not cor-
rected for dilution.

The BC concentration was calculated from the
averaged data for each test point defined by the acqui-
sition time required to collect a filter for Thermal-
Optical Analysis. For test points with very high BC
concentration, multiple filters were acquired since the
engine was run for approximately 60min at each test
point while enough sample could be collected on a fil-
ter for TOA in a few minutes for test points with
high BC concentration. For instruments connected to
the sampling tunnel, the diluted mass concentration
was converted to the undiluted mass concentration on
a per-second basis prior to the averaging the concen-
tration. The MSS reports the concentration of the raw
exhaust and the diluted soot as well as the dilution
ratio second-by-second which were used to average
the BC concentration. For the smoke meter which
takes regular integrated measurements on a filter, the
BC concentration was averaged using the values of the
integral measurements collected during the test point.

3. Results and discussion

3.1. Comparison of thermal-optical analysis with
different thermal protocols and instrument
manufacturers

We used the Sunset TOA in combination with the
EUSAAR_2 thermal protocol and the DRI TOCA in
combination with the IMPROVE_A thermal protocol.
In both instruments, the filter transmittance and
reflectance were monitored to correct the split point
for charring of the OC during analysis (Karanasiou
et al. 2015). Instead of detecting zero or positive pyr-
olysis, negative pyrolysis (i.e., a lightening instead of a
darkening of the filter sample) was detected for most
samples analyzed by both instruments. For these sam-
ples, reflectance and/or transmittance returned to their
initial values before the introduction of oxygen, set-
ting the split point in the helium phase in the DRI
instrument and at the he/ox transition in the Sunset
instrument using CALC v. 426. This could be partially
due to the uncertainty associated with the optical
components of the instruments or to the removal or
transformation of sample material that interferes with
the instruments’ monitoring wavelength. It should
also be noted that metal species such as metal oxides
or metal salts are internally and/or externally mixed
with marine engine soot particles specifically when
running on IFO (Momenimovahed et al. 2021). Metal
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oxides may provide oxygen for EC particles to be oxi-
dized in the inert phase of the analysis (Chow et al.
2001) which can increase the detected transmittance
or reflectance in the helium phase resulting in an
early split. Another possible explanation could be the
transformation of material during the analysis
(Aakko-Saksa et al. 2018) although negative pyrolysis
has not been observed directly. Negative pyrolysis has
also been reported in the thermal-optical carbon ana-
lysis of atmospheric samples from IMPROVE sites
(Chow et al. 2007) and has been attributed to mineral
oxides. Chow et al. (2007) also reported seeing a light
red shading on the punches after their analysis. We
observed the same for the marine samples presented
here, in particular for IFO samples. The colors varied
between shades of yellow to red which can be linked
to residues of vanadium oxides.

Figure 2 shows the results of linear fits for both
temperature protocols. For samples with negative pyr-
olysis, the DRI model matches the laser transmit-
tance/reflectance to the initial transmittance/
reflectance at the beginning of the thermal protocol.
The Sunset model’s behavior with regards to pyrolysis,
however, changes depending on the software version
used. When using calc 426, the split point is deter-
mined based on the initial transmittance/reflectance.
When using earlier versions of calc, calc 405 or ear-
lier, the split point was determined based on the top
of the OC transmittance, provided that it went back
down in such a way that if the transmittance in the
OC phase formed a hill, the top of that hill would be
the reference transmittance. Note that the authors do
not have access to the calc versions in between 405
and 426 and, as such, are not able to point to the
exact version where this change happened. For filters

with negative charring in the current study, the optical
pyrolysis was assumed to be zero and the oxygen
introduction time is used as split time for the DRI
instrument with IMPROVE A, whereas the Sunset
instrument with EUSAAR 2 and CALC v. 426 was
usually automatically placing the split point at the
beginning of the oxygen phase, except for one sample
where it was manually fixed. Fixing the split point
was done to increase comparability between the two
methods, however, we recognize that ignoring the
optical correction while using different protocols has
its downsides even if the correction depends on the
definition used for the split point. Since this is the
case for approximately 90% of the samples collected
in the present study, charring correction methods are
not compared and the EC values are calculated based
on a fixed split point. Figure S1 in the supplementary
information shows the thermogram for some samples
with negative charring.

Since the uncertainty associated with TC and EC
reported by Sunset instrument is different than that of
DRI instrument, therefore Deming regression analysis
is performed to calculate the linear relationships
between the two analyzers. In addition, a one-sample
t-test (level of significance of 0.05) was conducted on
intercepts and slopes in order to understand whether
the linear functions are statistically significantly differ-
ent from y¼ x. The slopes and intercepts highlighted
in bold are not significantly different from 1 and 0,
respectively (see Figure 2).

As can be seen from Figure 2a, both instruments/
thermal protocol combinations agree reasonably well
with each other in terms of TC regardless of the fuel
type suggesting that neither fuel type nor temperature
protocol can significantly affect the total carbon
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Figure 2. Comparison of the Sunset/EUSAAR 2 and the DRI/IMPROVE A thermal-optical carbon analysis, a.) Total Carbon, b.)
Elemental Carbon with the split point at the helium-oxygen transition forced in most cases (i.e., thermal analysis only). The slopes
and intercepts highlighted in bold are not significantly different from 1 and 0, respectively.
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concentrations reported by thermal-optical analyzers
which was expected since the instruments have a good
accuracy for measuring carbon, and almost all the
uncertainty resides in the determination of the split
point between OC and EC. The variation likely
reflects sampling and/or storage differences affecting
OC in particular since lighter organic compounds
may have evaporated at þ4 �C (i.e., storage condition
for Sunset instrument) while they didn’t at �20 �C
(i.e., storage condition for DRI instrument). In terms
of correlation between the two datasets, EUSAAR_2
and IMPROVE_A correlate well for total carbon.

For the elemental carbon, instruments agree well
with each other for diesel fuel and IFO, with both the
slopes and intercept not being significantly different
from y¼ x, however, the difference between the two
instruments/thermal protocols is not negligible for the
DMA fuel. The IFO fuel regression appears to be
more by chance than real (being pulled closer to y¼ x
by the 10% engine load point, see arrow). For the
IFO, the difference between the instruments is mostly
related to the IMPROVE A EC concentrations being

smaller than the EUSAAR 2 EC concentrations. For
the DMA fuel, however, the ordinate at the origin is
negligible but the slope is significantly different from
1. Figure 2b also shows that DRI/IMPROVE_A gener-
ally reports higher EC concentrations than Sunset/
EUSAAR_2 for diesel and DMA fuels, however, for
IFO the opposite was observed. This may be explained
by the relatively high concentrations of OC generated
at some operating conditions when running on diesel
and DMA specifically at lower engine powers (will be
discussed with Figure 4a,c). On the other hand, the
maximum temperature in the first phase of the ana-
lysis is different for the two temperature protocols.
Therefore, more material may evolve in the helium
environment for temperature protocol with highest
peak temperature in the OC phase (i.e., EUSAAR_2
protocol) resulting in higher OC and lower EC con-
centrations. This is consistent with the results
reported by Subramanian, Khlystov and Robinson
(2006) and Kuhlbusch et al. (2009). Subramanian,
Khlystov and Robinson (2006) compared three tem-
perature protocols and showed that maximum OC
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Figure 3. Comparison of different instruments/thermal protocols compared with the average soot concentration as measured with
in-line instruments.
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concentration belongs to the temperature protocol
with higher peak temperature. Kuhlbusch et al. (2009)
also observed similar trend and reported 36%–70%
lower EC/TC ratio when the maximum temperature

in the inert phase increased from 550 �C to 900 �C.
With the exception of IFO samples, the correlation is
fairly good when different thermal protocols are being
compared for EC mass with R2 of 0.83 and 0.86. This
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is not however the case for EC concentrations from
IFO which can be again the consequence of the pres-
ence of more metal oxides and salts in the samples. In
other words, the maximum temperature in the inert
phase as well as the amount of metal oxides and other
oxygen-compounds mixed with soot particles can
potentially affect the amount of EC evolving in the
helium environment. Although the former depends
only on the temperature protocol, the latter likely
depends on the engine condition (Gagn�e et al. submit-
ted) resulting in differences in the EC concentrations
reported by EUSAAR_2 relative to IMPROVE_A at
different engine operating conditions. Therefore, the
EC concentrations from different temperature proto-
cols are not perfectly correlated for IFO samples with
relatively high mineral components. Figure 2 also
shows that the EC concentration estimated from dif-
ferent thermal protocols are quite different for IFO
sample at 10% engine power. Momenimovahed et al.
(2021) measured the effective density functions for
soot particles from the same engine at the same oper-
ating conditions used in the current study. They com-
pared their results with a universal effective density
function representative of BC particles from diesel
engines based on the data reported by Olfert and
Rogak (2019) in order to estimate the concentration
of metal species mixed with soot particles. They also
directly quantified the metal concentrations using
inductively coupled plasma mass spectrometry (ICP-
MS) and noticed that these two methods agree fairly
well for almost all fuel type/engine conditions except
for IFO at 10% power suggesting that IFO particles at
10% power may be different than BC particles from
other test points in terms of chemical composition as
well as some other unknown properties which can
also influence the response of TOA (EUSAAR_2) rela-
tive to TOA (IMPROVE_A). More work needs to be
done in order to study the properties of soot particles
generated from IFO fuel at low powers to understand
the reason for this different behavior.

Figure 3 compares the EC concentration from two
temperature protocols with average black carbon con-
centration measured by other techniques evaluated in
the current study with the error bars representing the
standard deviation of the BC concentrations measured
by the six other BC instruments. Both temperature
protocols agree reasonably well with other measure-
ment techniques for diesel and DMA fuels, however
for IFO, TOA reported lower BC concentration by up
to 26% (for EUSAAR_2) and 36% (for IMPROVE_A)
compared to the average in-line instruments. The
slope of the linear regression changes within a

relatively narrow range (0.68-0.89) for the different
fuel types when EUSAAR_2 is used to estimate EC
concentrations whereas for IMPROVE_A, the slope
varies much more: 0.59–1.29. The reason for these dif-
ferences could have to do with the amount of OC, its
pyrolysis or lack thereof, or again, the presence of
oxygen in the samples but the data presented here are
not conclusive in that regard. Figure 3 also shows
much scatter for the IMPROVE_A EC values, as indi-
cated by a lower R2 for IFO. For the other two fuels,
the R2 values associated with either thermal protocol
are rather good.

3.2. Comparison of BC measurement techniques

Figure 4 compares the BC mass concentrations meas-
ured by different instruments. For most of the instru-
ments, the ratio of BC mass concentration to the
average mass concentration from all instruments is
approximately constant through a wide range of
engine conditions suggesting that different instru-
ments respond similarly to the same types of particles.
With the exception of 28% of the data points, this
ratio fluctuates between 1 ± 0.3. For DMA particles at
10% engine power, four instruments including PAX,
LII1, LII2 and TOA (EUSAAR_2) agree relatively well
with each other while Aethalometer and AVL 415SE
report several times more BC mass concentration
which is likely due to interference of the very high
OC with the filter-deposited BC particles
(Weingartner et al. 2003). The discrepancy between
different instruments for 10% load diesel particles is
even more pronounced and the data points from dif-
ferent instruments are quite scattered. This might be
again in part due to extremely high organic carbon
concentration for 10% load diesel and DMA particles.
Figure 4 shows that the ratio of OC to EC is approxi-
mately 45 and 280 for diesel and DMA particles
respectively at 10% engine power which is several
times more than OC/EC ratio at other engine operat-
ing conditions. It has been shown that high OC con-
centration can influence the response of BC mass
measurement techniques for particles generated from
other soot sources (Durdina et al. 2016; Slowik et al.
2007; Momenimovahed et al. 2021). Durdina et al.
(2016) quantified the effect of OC concentration on
the response of LII and MSS relative to TOA for par-
ticles generated from a mini-CAST. They showed that
BC concentration from both LII and MSS is signifi-
cantly lower than EC concentration reported by TOA
when OC/TC ratio is high. For instance, for samples
with 70% organic carbon, the ratio of BC from LII
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and MSS to EC from TOA was 0.07 and 0.58, respect-
ively mostly due to internal structure of BC particles
being less graphitized. Slowik et al. (2007) also
employed several other techniques including single
particle soot photometer (SP2), multi-angle absorption
photometer (MAAP), and photoacoustic spectrometer
(PAS) to quantify particle mass concentration from a
McKenna burner. They showed that when particles
are coated with a thick layer of anthracene, MAAP
and PAS report 20% and 65% more BC particles in
comparison with SP2. The discrepancy between SP2
and other instruments for coated particles is likely
attributed to the lensing effect of the coatings (Slowik
et al., 2007).

As seen in Figure 4, LII1 shows a unique response
to IFO samples with lower than average readings for
low power engine settings jumping to higher than
average for the high power engine settings (Figures 4e
and f). For the DMA samples at 1500 rpm engine
speed (Figure 4c), LII1 also responded differently
compared to other instruments and the ratio of mass
concentration measured by LII1 to the average mass
concentration starts from near 0.4 at 10% power
reaching to almost 1.6 at 100% engine power. This
different behavior likely is an indication of the higher
fraction of Tar BrC compared to rBC emitted at the
lower engine loads. Tar BrC refers to amorphous-car-
bon spherical particles with the diameter of
100 nm–300 nm composed of carbon, hydrogen and
oxygen. Tar BrCs are normally solid particles but they
can also exist in the form of liquid particles with very
high viscosity. They have higher Angstrom absorption
exponent (AAE) and higher sp3/sp2 carbon bonding
ratio compared to BC. They are however similar to
BC in terms of being refractory and insoluble in water
and organic solvents (Corbin and Gysel-Beer, 2019).
Note that the LII 300 instrument is the only one
among the 8 used in this study which does not meas-
ure Tar BrC as BC (see Corbin et al., 2019, Figure 1;
T�oth et al., 2018), and as such, reports lower BC than
the instrument-average. At higher engine loads, the
fraction of Tar BrC decreases significantly (Corbin
et al. 2019) and the LII gets closer to the instrument-
average. AVL 415SE also responded differently to IFO
particles. It should be noted that both LII1 and AVL
415SE were connected to the main exhaust line and
collected undiluted sample. The BC concentrations in
the raw exhaust were still within the detection range
of the LII300 and AVL 415SE. Since the temperature
of the samples provided for the LII1 and AVL 415 SE
is approximately the same as the temperature of the
sample lines connected to these instruments (i.e.,

100 �C and 70 �C for LII1 and AVL 415 SE, respect-
ively), a significant fraction of the OC compounds in
the LII1 and AVL 415 SE samples is in the particulate
phase (Sippula et al., 2014). Aside from that, it has
been shown that diluting the sample can significantly
reduce the OC concentration depending on the dilu-
tion factor (Fujitani et al. 2012, Shrivastava et al.,
2006). Therefore, LII1 and AVL 415 SE measure sam-
ples with presumably higher OC:EC ratios than the
values reported in Figure 4 which represent OC frac-
tions in the diluted samples. Therefore, the extremely
high OC concentrations in IFO samples provided for
LII1 and AVL 415SE provide good explanations for
their difference in behavior. On the one hand, the
AVL 415SE is a filter-based instrument, and is thus
subject to the filter artifact (Weingartner 2003) which
would enhance the light absorption of BC and
increase the reported eBC value compared to the
instrument-average. On the other hand, the LII being
a two-colour rBC instrument, should not be affected
by organic content (Snelling et al. 2005), but in these
very extreme cases, is likely to lose some power to
evaporating organics and under-report BC compared
to the instrument-average. Although the MSS also
draws its sample from the main exhaust line, the MSS
has its own dilution unit and analyzes the diluted
sample similarly to the instruments connected to the
dilution tunnel. The dilution ratio for the MSS was 8,
slightly lower than for the dilution tunnel. Figure 4
shows that LII2 also disagrees with other BC instru-
ments which is most likely attributed to the calibra-
tion rather than the measurement principle of the LII
since LII2 consistently report a low concentration
ratio relative to the other instruments.

In general, the agreement between different instru-
ments is better for diesel particles. The average stand-
ard deviation between different instruments for all
engine set points is 24%, 30% and 37% for diesel,
DMA and IFO particles, respectively. The BC concen-
tration itself does not appear to be the reason for dis-
crepancy between measurement instruments since no
relationship was observed between the responses of
the instruments relative to each other as a function of
particle mass concentration (see Figure S2 in the sup-
plementary information). It should be noted that the
deviation from the mean for the diesel and DMA data
reported in Figure 4 mostly originated from the scat-
tered data points at 10% engine power (where the OC
is extremely high) so neglecting the 10% load data,
the standard deviation improved by approximately
4%–5% for diesel and DMA results. For the IFO sam-
ples, both the OC and the Tar BrC content can
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partially explain the differences between different
instruments. We note that the TOA results, for
example, will not give a correct estimate of OC and
EC in the IFO case because the TOA technique may
count a fraction of Tar BrC as EC (T�oth et al., 2018).
Moreover as mentioned before, some EC particles
may be counted as OC for IFO samples since they
can react with the oxygen mixed with soot particles in
the form of metal oxides and other oxygen-com-
pounds. Furthermore, the optical properties of heavy
metal elements mixed with IFO soot particles might
be, to some extent, interfering with BC measurements
by affecting the optical properties of the samples.
More work needs to be done to quantify the refractive
index, mass absorption cross section, single scattering
albedo, etc. of particulate emissions from ship engines
running on low quality fuels such as intermediate/
heavy fuel oils in order to study their potential effects
on the response of different black carbon measure-
ment instruments.

The results presented in the current study are com-
pared with the results reported in Jiang et al. (2018)
with similar BC instruments used to collect sample
from a 2-stroke ship engine. They quantified the
response of AVL smoke meter, LII 300, Aethalometer
and TOA relative to MSS (selected arbitrarily as the ref-
erence instrument). Table 3 compares the slope and
intercept of the linear regression reported in Jiang et al.
(2018) with the corresponding values from the present
study. As mentioned, the slopes and intercepts shown
in Table 3 are based on the MSS mass concentrations
being on the x-axis and the mass concentrations from
other BC instruments on the y-axis (see Figure S3 in
the supplementary information for more details). It
should be noted that a 4-stroke engine was used in the
current study while Jiang et al. (2018) used a 2-stroke
engine. In addition, Jiang et al. (2018) used fuel types
with different sulfur contents from 0.0013% � 3.2%.
The heavy fuel oil used in Jiang et al. (2018) contains
approximately 30% higher sulfur content than IFO fuel

used in the current study. Moreover, NIOSH-5040 was
used to perform TOA in Jiang et al. (2018) while
EUSAAR_2 and IMPROVE_A were used in this study.
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Table 3. Selected test fuel characteristics. For instruments
with two lines of numbers, two instruments with the same
measurement principle were used for the measurements.

Instrument

Slope Intercept Slope Intercept

Jiang et al. (2018) Current study

Smoke meter 1.28 0.88 1.31 �0.83
1.29 0.37

LII300 1.30 �1.74 1.20 �2.79
1.22 �0.46 0.57 �1.31

Aethalometer 0.86 4.41 0.77 1.52
TOA 0.89 �0.23 0.70 0.68

0.65 0.88 0.53 2.61

Figure 5. BC concentrations from re-calibrated in-line instru-
ments vs. EC concentrations from TOA (EUSAAR_2).
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Therefore, some differences between these two studies
are expected.

With the exception of LII2 (slope ¼ 0.57), the
slopes reported in Jiang et al. (2018) are within 20%
of the values estimated in the current study for differ-
ent instruments. Table 3 also shows that smoke meter
and LII1 report more mass concentrations than MSS
while Aethalometer and TOA measure lower mass
concentrations in comparison with MSS consistent
with the results reported by Jiang et al. (2018).

3.3. Instrument calibration using a single source

The previous section addressed how several black car-
bon measurement instruments respond to emissions
from ship engines. It should be noted that the instru-
ments evaluated in the current study were calibrated
using different types of soot particles with different
physical, chemical and optical properties. These par-
ticles were generated from various particle generators.
In order to eliminate the effect of calibration source
on the response of the instruments relative to each
other, we re-calibrated all instruments after the cam-
paign, based on a fit through the data collected from
the engine running on the diesel fuel to enforce the
instruments to agree with each other for the same
types of particles (i.e., diesel particles). It should be
noted that diesel fuel is arbitrarily selected for the re-
calibration and does not have any advantages over
other fuels in this regard. We then applied these cali-
bration factors to the DMA and IFO data points and
compare the relative response of the instruments with
the results reported in the previous section. TOA was
used as the reference technique for calibration because
it is used as the reference method in the aviation sec-
tor for regulatory purposes, however this does not
mean that TOA, with the protocols used in this study,
can more accurately quantify BC from ship engines
than other instruments. As shown in section 3.1
(Figure 3), EUSAAR_2 shows a slope closer to one as
well as better correlation coefficient than
IMPROVE_A when compared with other BC instru-
ments. Therefore, BC instruments were re-calibrated
based on elemental carbon estimated from
EUSAAR_2. Since all the instruments except the LII-
based instruments confound Tar BrC and BC, we
expect this post-campaign calibration to improve
agreement for all the instruments except the LII,
which should report smaller concentrations than the
other instruments.

Figure 5 shows the re-calculated (i.e., after calibra-
tion using diesel fuel data) BC mass concentrations as

a function of EC concentration measured by TOA-
EUSAAR_2 for Diesel, DMA and IFO. For IFO sam-
ples, the BC concentration from all instruments except
for LII2 and TOA-IMPROVE_A is higher than the
EC concentration from TOA (EUSAAR_2) for a wide
range of mass concentration. This is not however the
case for DMA samples and BC concentration from
different instrument relative to EC concentration from
TOA-EUSAAR_2 varies depending on the instrument/
concentration.

The adjusted BC concentrations are used to update
the values reported in Figure 4 and the results are
shown in the supplementary information (see Figure
S4, supplementary file). The average standard devi-
ation of the data points for diesel, DMA and IFO are,
respectively, 20%, 23% and 26% with 4%–11%
improvement in comparison with the case when
instruments are calibrated using different soot genera-
tors. Note that the standard deviations are calculated
using the data points reported on Fig 4 and Fig S4
which are representative of the ratio of the mass con-
centrations reported by different instruments to the
average mass concentrations reported by all instru-
ments. The fact that BC measurement instruments
calibrated using a single source agree better when
employed to quantify particles from other sources
shows that (a) particle properties and consequently
particle source can affect the response of real-time
instruments, and (b) calibration of the real-time BC
instruments using particles with similar properties as
particles to be measured can improve their accuracy.
It should be again noted that TOA may not be the
most appropriate technique for calibration of real-
time BC measurement instruments for marine engine
exhaust since EC concentration reported by TOA may
not represent BC concentration in the exhaust of mar-
ine engines with high concentrations of metal oxides
and sulfates specifically when running on residual
marine fuel oils.

4. Summary

The relative response of various BC measurement
instruments to exhaust from a marine diesel engine
using three fuels with different properties were quanti-
fied. The results reveal that

1. For thermal-optical analysis of the marine engine
exhaust, the temperature protocol should be care-
fully chosen due to very high organic carbon con-
centrations and Tar BrC. Protocols should be
carefully chosen or designed to a) minimize
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negative and positive pyrolysis as not to confound
the split point, b) maximize the fraction of OC
evolving during the OC phase, and ideally but not
necessarily c) give an indication of the fraction of
the content that is Tar BrC.

2. Different instruments respond dramatically differ-
ently to samples with significantly high OC con-
tent (i.e., OC/EC > 45) generated at 10% engine
power. Therefore, samples from ship engines at
low powers should be conditioned to remove as
much organic carbon particles as possible before
analyzing it with BC measurement instruments.
Moreover, undiluted samples may contain dra-
matically high concentration of organic carbon
which can introduce more uncertainty and bias in
the BC concentrations estimated from BC meas-
urement instruments.

3. Metals and Tar BrC in IFO exhaust may be an
important source of uncertainty and bias in the
estimated BC mass concentrations. Using optical
properties that are more representative of BC
when measuring emissions generated with
residual fuels, or taking the metals’ optical prop-
erties into account, could improve the accuracy of
BC measurement techniques. Combining different
measurement principles could prove to be the
best and only way to achieve accurate measure-
ments of BC from engines using residual fuels.

4. Neglecting data from instruments collecting
undiluted sample (i.e., LII1 and AVL 415SE) as
well as data from 10% engine power (i.e., sample
with very high OC concentration), all instruments
agree with each other within 26%. The agreement
reached 17% when instruments were re-calibrated
using a single source (i.e., marine engine running
on diesel fuel). Note that the agreements reported
above are calculated from the mass concentrations
quantified by the instrument collecting diluted
exhaust so the uncertainties in the dilution ratios
cannot significantly influence these values since
all instruments are affected by the same degree
from the uncertainties of the dilution ratios.
However, the uncertainties are slightly different at
different fuels/engine conditions, therefore, a
minor impact from the uncertainties of the dilu-
tion ratios on the agreement between different
instruments is expected.
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