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Deep learning-enabled multi-organ segmentation
in whole-body mouse scans
Oliver Schoppe 1,2,3✉, Chenchen Pan3,4, Javier Coronel1,2, Hongcheng Mai3,4, Zhouyi Rong 3,4,

Mihail Ivilinov Todorov3,4,5, Annemarie Müskes6, Fernando Navarro1,2, Hongwei Li1, Ali Ertürk 3,4,7✉ &

Bjoern H. Menze 1,2,8,9✉

Whole-body imaging of mice is a key source of information for research. Organ segmentation

is a prerequisite for quantitative analysis but is a tedious and error-prone task if done

manually. Here, we present a deep learning solution called AIMOS that automatically seg-

ments major organs (brain, lungs, heart, liver, kidneys, spleen, bladder, stomach, intestine)

and the skeleton in less than a second, orders of magnitude faster than prior algorithms.

AIMOS matches or exceeds the segmentation quality of state-of-the-art approaches and of

human experts. We exemplify direct applicability for biomedical research for localizing cancer

metastases. Furthermore, we show that expert annotations are subject to human error and

bias. As a consequence, we show that at least two independently created annotations are

needed to assess model performance. Importantly, AIMOS addresses the issue of human bias

by identifying the regions where humans are most likely to disagree, and thereby localizes

and quantifies this uncertainty for improved downstream analysis. In summary, AIMOS is a

powerful open-source tool to increase scalability, reduce bias, and foster reproducibility in

many areas of biomedical research.
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Animal models are the backbone of many areas of biome-
dical and preclinical research and the mouse is the most
commonly used organism to study the diseases that occur

in humans1,2. Understanding and characterizing mouse models in
detail is considered as a key to improving the reproducibility for
human applications3. Due to its fast technological advancement,
whole-body imaging with diverse modalities plays an increasingly
important role in murine research4–14. For a broad range
of research areas, from cancer15–17 to organ lesion studies 18, from
radiation studies19 to drug delivery20,21 and nanoparticle
uptake22–27, quantitative and comparative analyses of the acquired
imaging data require segmentation of the mouse anatomy.
Delineation of the major organs and other structures of interest
allows the extraction of quantitative information such as organ
shape and size, drug uptake, signals from biomarkers, or meta-
static distribution from the imaging data.

Thus, volumetric organ segmentation is an essential step in data
analysis for many areas of biomedical research. Traditionally, this
task is performed manually by delineating the organ outlines with
polygons in each slice of the volumetric scan. However, while this
procedure requires great attention to detail and expertize in anat-
omy and the imaging modality, it is highly repetitive and time-
consuming. This limits the sample size that can be analyzed with
justifiable efforts. To reduce the time needed for manual segmen-
tation, interactive, and semiautomatic procedures (such as thresh-
olding and region-growing) can be used28 but may go along with
imprecise delineations. Furthermore, manual segmentation is a
difficult task even for experts and tends to be prone to human error
and bias, especially in low-contrast modalities like CT, which can
negatively affect the reproducibility and objectivity of the obtained
results. Thus, there is a great need for automatic organ segmenta-
tion, which has been an active field of research for decades29–32.
The state-of-the-art and most commonly used approaches for
segmentation of mouse organs in volumetric scans make use of one
or several anatomical reference atlases, which are mapped to the
scan by means of (elastic) deformation and thus also make prior
assumptions on shape and size33–37. Other approaches to mouse
organ segmentation include learning-based techniques such as
support-vector machines and random forests38,39. Unfortunately,
these automatic approaches often do not reach satisfactory seg-
mentation quality and still take several minutes to process a single
scan. The limitations of the approaches so far are especially
apparent for organs with low imaging contrast or complex or
variable shapes (for example, the bladder33, the stomach38, or the
spleen36,40); for the same reasons, these organs are difficult to
segment accurately even for human experts (as we show). But the
general rise of deep neural networks in biomedical image processing
suggests that learnable convolutional kernels provide the most
promising basis for automatic organ segmentation in human and in
murine data40–43. However, so far, there was no single end-to-end
deep neural network that directly segments a large number of
organs in mouse scans at high quality.

Here, we present a fully integrated pipeline based on a single
end-to-end deep neural network for organ segmentation of
volumetric whole-body scans of mice termed AIMOS (AI-based
Mouse Organ Segmentation). Without any human intervention
or parameter-tuning, it can segment the main organs (brain,
lungs, heart, liver, kidneys, spleen, bladder, stomach, and intes-
tine) and the skeleton in volumetric scans of mice. Here, AIMOS
was trained and tested on four different whole-body imaging
modalities and variants: native micro-CT28, contrast-enhanced
micro-CT28, native light-sheet microscopy, and nucleus-staining
fluorescence microscopy (using propidium iodide (PI) as the
staining agent). We validated the performance on over 220
annotated whole-body scans of mice, the largest reported vali-
dation yet to the best of our knowledge. With a processing time

for a whole-body scan of less than one second, AIMOS works two
orders of magnitude faster than the commonly used atlas-
registration-based techniques. Furthermore, the segmentation
quality matches or exceeds those of state-of-the-art approaches
and, importantly, matches the quality of manual segmentation by
human experts, even for low-contrast organs such as the spleen in
CT. We show that the pretrained models from this study allow
fast retraining of AIMOS on other modalities with only a few
annotated scans. The code, the trained algorithm, and the
annotated datasets for AIMOS are open source and freely avail-
able to the scientific community.

So far, the performance of automated methods has been typically
assessed by quantifying the volumetric overlap between the pre-
dicted segmentation and a human expert annotation through the
SrensenDice score. The human annotation is taken as an absolute
reference (often called ground truth)44. However, it is well-known
that manually created reference segmentations of medical images
are affected by subjective interpretation and thus suffer from errors
and individual bias45,46. Diverging human annotations have pre-
viously been addressed, for example by training models to predict a
set of diverse but plausible segmentations47,48. However, solely
comparing a single model prediction to a single human reference
annotation, a common practice in the field34–40, fails to appreciate
that the reference a) may be suboptimal and b) reflects the sub-
jective interpretation of an individual. To address this issue, we
analyzed this shortcoming in detail and showed that a predicted
segmentation with a higher Dice score does not necessarily reflect a
better solution, but may just be a sign of overfitting to the subjective
interpretation of the reference annotator. While a model can be
trained to closely follow the interpretation of a given annotator, an
independent expert may have a different interpretation of the same
data and would disagree with the proposed solution. Thus, we show
that at least two independently created reference annotations are
required to assess the true model performance. Inspired by this
observation, we enhanced AIMOS to a dual approach: predicting
organ segmentations with concurrent identification of ambiguous
image regions where human experts are most likely to disagree in
their interpretation. Altogether, AIMOS not only provides highly
precise delineations of mouse organs but also quantifies and loca-
lizes uncertainty, an essential step for further statistical analysis.

In summary, this study makes several contributions. We provide
a deep learning-based processing pipeline termed AIMOS, the
fastest and most accurate solution for the automated segmentation
of the major organs and the skeleton in volumetric mouse scans.
The trained models were tested in the largest validation yet on a
dataset with over 220 manually annotated mouse scans. AIMOS can
be directly transferred to other modalities or animal models. The
code, the trained models, and the annotated data are freely available
to the public, fostering reproducibility and further improvement.
Furthermore, AIMOS identifies ambiguous image regions where
human annotators are most likely to disagree in their interpreta-
tions. Together, AIMOS provides researchers with a versatile tool
that enables fast, unbiased, and interpretable quantifications of
mouse scans and thus can dramatically increase scalability and
reproducibility in imaging-based murine research. Areas of appli-
cation include, but are not limited to, the spread of cancer metas-
tases, organ lesion studies, radiation studies, drug delivery and
nanoparticle uptake assessment, analysis of pathogen infections, as
well as general localized studies of organ-related pathologies.

Results
AIMOS pipeline. We developed AIMOS, a fully automatic deep
learning-enabled data processing pipeline for the segmentation
of volumetric whole-body scans of mice (Fig. 1). While the
general approach is not tied to a specific type of input and can
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also be transferred to other imaging modalities, here we trained
and evaluated the AIMOS pipeline on four different modalities
and variants: native micro-CT, contrast-enhanced micro-CT,
native light-sheet microscopy, and nucleus-staining fluores-
cence light-sheet microscopy. The pipeline takes a volumetric
scan as its input and predicts 3D delineations of the main
organs. The pipeline consists of a preprocessing module, a deep
learning backbone, and a postprocessing module. The pre-
processing module slices the volume into 2D images, nor-
malizes the signal intensity, and resamples them to a desired
resolution. While we processed the scans at a resolution of
240 μm/vx, we performed an ablation study found that AIMOS
works well over a fairly broad range of resolutions from
120 μm/vx to 1120 μm/vx (Supplementary Fig. 1a). As the
backbone, we chose a U-Net-like convolutional neural network
with six levels of encoding and decoding blocks with up to 1024
feature channels. Again, we performed an ablation study to
assess the sensitivity of the pipeline to model complexity
(number of levels), and found that leaner models performed
equally well (Supplementary Fig. 1b). The neural network cre-
ates a probability map for each organ. The postprocessing
module comprises binarization and volumetric reconstruction
of the output. As an optional feature, it also comprises
ensemble-voting, in which the predictions of a number of
independently trained networks are merged into one ensemble
prediction (see Methods section for details). Ensemble-voting is
known to improve biomedical image segmentations by reducing
variance from statistical fluctuations49,50. The effect of
ensemble-voting is further analyzed below.

AIMOS segments organs with human accuracy. For the first set
of experiments, we trained and evaluated AIMOS on two publicly
available datasets, native microCT and contrast-enhanced microCT
whole-body scans, that were explicitly designed to foster the
development of deep learning-based organ segmentations28.

With over 220 manually annotated scans, this represents the largest
validation, to the best of our knowledge, of an automatic mouse
organ segmentation solution reported so far. The datasets and any
preprocessing is described in the Methods and a comprehensive
description of the datasets is available in the accompanying
publication28. Supplementary Fig. 2 shows the structure and
representative samples of both datasets.

To evaluate the performance of the AIMOS processing
pipeline, we trained and tested it on both CT datasets. We
quantified the overlap between predicted organ segmentations
and the reference annotation from a human expert. Additionally,
we then compared processing speed and performance of AIMOS
with other common approaches. Furthermore, we also performed
a qualitative assessment of the physiological plausibility of the
predicted organ segmentations, and their deviations from the
reference annotations. Importantly, while this evaluation was
carried out on the entire dataset, the test predictions were
exclusively made for mice that were not used during training (k-
fold cross-validation; see Methods section for details).

For the native microCT dataset, the median Dice scores varied
between 88 and 93% for heart, lungs, liver, bladder, intestines,
and both kidneys (Fig. 2a). Interquartile ranges varied from 80 to
95%, suggesting that the organs are consistently segmented with
high precision. Importantly, the median Dice scores are all above
the Dice scores of two independent human expert annotations
(blue lines), indicating that AIMOS matches or exceeds human
performance in organ segmentation. This even holds for the
spleen (by an even bigger margin of over 30 p.p.), although the
overall performance and variance are not as good (median
Dice score of 73%). This may be largely explained by the low CT-
contrast for this organ.

For the contrast-enhanced micro-CT dataset (Fig. 2b), the
contrast of the spleen was boosted by injecting a contrast agent.
This enables humans to segment the spleen much more
consistently (82% vs. 37%). Also, AIMOS reached a substantially
higher Dice score for the spleen (89%), matching the already high

3D organ segmentationAIMOS pipeline3D imaging of mice

Native/contrast-enhanced micro-CT
Native/fluorescence light-sheet microscopy

Probability maps and masks per organ
Uncertainty estimation and localization

Intervention-free and fully automatic
Deep learning processing backbone

Preprocessing module
(volume slicing, resampling, 

signal intensity normalization)  

Postprocessing module
(ensemble voting, non-linear 

binarization, 3D reconstruction)
5 mm 5 mm

Fig. 1 The AIMOS processing pipeline. AIMOS is a fully automatic, end-to-end deep learning pipeline that segments multiple organs of mice in 3D scans
across different imaging modalities.
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Dice scores for most other organs, which are between 87% and
95% for the kidneys and the lungs, respectively. For the contrast-
enhanced microCT dataset, we also segmented the stomach,
another low-contrast organ in CT, for which AIMOS reached a
score of 79%, which is lower than for the other organs but higher

than for the human segmentation (69%). The low segmentation
performance of human annotators for the spleen suggests that it
is intrinsically hard to segment due to its low contrast in native
microCT and its variability in size, shape, and exact location.
While AIMOS exceeds prior art and human performance,

Lungs

Liver

Kidneys

Spleen

Bladder

Intestine

Average

Dice (%) AIMOS

Heart

Lungs

Liver

Kidneys

Spleen

Bones 83–92%

Bladder

Intestine
0.1

102

1

10

105

103

104

Manual 
segmentation 

(without 
automation)

Machine 
learning 
(here: 

AIMOS)

(Multi-)Atlas 
registration 
approaches

Native micro-CT Contrast-enhanced micro-CT

Processing time Comparison to state-of-the-art

9 h

5–13 min

830 ms

D
ic

e 
(%

)
T

im
e 

(s
)

100

90

80

70

60

50

40

30

20

10

0

100

90

80

70

60

50

40

30

20

10

0

Bones$ SpleenHeart Lungs Liver Kidneys Bladder Intestine StomachSpleenHeart Lungs Liver Kidneys Bladder Intestine
N

at
iv

e 
m

ic
ro

-C
T

A16* B10 H18 J09 K11* W11 W19

92% 81% 62% 94% 82% 73% 95%

93% 77% 65% 46% 92% 92%

89% 75% 67% 65% 88%

89% 77% 85% 85% 59% 62% 86%

74% 57%

89% 71% 55%

88%

88% 79% 70% 89% 70% 62% 77% 82%

C
o

n
tr

as
t-

en
h

an
ce

d
 m

ic
ro

-C
T

A16* K11* W11 Y17

92% 81% 73% 91% 89%

95% 77% 46% 90%

91% 75% 65% 78% 88%

87% 77% 62% 76% 93%

89% 46% 71%

92%

88% 71%

87%

Stomach 79% 76%

Average 89% 80% 62% 77% 86%

a b

c d

Dice (%)

Heart

AIMOS
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it nevertheless dramatically benefits from contrast enhancing
agents as well. This becomes especially apparent when assessing
segmentation performance over time after contrast agent
injection. As shown in Supplementary Fig. 3, the spleen can be
segmented at a very high Dice score of 92% once the contrast
agent has reached its full effectiveness, significantly higher than
immediately after injection (p < 0.01, two-sided t-test). Just like in
the native microCT dataset, the AIMOS prediction performance
matches or exceeds that of a human expert (blue lines) for all
tested organs. It is noteworthy that both human annotations
were not completely independent for bones due to the aid of the
same thresholding functions, which may overestimate human
consistency.

A more detailed overview of all further performance scores for
all organs and all datasets is provided in Supplementary Fig. 4. In
short, the Hausdorff distance and the center of mass displacement
are mostly around or below 1mm, providing further indications
of high segmentation performance. Furthermore, it shows that
the optional ensemble-voting can consistently improve results
(1–2 p.p. increase in Dice score) but is not essential to derive good
segmentations.

Neural networks are generally known to be fast approaches to
image segmentation51. Even though the time to train a deep
convolutional neuronal network depends on technical settings
and the size of the dataset and may be in the order of hours, the
inference time of AIMOS to predict the segmentation of
one whole-body scan is substantially shorter and very consistent.
The complete volumetric segmentation of one whole-body scan
took AIMOS 0.83 s (Fig. 2c). This is more than four orders of
magnitude faster than manual segmentation (9 h in our case; see
Methods section for details) and more than two orders of
magnitude faster than commonly used atlas registration-based
techniques (5–13 min36,37). While inference speed benefits from
the use of a GPU, the AIMOS has low computational
requirements and can also be run on a standard CPU. Thus,
while semimanual interactive segmentation tools can reduce the
time for expert annotation, machine learning approaches like
AIMOS can accelerate organ segmentation tasks substantially
without a compromise on quality.

While the experimental setup, the organs of interest, and the
acquisition varied, a comparison to reported performance metrics
of prior studies indicates that AIMOS matches or exceeds the
performance of these segmentation methods despite the drama-
tically reduced processing time. In Fig. 2d, we compared AIMOS,
separately for native and contrast-enhanced microCT, to eight
other automated segmentation approaches (abbreviated A1638,
B1034, H1837, J0933, K1135, W1136, W1940, and Y1739). Please
note that these studies report their performance scores based on
different datasets, which are mostly not publicly available.
However, they all represent whole-body CT scans of mice. While
all of them entail native or contrast-enhanced microCT, A1638,
and K1135 are multimodal approaches that make use of native
microCT and MRI, which has a higher contrast for soft
abdominal organs, and are thus also compared with contrast-
enhanced CT. Also, please note that A1638 does not segment the
entire skeleton but rather selected bones only. For native
microCT, AIMOS obtained good results for the heart (92%),
close to the best result (95% for W1940). For the lungs, liver,
kidneys, spleen, bladder, and intestine, AIMOS reached the
highest Dice score reported so far. The overall average of 88% is
the second highest, only exceeded by H1837, that only segmented
two organs and stated explicitly that they had decided to exclude
organs in low-contrast body regions (such as the spleen and liver)
from their study. For contrast-enhanced microCT, AIMOS
reached good results for the kidneys, although they were slightly
below Y1739. For all other organs (the heart, lungs, liver, spleen,

bladder, intestine, and stomach) and the bones, AIMOS yielded
the highest Dice score reported so far. Also, the overall average
score of 89% is the highest reported so far. In summary, these
results show that AIMOS matches or exceeds state-of-the-art and
human performance in both datasets.

Figure 3 shows representative samples of the predicted organ
segmentations and compares them to the human reference
annotation. Visual assessment indicates that the predictions not
only closely overlap with the reference, but also seem anatomi-
cally plausible. For instance, no implausible predictions such as
disconnected structures occur. However, there is of course some
deviance from the reference annotation. This prediction error can
be broken down into three categories: a) cases with actual errors
that show shortcomings of the model, b) cases in which the model
yields good predictions but the human reference seems
erroneous, and c) cases in which the true segmentation may be
hard to judge but where the prediction seems plausible despite a
difference from the reference. Examples for b) can be seen for the
lungs in Fig. 3a and for the liver in Fig. 3b. Here, AIMOS seems to
provide a reasonable prediction but the human reference
annotation may be slightly imprecise. This causes lower
performance scores despite good predictions. A more in-depth
analysis showed that some of the lowest reported performance
scores (for all performance metrics) indeed reflected incorrect
reference segmentations in the public CT dataset (see Supple-
mentary Fig. 5). Interestingly, in one of these cases the predicted
segmentation for the bladder did not overlap at all with the
human reference; however, a review of this scan revealed that the
human expert misplaced the label for the bladder in this case, an
error detected by AIMOS (see Supplementary Fig. 5c).

The most important observation, however, is cases from
category c), in which the prediction seems plausible despite being
different from the reference and in which it may be hard to judge
from the data, where the true delineation should be. Examples
can be seen for the kidneys and spleen in Fig. 3a. We speculated
that the acquired imaging data represent insufficient information
and may thus lead to ambiguous and subjective human
interpretation; thus, we decided to explore this with an additional
set of experiments.

Ambiguity of human interpretation of biomedical data. In
order to assess the subjectivity and bias in human interpretation,
we analyzed how two human annotations differ and how the
AIMOS prediction compares to one reference annotation
versus the other. Please note that AIMOS was trained on seg-
mentations from annotator #1 (the predictions were always made
on scans spared during training; see Methods section for details).
With this experiment, we aimed to test whether AIMOS would be
able to learn the individual interpretation of annotator #1. Indeed,
we saw subjective, diverging interpretations of the same data
(Fig. 4a, b) when comparing independent reference segmentations
by two human experts. The prediction by AIMOS seemed to match
annotation #1 rather closely but differed from annotation #2, here
shown for the spleen (Fig. 4a) and for the kidneys (Fig. 4b).

To test the hypothesis that AIMOS learns to follow the
subjective interpretation of annotator #1, on whose data it was
trained, we systematically analyzed this for both datasets (Fig. 4c,
d). We observed a consistently higher Dice score between AIMOS
and annotator #1 than for both, the Dice scores between both
annotators and between AIMOS and annotator #2. Note that the
human segmentation of the bones was done with a semiautomatic
thresholding function, which may overestimate human consistency
as compared to purely manual segmentation. These findings
suggest that AIMOS is indeed capable of learning the individual
interpretation of a given annotator (here: annotator #1) and that a
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second, independent annotation is needed to assess the general-
ization performance of any such model. Depending on which
annotation is defined as the reference, AIMOS exceeds human
performance or AIMOS matches human performance.

AIMOS predicts the regions of diverging human interpreta-
tion. Motivated by this observation, we speculated that AIMOS
could then also learn to predict those regions in the image, where
human interpretation may diverge due to ambiguity in the data.
To test this hypothesis, we modified the setup of AIMOS in order
to reflect the agreement and disagreement of human annotations
separately (Fig. 5a). Also in this setup, AIMOS predicted organ
segmentations with high overlap to the agreed-upon reference
annotation (Fig. 5b). But importantly, it can now also predict a
heat map of image regions in which the human annotators are
most likely to disagree (Fig. 5c), which closely reflects their actual
disagreement (Fig. 5d). A quantitative analysis of the prediction
of disagreement was performed by binarizing the heatmap
(threshold at 50%), which allowed to determine the Dice score

with the actual disagreement. This score was 55% for the
contrast-enhanced and 60% for native microCT dataset. Given
that per definitionem there are no clear boundaries of regions,
where human annotators disagree these scores are high and thus
indicate that the AIMOS prediction indeed closely reflects the
actual disagreement. Interestingly, the predicted heat map did not
just merely follow the outlines of the organs, which could be
explained by small differences in segmentation caused by slightly
imprecise delineations. The heat map seemed to be unevenly
distributed, suggesting a high degree of agreement in some
regions (e.g., outline of the lungs), and a very low degree of
agreement in low-contrast regions such as the caudal parts of the
liver and the entire region around the spleen.

If we re-evaluate AIMOS on the basis that a prediction is
deemed correct if it matches at least one of both annotations
(voxel-by-voxel based decision), the Dice scores increase
substantially (Fig. 5e). For native microCT, the score for the
spleen increased by 11 p.p. to 86% and all other organ
segmentations also reached very high scores between 94 and

Native micro-CT

Contrast-enhanced micro-CT

5 mm 5 mm

5 mm

5 mm

5 mm 5 mm

5 mm 5 mm

5 mm 5 mm5 mm 5 mm

5 mm 5 mm

5 mm
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SpleenHeart Lungs LiverKidneys Bladder Intestine

Bones SpleenHeartLungs Liver Kidneys BladderIntestine Stomach

Whole body projection Central coronal slice Coronal slice through center of each organ

Whole body projection Central coronal slice Coronal slices through center of organ

a

b

Fig. 3 Qualitative results of segmentation performance. Filled, semi-transparent areas show AIMOS prediction for a native micro-CT and b contrast-
enhanced micro-CT. Opaque lines indicate human expert annotations. Left column shows mean-intensity projections for the whole-body scan. Second
column shows representative coronal slices. Remaining columns of figure show individual organs (coronal slice through center of organ). The intestine
segmentations are not displayed in the whole-body projections as they would occlude other organs due to their size and location.
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96%. The same applied for contrast-enhanced microCT, for
which all scores were between 94 and 97%. These findings
indicate that while the predicted segmentations do not exactly
follow one single, given reference annotation, they do not deviate
more from this reference annotation as an independent human
expert would.

Quantitative application of AIMOS for uncertainty quantifi-
cation. However, the fact that human interpretation of the same
data may diverge to the extent described above has far-reaching
consequences in a broad range of biological questions. Here, the
capability of AIMOS to predict areas of human disagreement
finds direct application in quantifying the resulting uncertainty of

Similarity of human annotations and predictions for native micro-CT
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Fig. 4 Human annotation may reflect an individual expert’s bias. a Raw scan (left) of a spleen in native microCT, the predicted segmentation overlaid
with annotation of human expert #1 (middle), and overlaid with annotation of human expert #2 (right). b Same as a but for kidneys in contrast-enhanced
micro-CT. c, d Dice score for segmentations by expert #1 vs. expert #2 (blue), AIMOS vs. expert #1 (orange), and AIMOS vs. expert #2 (green). Each box
extends from lower to upper quartile values of data, with a black line at the median; the whiskers extend to the outmost data point within 1.5× the
interquartile range. c For the native CT dataset, each box plot represents n= 35 independent scans from five biologically independent animals (all that were
annotated twice). d For the contrast-enhanced CT dataset, each box plot represents n= 38 independent scans from eight biologically independent animals
(all that were annotated twice). Note that AIMOS was trained on annotations from expert #1. $The human segmentation of bones was done with a
semiautomatic thresholding function, which may overestimate human consistency as compared to purely manual segmentation. Source data are provided
as a Source Data file.
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organ segmentations. For example, for the field of organ volu-
metry, in which the volume and the shape of organs between test
and control groups are compared in order to draw conclusions
about physiological and pathological developments. Assessing

whether a difference between both groups is statistically sig-
nificant of course requires taking the variance within the groups
into account (intersubject variability). But if manual segmenta-
tions do not represent ground truth and can reflect subjective
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Kidneys 89.4 94.5 88.0   95.0   Kidneys 292 14% 33% 7% 389 9% 25% 8%

Spleen 76.7 86.8 86.3   95.3   Spleen 34 40% 95% 17% 175 17% 25% 18%

Intestine 90.7 94.3 85.7   93.5   Intestine 2291 7% 40% 8% 3380 19% 43% 14%

Bladder 88.2 95.5 88.0   93.8   Bladder 57 19% 22% 43% 68 24% 22% 41%

Stomach – – 80.2   89.9   Stomach – – – – 197 39% 45% 27%

Bones$ – – 91.3   94.0   Bones$ – – – – 842 9% 10% 5%

Average 88.0 93.9 88.5   94.5   Average 16% 37% 14% 16% 26% 15%

Prediction quality assessment Organ volumetry assessmente f

Fig. 5 AIMOS learns to predict areas of likely human disagreement. a Workflow for training procedure. Making use of both available human expert
annotations, AIMOS is trained to predict not only the location of all organs but also areas of human disagreement. b, c Example of an AIMOS prediction on
test data b for organ segmentations (overlaid by a thin line for human labels) and c for likely human disagreement. d Actual human disagreement
(difference of both human expert annotations). e Performance of AIMOS prediction of organ segmentations (Dice score) as compared to that of the
reference from annotator #1 (left column) and as compared to that of references from both annotators (right column). f Organ volumetry for both datasets.
Left column shows average volume per organ across mice; other columns show variability (standard deviation relative to average volume) across mice
(intersubject), across annotations from two annotators for the same scan (interannotator), and across annotations for the same mouse from the same
annotator (intraannotator). $Semiautomatic thresholding aided human segmentations of bones and may thus underestimate intraannotator and
interannotator variability.
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interpretation and bias, this must also be taken into account. In
order to explore the relevance of this, we quantified the magni-
tude of three sources of variability for both datasets (Fig. 5f): a)
intersubject variability, the natural anatomical variability from
mouse to mouse within each dataset; b) interannotator variability,
the variability of annotations from independent annotators for
the same scan; and c) intraannotator variability, the variability of
several annotations for the same mouse from a single annotator.
We observed an average intersubject variability of 16%. However,
the interannotator variability was substantially higher (26–37%).
Importantly, this was also substantially higher than the intraan-
notator variability (14–15%), suggesting that the interannotator
variability was mainly driven by individual bias, and subjective
interpretations due to ambiguous data. Altogether, these findings
highlight the relevance of appreciating the intrinsic ambiguity in
organ segmentations. AIMOS achieves this by automatically
quantifying and localizing uncertainty in the data. This enables
more consistent segmentations and explicit decisions how to treat
ambiguous regions for further analysis.

Applicability to other imaging modalities. In a last experiment,
we aimed at assessing the versatility of AIMOS for other imaging
modalities and for direct biomedical application. Here, we chose
volumetric light-sheet microscopy of cleared mice, a modality
that substantially differs from microCT in many aspects (Fig. 6a).
As described in the Methods section, mouse bodies were first
rendered transparent using tissue clearing and then scanned with
a light-sheet microscope in 3D at a high, isotropic resolution of 6
μm. Signal acquisition was performed at two different wave-
lengths, one capturing the native image signal (auto-fluorescence)
and the other capturing the fluorescent signal of PI, which stains
cell nuclei. We acquired a total of 15 whole-body scans from 15
different mice. Scans were annotated manually by human experts
for the brain, heart, lungs, liver, kidneys, and spleen.

Figure 6b shows the quantitative assessment of the prediction
performance of AIMOS. Despite the substantially smaller training
data size, the Dice scores were very comparable to the
performance on the microCT datasets. Again, the spleen was
segmented at a comparatively low Dice score (with higher
variance) of 73%. The Dice scores for the brain, heart, liver, lungs,
and kidneys, however, ranged between 83% for the liver and 89%
for heart and kidneys with very small interquartile ranges.
Importantly, AIMOS showed a very similar performance on the
light-sheet microscopy dataset regardless of the variant (average
performance for native light-sheet microscopy: 84%; average
performance for nucleus-staining fluorescence microscopy: 86%).
In addition, a qualitative assessment suggested that the predicted
segmentations are anatomically plausible (Fig. 6c). Again, the
organs were localized correctly and while some differences
around the fine details of the outline can be seen (e.g., for the
brain and liver), the overall organ shapes were well predicted.
A comparison to the other, substantially larger datasets indicated
that the performance may improve further with additional
training data (Supplementary Fig. 1c). Nevertheless, this analysis
suggested that AIMOS can already be efficiently trained from
scratch with as little as 8–12 annotated scans. Importantly, the
need for annotated training data was further substantially reduced
by using pretrained models (which we provide), even when
modalities differed (Supplementary Fig. 1d–f).

To assess the precision of organ delineations in the practical
settings of biomedical applications, we let AIMOS segment a scan
of a tumor-bearing mouse from a prior study17 in order to
quantify the spatial organ distribution of metastases (Fig. 6d).
Metastases were counted for each organ based on the automatic
segmentation provided by AIMOS and based on a manual

segmentation by a human expert (see Methods section for
details). A comparison with the true metastasis counts revealed
that AIMOS-derived counts consistently matched or exceeded
human precision. This suggested that, despite the small number
of training samples, the quality of predicted organ delineations
were sufficient for direct biomedical application of AIMOS.
Altogether, these findings suggest that the AIMOS pipeline,
without any modification or tuning, can be readily applied to
fundamentally different imaging modalities and trained success-
fully with very small training datasets.

Discussion
In this study, we introduced AIMOS, a simple and lean deep
learning-enabled pipeline for organ segmentation in whole-body
scans of mice. Delineating organs manually is not only a tedious
task, but also inherently difficult, especially in low-contrast
modalities such as microCT, even for experts. Thus, there is a
great need for reliable, automated methods to derive high-quality
organ segmentations. In contrast to commonly used atlas-
registration-based33–37 and a recent learning-based approach40,
AIMOS represents an end-to-end deep neural network that
directly segments a large number of organs in mouse scans. This
approach works without human intervention, processes a full
scan in less than 1 s, and delineates the organs and skeleton with
high precision. We evaluated the model performance in the lar-
gest validation experiment conducted so far, with over 220 scans
from a public dataset28. The reported segmentation quality
matches or exceeds state-of-the-art and, importantly, the quality
of human expert annotations. The approach is not tied to a
specific imaging modality and is not sensitive to parameters such
as imaging resolution, highlighting its broad applicability. The
entire dataset including annotations, the code, and the trained
models are publicly available to enable direct application and
foster further improvement and adaptation. As shown in the
light-sheet microscopy dataset, the model can be easily retrained
from scratch to be used in other modalities with as little as
8–12 scans and our pretrained models reduce this need even
further.

Motivated by the observation that AIMOS can exceed a human
expert in predicting a given reference annotation, we assessed the
sources of variability in human annotations. We showed that
AIMOS can learn to follow the subjective interpretation of a given
expert. In addition, we showed that the interannotator variability
is substantially larger than the intraannotator variability. Both
findings suggest that expert annotations are subject to human bias
in interpretation, especially when there is ambiguity in the
acquired imaging data, an issue previously reported45,52. This has
intricate effects on the informative value of performance metrics
such as the Dice score if only a single annotation is used as
a reference, which is a common practice in the field34–40.
We showed that AIMOS exceeds human performance when
one expert is defined as the reference but matches human per-
formance when another expert is defined as the reference.
Thus, while measuring the Dice score against a single human
annotation may be helpful for model development, only a second,
independent annotation as a test reference reveals its true gen-
eralization performance relative to human experts.

Future work may explore to further increase robustness and
generalizability. Potential avenues include the use of multiple,
more diverse datasets (for example, acquired at different labs and
acquired with different modalities), 3D convolutions (which may
help with complex structures such as the spleen but also require
substantially more training data for convergence), and combi-
nations with reference atlases (for example, to detect and flag
unlikely predictions). However, the observation that human
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experts may disagree substantially in their data interpretations
draws the usefulness of further model development just for higher
Dice scores into question. Rather than matching one reference to
an ever higher degree, investigating and localizing sources of
ambiguity may be an important aspect of future research. Here,
we trained AIMOS to segment organs where both annotators
agree and to identify image regions, where annotators are most

likely to disagree. This enables researchers to either discuss those
ambiguous regions in detail in order to find a consensus, or to
appreciate this intrinsic uncertainty for any further statistical
analysis. Here, we showed that the interannotator variability can
be of substantial magnitude, exceeding the intersubject variability
(often the only source of variability taken into account15,53). This
highlights the relevance of factoring in this uncertainty for further
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Fig. 6 AIMOS can be applied to other imaging modalities. a 3D light-sheet microscopy dataset was obtained from 15 mice at a resolution of 6 μm/voxel.
Each scan is available without staining (native) and with fluorescent nucleus-staining with propidium-iodide (PI). b Box plots of Dice scores per organ; each
box extends from lower to upper quartile values of data, with a black line at the median; whiskers extend to outmost data point within 1.5× the interquartile
range; outliers beyond whiskers are shown as diamonds; each box plot represents represents n= 15 independent scans from 15 biologically independent
animals. c Filled, semitransparent areas show AIMOS prediction, opaque lines indicate human expert annotation. Left column shows average intensity for
whole-body scan; second column shows representative coronal slice. Right half of panel shows individual organs (coronal slice through center of organs).
d Bar charts and mean-intensity projections of metastasis counts per organ, based on segmentation by AIMOS or a human expert (a detailed description of
this visualization is provided in the Methods section). Location of metastases indicated with circle (diameter not to scale); metastases are shown in gray if
they were incorrectly allocated to the organ based on imprecise segmentation by AIMOS or human. Green line in bar charts indicates true metastasis
count. Percentage above bar charts represents relative error in metastasis count. Source data are provided as a Source Data file.
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analysis, for example, when assessing the significance of differ-
ences between control and test groups of mice.

AIMOS as an enabling resource will be helpful in many areas
of biomedical research, including tumor research15–17,54, organ
lesion studies18, drug delivery20, and nanoparticle uptake22–26. It
provides high-quality organ segmentations within a second. It has
low barriers for adoption, has low computational requirements,
and requires no human intervention or parameter tuning. In
addition, it does not act as a black box but provides probability
maps for each organ and sheds light on ambiguous image regions
requiring further discussion. AIMOS helps to automatically
quantify this uncertainty and thereby aids in refining statistical
analyses. In summary, AIMOS as a tool and the findings of this
study are an important contribution to increase scalability, reduce
bias, and foster reproducibility in many areas of biomedical
research.

Methods
Data. We trained and evaluated AIMOS on four datasets from different imaging
modalities and variants: native microCT, contrast-enhanced micro-CT, native
light-sheet microscopy, and nucleus-staining fluorescence light-sheet microscopy.
The CT dataset is publicly available and was explicitly designed to serve as a basis
for deep learning-based models for mouse organ segmentation28. All details on the
data acquisition and the annotation process can be found in the data descriptor28,
and will thus not be repeated here beyond key information and further processing
steps. For both datasets, the mice were scanned several times. Before each scan,
they were newly anesthetized and newly positioned in the CT bed, resulting in
different postures of the same mouse in different scans. For the native micro-CT
dataset, all available 140 scans from 20 mice were included in this study. While
most scans have a common field of view from the shoulder to the hips, a small
number of scans (#16–#20) had a larger field of view that included the head. These
scans were cropped to match the common field of view. No further preprocessing
was applied to this dataset. For the contrast-enhanced microCT dataset, the mice
were injected with an agent to increase the contrast of the liver and spleen. All
scans have a common field of view and no cropping was necessary. However, out of
85 scans from 10 mice, only 81 scans from 8 mice were included in this study. Two
scans were excluded due to missing annotations (M01_48h and M05_144h). Two
additional scans (M09_024h and M10_024h) were excluded as they were the only
scans without the time series that was provided for all other mice and is needed for
this study. Some scans contained motion artefacts or other acquisition artefacts28,
but were nevertheless fully included in order to reflect the full range of the data and
any shortcomings. While both datasets were largely annotated manually, semi-
automated thresholding was applied to aid the segmentation of the bones.
Importantly, a subset of both datasets was annotated a second time by an inde-
pendent expert (following the same protocol), allowing the assessment of inter-
annotator variability in human expert segmentations. The provided segmentations
were not altered (despite some minor segmentation inaccuracies, see “Results”
section) to maintain reproducibility. To the same end, the nomenclature of the
time points was not altered; however, please note that scans with negative time
points (t = − 1 h) were also obtained after injection of the CT contrast-agent.

The light-sheet microscopy dataset was partially acquired for a prior study17 but
was extended for this study. This imaging modality enables whole-body scans at
microscopic resolution (6 μm) for entire mice without the need for destructive
cryoslicing. Volumetric light-sheet microscopy requires clearing of (and optionally
the application of nucleus-staining fluorescent PI in) mouse bodies. The entire
procedure, including image acquisition, has been described in prior work17,55–57

and will thus not be repeated here beyond key information and further processing
steps. We used mice from the following strains: NSG (NOD/SCID/IL2 receptor
gamma chain knockout), NMRI nu/nu mice, C57BL/6 (sex: male and female; age:
1–4 months). All animal experiments were conducted according to institutional
guidelines of the Ludwig Maximilian University of Munich, the Technical
University of Munich, the Helmholtz Center Munich, the University of Giessen,
and the University of Frankfurt. Experiments were conducted after approval of the
Institutional Animal Care and Use Committees (IACUC) of Technical University
of Munich, Ethical Review Board of Regierung von Oberbayern, the UK Home
Office, and the veterinary department of the regional council in Darmstadt, Hesse,
Germany. A total of 15 scans from 15 mice were acquired. All scans were cropped
to a common field of view, from the head to the hips, which partially excluded
some outer parts of the extremities. The brain, heart, lungs, liver, kidneys, and
spleen were segmented manually with the ROI Manager of Fiji58 by closely
reconstructing the delineations with polygons in regularly spaced slices, and
subsequent interpolation of the delineation between those slices. In a second step,
the derived volumetric segmentations were further refined in ITK-Snap59 to ensure
a good fit across the entire volume. The expert annotators took detailed minutes on
the progress of the annotations, which served as the basis to calculate the total
amount of time to fully segment all organs per mouse scan.

Model. The AIMOS pipeline consists of a preprocessing module, a deep learning
backbone, and a postprocessing module. The preprocessing module slices the volume
into coronal 2D images, normalizes the signal intensity by subtracting its mean and
dividing it by its standard deviation, and resamples them to a desired resolution. The
sensitivity of the model to the resolution resampling was analyzed in an ablation study
(see Results section). During training, only slices that showed at least 1 voxel from 1
organ (as determined by the training annotations) were fed to the network; input
images and annotations were augmented by random rotations (±10°) and random
cropping (down to 80% of original image area). During inference, all slices of the
entire volume were presented for prediction and no augmentation was performed.

The deep learning backbone of the model followed a U-Net-like60 architecture and
consisted of an encoding and a decoding path, that were interconnected with skip
connections. While the number of encoding and decoding levels was varied (see
Results section for an study on the sensitivity of the model to this), the encoding and
decoding units in each level always followed the same structure. Each encoding unit
consisted of two convolutions (kernel size: 3; padding: 1; stride: 1), batch
normalization, a rectifying linear activation function, and a max-pooling operation
(kernel size: 2; stride: 2). Each encoding unit has twice the number of feature channels
as compared with the previous one; the first encoding unit has 32 feature channels.
Each decoding unit consisted of three convolutions (same parameters), whereas the
first one received the concatenation of an upsampled input from the previous level
(bilinear interpolation) with the input from the skip connection from the
corresponding encoding unit. Each decoding unit has the same number of feature
channels as the corresponding encoding unit from the same level. The very last
convolution of the model mapped the 32 feature channels to the number of prediction
classes (i.e., the number of organs to be predicted). A final pass through a sigmoid
function yielded volumetric probability maps of each organ. The model was trained
with a soft-Dice loss function and the Adam optimizer61. The training and evaluation
procedure was designed to assess the generalization performance of AIMOS on
unseen data. To this end, we followed a nested k-fold cross-validation procedure that
splits the dataset into three distinct sets (a training set for model weight optimization,
a validation set for hyper-parameter optimization, and a test set for evaluation).
Importantly, the dataset was split on the level of individual mice, not on the level of
scans, since the mice were scanned multiple times. This avoids any information leak
between two scans of the same mouse across the training and test sets. We chose k to
represent the number of mice per dataset. For each given dataset split, the model was
trained for 30 epochs on the training dataset and the learning rate was gradually
reduced when the performance on the validation set stagnated for five epochs
(initial learning rate: 10−3).

The postprocessing module transforms the volumetric probability maps from the
deep learning backbone into the final model prediction. We trained an ensemble of
ten models per training/validation set, each time with a different mouse chosen for
validation, and chose the median of the predicted probabilities per voxel as the basis
for the final prediction on the test set. This ensemble-voting procedure is optional and
not needed per se but further improved model accuracy by eliminating outlier
predictions. Subsequently, the probability maps for all prediction classes for
anatomical segmentation (i.e., all organs and the bones) were binarized with a softmax
function. This was not the case for the uncertainty prediction class, as its final output
is a heatmap, not a segmentation. Please note that the uncertainty prediction is
directly learned from human disagreement in the expert annotations and independent
from the ensemble-voting procedure. Reconstruction of predictions in 3D yielded the
final output of the AIMOS pipeline. No further postprocessing steps such as filtering
or morphological operations were applied.

The entire pipeline was implemented in Python and only required a small
number of open-source packages: PyTorch62 (deep learning framework), SciPy63–65

(scientific computing), and NiBabel66 (input/output for volumetric data in the NIfTI
file format). On a standard workstation equipped with a GPU (here, we used a
NVIDIA Titan Xp), model training for one epoch took between 1 and 3 min
(depending on dataset). While inference speed benefits from the use of a GPU, the
trained AIMOS pipeline does not require GPU support for mouse organ
segmentation and can be run on a standard CPU.

Analysis. For quantitative performance evaluation, we measured the volumetric
overlap between the predicted segmentation in unseen test data, and the human
reference annotation with the commonly used SrensenDice score as well as the
Hausdorff distance and the center of mass displacement. This evaluation was
performed on the reconstructed 3D volume of the entire scan; we computed one
score for each organ in each scan on the basis of the human reference annotation
for that organ and that scan.

For the Dice score, a given voxel of the predicted segmentation is classified as
either a true positive (TP) if it was correctly predicted to be part of a given organ, as
a false positive (FP) if it was incorrectly predicted to be part of a given organ, or as
a false negative (FN) if it was incorrectly predicted to be background despite being
part of a given organ. The Dice score is then computed as follows (with ϵ= 10−5

for numerical stability):

Dice ¼ 2TP þ ϵ

2TP þ FP þ FN þ ϵ
: ð1Þ

To assess the human performance for comparison, we quantified the similarity
of human expert annotations with the Dice score, following the same logic and
treating one human segmentation as the reference and the other as a prediction.
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Given the symmetry of the approach, both annotations can be interchanged
without a change in Dice score.

The Hausdorff distance is expressed as a percentile of the distances between the
surface of the predicted segmentation, and the surface of the human reference
annotation for a given organ in a given scan. We report the 50th percentile (the
median distance) and the 95th percentile. The Hausdorff distance is computed as
follows (with p as the percentile, Ŝ as the predicted segmentation, and S as the
human reference annotation):

HDp ¼ percentile p;max
s2S

min
ŝ2Ŝ

jĵs� sjj
� �� �

: ð2Þ

The center of mass displacement represents the distance between the centers of
mass (CoM) between the predicted segmentation and the human reference
annotation for a given organ in a given scan:

ΔCoM ¼ jjCoMðŜÞ � CoMðSÞjj: ð3Þ
For qualitative performance evaluation, the predicted organ segmentations, the

human reference annotations, and the scans were overlaid in 3D for visual
inspection. To visualize this evaluation for this manuscript, we chose a
combination of volumetric projections and cross-sections. All such visualizations
presented in this study were generated with the same, predefined approach to avoid
bias and ensure objectivity. To determine the position of the cross-section, we
always chose the coronal slice through the center of the organ. For whole-body
cross-sections, the slice that showed the maximum area with the maximum
number of organs was chosen. To provide further information on all other slices of
the volume, we additionally displayed mean-intensity projections for the entire
volume.

For the assessment of variability in organ volumetry, we quantified the mean
volume per organ across mice for each dataset and quantified three kinds of
variability. In the following equations, m will denote the index of a given mouse
and M the total number of mice of the dataset; t will denote the index of a time
point of a scan of a mouse and T the total number of scans per mouse; a will denote
the index of a given annotator and A the total number of annotators; and o will
denote the index of a given organ.

The intersubject variability quantifies the standard deviation of organ volumes
across mice:

Intersubject variability ðoÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
m¼1

vm;o � 1
M

PM
m¼1

vm;o

� �2
s

with vm;o ¼ 1
T

PT
t¼1

vm;t;o

ð4Þ

The interannotator variability quantifies the mean standard deviation of
independently created annotations across all scans:

Interannotator variability ðoÞ ¼ 1
M

PM
m¼1

1
T

PT
t¼1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPA

a¼1
vm;t;o;a � 1

A

PA
a¼1

vm;t;o;a

� �2
s ð5Þ

The intraannotator variability quantifies the mean standard deviation of several
annotations by the same annotator for the same mouse:

Intraannotator variability ðoÞ ¼ 1
M

PM
m¼1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT

t¼1
vm;t;o;a¼1 � 1

T

PT
t¼1

vm;t;o;a¼1

� �2
s

:

ð6Þ

To analyse the precision of the organ delineations derived by AIMOS from the
perspective of a biomedical application, we quantified the spatial distribution of
cancer metastases in volumetric light-sheet microscopy scans. To this end, we used
a mouse scan acquired for a prior study17, in which metastases were identified
automatically with a deep learning algorithm and subsequently allocated to organs
manually. Here, we recreated the organ allocation for each metastasis based on the
volumetric organ segmentations by AIMOS and by a human expert annotator and
compared the allocations to a manually verified ground truth allocation. For both
allocations, we quantified the metastasis count per organ and the relative error to
the true count. To visualize the allocation of metastases for each organ, the
volumetric scan of an organ and the AIMOS segmentation was projected along the
dorsoventral axis (mean-intensity projection). The true delineation was indicated
with a solid line along the outline of the projected human reference annotation
(please refer to the Data section for a description of the annotation process). Please
note that this kind of visualization displays the outermost extent of the contour of
the human reference annotation from that perspective; given that the imaging data
itself is displayed with a mean-intensity projection, the outermost part of that
organ may sometimes appear rather dim. The location of metastases were indicated
with circles (diameter not to scale); color-coding indicated whether a metastasis
truly belonged to an organ or was incorrectly allocated to the organ (gray) due to
an imprecise segmentation provided by the human expert or AIMOS.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the imaging data and corresponding annotations used in this study are open source
and freely available online. Both the micro-CT datasets (native and contrast-enhanced)
including annotations are available at Nature Scientific Data28. We deposited the light-
sheet microscopy dataset (native and with nucleus-staining fluorescent signal from PI)
including annotations and all pretrained models as public datasets on the Harvard
Dataverse (https://doi.org/10.7910/DVN/LL3C1R67; https://doi.org/10.7910/DVN/
G6VLZN68). All further relevant data are available from the authors. Source data are
provided with this paper.

Code availability
All the code and trained models to apply, recreate, and modify AIMOS are open source
and freely available online. The AIMOS network architecture (including its variants) and
the code for model training and inference are made available on GitHub: https://doi.org/
10.5281/zenodo.404877069. Please also find a fully functional online demonstration on
CodeOcean: https://doi.org/10.24433/CO.2308253.v170. Source data are provided with
this paper.
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