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Significance statement 

α-Klotho as a transmembrane protein is well investigated along the endocrine FGF23-α-

Klotho pathway. However, the role of the circulating form of α-Klotho which is generated by 

cleavage of transmembrane α-Klotho, remains incompletely understood. Genetic analyses 

might help to elucidate novel regulatory and functional mechanisms. The identification of 
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genetic factors related to circulating α-Klotho further enables Mendelian randomisation (MR) 

to examine causal relationships with other factors. The findings from the first GWAS meta-

analysis of circulating α-Klotho levels identified six genome-wide significant signals across 

five genes. Given the function of two of the genes identified, B4GALNT3 and CHST9, it is 

tempting to speculate that post-translational modification significantly contributes to genetic 

influences on α-Klotho levels, presumably by affecting protein turnover and stability. 

Abstract 

Background: The protein α-Klotho acts as transmembrane the co-receptor for fibroblast 

growth factor 23 (FGF-23) and is a key regulator of phosphate homeostasis. However, α-

Klotho  also exists in a circulating form, with pleiotropic, but incompletely understood 

functions and regulation. Therefore, we undertook a GWAS meta-analysis followed by 

Mendelian randomisation (MR) of circulating α-Klotho levels. 

Methods: Plasma α-Klotho levels were measured by ELISA in the LURIC and ALSPAC 

(mothers) cohorts, followed by a GWAS meta-analysis in 4376 individuals across the two 

cohorts.  

Results: Six signals at five loci were associated with circulating α-Klotho levels at genome-

wide significance (p<5×10-8), namely ABO, KL, FGFR1, and two post-translational 

modification genes, B4GALNT3 and CHST9. Together, these loci explained >9% of the 

variation in circulating α-Klotho levels. MR analyses revealed no causal relationships between 

α-Klotho and renal function, FGF-23-dependent factors such as vitamin D and phosphate 

levels, or bone mineral density. The screening for genetic correlations with other phenotypes, 

followed by targeted MR suggested causal effects of liability of Crohn’s disease risk [IVW 

beta = 0.059 (95% CI 0.026, 0.093)] and low-density lipoprotein cholesterol (LDL-C) levels [-

0.198, (-0.332, -0.063)] on α-Klotho. 
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Conclusions: Our GWAS findings suggest that two enzymes involved in post-translational 

modification, B4GALNT3 and CHST9, contribute to genetic influences on α-Klotho levels, 

presumably by affecting protein turnover and stability. Subsequent evidence from MR analyses 

on α-Klotho levels suggest regulation by mechanisms besides phosphate-homeostasis and raise 

the possibility of cross-talk with FGF19- and FGF21-dependent pathways, respectively.  

Introduction 

α-Klotho is a transmembrane protein that serves with fibroblast growth factor receptors as a 

co-receptor for fibroblast growth factor 23 (FGF23)(1). The endocrine FGF23-α-Klotho 

pathway plays a critical role in regulating vitamin D metabolism and phosphate balance(2). 

Deletion of α-Klotho in mice results in disturbed phosphate homeostasis with an accelerated 

ageing phenotype, including a shortened lifespan, vascular calcification, infertility, and 

osteoporosis(3). A soluble form of α-Klotho is generated by cleavage of transmembrane α-

Klotho, which is readily detected in the circulation, and henceforth referred to as circulating α-

Klotho (4). Though the role of circulating α-Klotho remains incompletely understood, it is 

thought to share functional similarities with the membrane-bound form, and to contribute to 

the actions of its ligand, FGF23 (5). However, circulating α-Klotho also mediates effects 

independent of FGF23 (6). Previous studies have investigated the clinical utility of serum α-

Klotho as a prognostic marker. For example, a recent meta-analysis found that serum levels of 

circulating α-Klotho are positively related to the estimated glomerular filtration rate (eGFR) in 

patients with chronic kidney disease (CKD), (7), suggesting a role ofα-Klotho as a biomarker 

for CKD progression. In addition, α-Klotho supplementation is under investigation as a 

possible drug target for treatment in CKD (5,8).  

Genetic studies may prove useful in identifying novel mechanisms which regulate α-Klotho. 

Several KL (α-klotho) gene polymorphisms have previously been reported in association with 
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urolithiasis, cardiovascular disease, cancers, and longevity (9,10). However, little is known of 

the genetic pathways which regulate levels of circulating α-Klotho. To our knowledge, a 

genome-wide association study (GWAS) of α-Klotho has not previously been undertaken. As 

well as helping to elucidate novel regulatory mechanisms, identification of genetic factors 

related to circulating α-Klotho enables Mendelian randomisation (MR) to examine causal 

relationships with other factors. This approach can also be used to validate potential drug 

targets such as α-Klotho, on the basis that the target in question will only modify the outcome 

(e.g., CKD) in the presence of a causal relationship (11,12). 

Therefore, to elucidate novel regulatory mechanisms and functional relationships of circulating 

α-Klotho, we performed, to our knowledge, the first GWAS meta-analysis of plasma α-Klotho. 

Subsequently, we used our GWAS output to examine causal relationships between plasma 

α-Klotho and CKD, other FGF23-dependent pathways (i.e., vitamin D, phosphate, and bone 

mineral density (BMD)), as well as other characteristics with evidence of genetic correlation. 

 

 

Results 

GWAS meta-analysis results 

A total of 4,376 individuals provided results for the α-Klotho GWAS meta-analysis after 

combining LURIC and ALSPAC mothers [see Supplementary Table S1]. Six independent 

signals at five loci showed genome-wide significance (Fig. 1, Table 1 and Supplementary Table 

S3) (median genomic inflation λ=1.013). The top-associated SNP, rs12607664 (standard 

deviations (SD) difference relative to mean in plasma α-Klotho per minor allele (MA) T: 

β=0.24, SE=0.02, p=2.3×10-27), mapped to the second intron of the gene CHST9 on 
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chromosome 18. The second top-associated variant rs8176672 (MA T: β=0.41, standard error 

(SE)=0.04, p=2.1×10-23) mapped to the first intron of the ABO gene on chromosome 9. A strong 

association was also observed for another conditionally independent variant at this locus, 

rs532436, not in LD with rs8176672 (r2=0.02 in the 1000 Genome Europeans). A variant at a 

further locus, rs1056008 (MA C: β=0.18, SE=0.02, p=1.8×10-14), is located in the longest exon 

of B4GALNT3 on chromosome 12. We also identified SNPs rs7333961 (MA A: β=-0.33, 

SE=0.05, p=1.73×10-10), upstream of the gene coding for α-Klotho on chromosome 13, and 

rs881301 (MA C: β=-0.12, SE=0.02, p=2.2×10-08), upstream of FGFR1 on chromosome 8. 

Genetic associations were broadly similar in both cohorts, with rs8176672 and rs12607664 

reaching genome-wide significance in each [see Supplementary Figure 1]. That said, Z-score 

test suggested differences between the two cohort in the case of rs12607664, effect size being 

stronger in ALSPAC. This did not appear to reflect sex differences between the two cohorts, 

since associations at this locus were identical in LURIC males and females, suggesting other 

differences are likely responsible such as age.   

LD score regression 

We used our α-Klotho GWAS data in LD score regression to identify other traits with which 

α-Klotho might be functionally related, using P<0.05 to indicate findings for potential follow-

up, which applied to eight traits (Table 2). Of these, one metabolic trait was related to lipid 

levels, corresponding to the action of FGF21 (1), which, together with FGF19 and FGF23, 

comprise the endocrine FGFs (Table 2). In addition, one trait, Crohn’s disease, was related to 

the action of FGF19 (1). 

MR analyses 

Our α-Klotho instruments for MR were based on six SNPs that showed conditional independent 

effects on α-Klotho using GCTA-COJO (13), which together accounted for a relatively high 
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proportion of variance (9.1%) (see Supplementary Table S4). An F-test revealed the instrument 

to have an acceptable instrumental strength for subsequent MR analyses (F-statistic=74.8). 

Using these α-Klotho-associated SNPs as instruments of MR, IVW analyses showed no causal 

effect of α-Klotho on CKD risk (based on an eGFR<60 mL/min/1.73m2), or eGFR derived 

from either creatinine or cystatin-C (Table 3). Bi-directional analyses using results from eGFR 

(creatinine) and eGFR (cystatin-C) GWASs as the exposures and our α-Klotho results as the 

outcome, revealed no reverse causality. Null results were also observed in sensitivity analyses 

(see Supplementary Table S5). Similarly, MR analyses examining relationships between α-

Klotho and outcomes related to the FGF23 pathway, namely BMD, vitamin D, and phosphate 

levels, did not support causal relationships, including bi-directional and sensitivity analyses 

(Table 3 and Supplementary Table S6). 

Given findings from LD score regression suggesting that α-Klotho might have functional 

relationships with other endocrine FGFs, we extended our MR analyses to traits related to 

FGF19 and FGF21. We found no causal effect of α-Klotho on inflammatory bowel disease. 

However, in bi-directional MR, IVW analyses revealed evidence of a positive relationship for 

genetic liability to inflammatory bowel disease and, particularly, Crohn’s disease on α-Klotho 

levels (Table 3), with similar findings in sensitivity analyses (see Supplementary Table S7). 

IVW and sensitivity analyses revealed no causal relationship between α-Klotho and body-mass 

index (BMI), lipids, and traits related to insulin sensitivity (Tables 3, Supplementary Tables S8 

and S9). Bi-directional analyses likewise revealed no cause effect of BMI and traits related to 

insulin sensitivity on α-Klotho. However, IVW suggested a negative causal effect of LDL 

cholesterol on α-Klotho, whereas no consistent causal effects were seen for HDL cholesterol 

or triglycerides (TGs) (Table 3). The putative causal effect of LDL cholesterol was 

strengthened when adjusting for HDL cholesterol and TGs in multivariable MR analyses 

including all three variables (Model 1, Table 4). Additional models examined the contribution 
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of apolipoproteins to these effects, in light of their role in mediating effects of lipoprotein lipids 

on coronary heart disease (14). In a further multivariable model to study the role of ApoB 

(Model 2), only ApoB showed a potentially causal relationship (Table 4). A final multivariable 

model to study the role of ApoA1 (Model 3) found no additional causal effect of ApoA1. 

Functional follow-up of GWAS results 

According to the eQTL databases GTEx v8 and eQTLGen, rs8176672 and rs532436 were 

strong cis-eQTLs for ABO in multiple tissues (see Supplementary Table S10). Likewise, 

rs1056008 and rs881301 were strong eQTLs for B4GALNT3 and FGFR1, respectively, in 

multiple tissues and both databases. SNP rs12607664 was, according to GTEx, an eQTL for 

CHST9 in the cerebellum only. Variant rs7333961 was an eQTL for KL in whole blood in the 

eQTLGen project. Colocalisation analyses confirmed a common genetic signal in the case of 

plasma α-Klotho and B4GALNT3 eQTL data in whole blood, but the same was not observed 

for the other loci (see Supplementary Table S11). The B4GALNT3 SNP, rs1056008, had a 

RegulomeDB score of 1B, indicating a strong likelihood of affecting transcription factor 

binding and gene expression. No top association signal, or one in high LD, intersected with a 

DNAse-hypersensitive site in the B4GALNT3 gene in kidney tubule cells.  

To explore the contribution of B4GALNT3 to the regulation of circulating α-Klotho levels, α-

Klotho levels were measured in B4galnt3-deficient mice. However, no clear differences were 

observed when comparing wildtype, heterozygous, and homozygous animals (see 

Supplementary Figure 2).  

 

Discussion 
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Having performed a GWAS for circulating levels of α-Klotho, we identified six GWAS 

significant signals, mapping to five genes, which together explained over 9% of the variance. 

This provided genetic predictors of α-Klotho with acceptable strength to interrogate causal 

relationships. We applied a two-sample MR approach in large GWAS datasets. Despite the 

potential role of circulating α-Klotho as an early biomarker of chronic kidney disease (15), MR 

analyses revealed no causal relationship between circulating α-Klotho and renal function. We 

also interrogated potential causal relationships between α-Klotho and other outcomes linked to 

the FGF23 pathway, such as BMD, phosphate, and vitamin D, again with little MR evidence. 

Based on findings from genetic correlation analyses, we also examined causal relationships 

between α-Klotho and traits related to other endocrine FGFs. Of the six genome-wide 

significant signals identified in our GWAS meta-analysis, the cis-eQTL signal for B4GALNT3 

co-localised with plasma α-Klotho, suggesting that higher levels of B4GALNT3 expression lead 

to greater α-Klotho levels. RegulomeDB predicted that our top variant at this locus, rs1056008, 

alters the binding affinity of activating transcription factors.  

As to the mechanisms underlying this genetic association, B4GALNT3 expresses the enzyme 

beta-1,4-N-acetylgalactosaminyltransferase 3 (EC:2.4.1.244), localising to the Golgi 

apparatus. This enzyme transfers N-acetylgalactosamine (GalNAc) onto N-acetylglucosamine-

beta-benzyl to form GalNAcβ1,4-GlcNAc structures on protein epitopes, also known as N,N'-

diacetyllactosediamine (LacdiNAc) (16). We previously found that B4GALNT3 is expressed at 

the highest levels in renal tissue (17), an important site of α-Klotho production (8). The 

presence of the LacdiNAc moiety on circulating proteins such as α-Klotho might influence 

protein levels in the circulation by altering their turnover and degradation. Such a mechanism 

may explain why mutations in another glycosylation enzyme, GALNT3, lead to heritable 

tumoral calcinosis as a consequence of FGF23 deficiency (18).  On the other hand, we found 

that B4GALNT3 null mice showed no clear alteration in α-Klotho levels in an established IP-
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IB assay. One potential explanation for this apparent discrepant finding is that, rather than 

altering actual levels of α-Klotho, genetic alterations in LacdiNAc content affect the epitope-

binding with the human ELISA assay used in our study. Furthermore, different functional 

effects of B4GALNT3-dependent α-Klotho modification in mice and humans cannot be ruled 

out. 

CHST9 expresses the enzyme carbohydrate sulfotransferase 9, which catalyses the transfer of 

a sulfate to terminal LacdiNAc sequences. The two enzymes B4GALNT3 and CHST9 thus 

both contribute to generating the terminal SO4-4-GalNAcβ1,4GlcNAcβ structure (19). Several 

studies have shown that oligosaccharides terminating with this structure are recognised by 

asialoglycoprotein and mannose receptors and are rapidly degraded (20-23). Such specific 

receptors have been identified on hepatocytes and endothelial cells (21,22). Interestingly, the 

clearance rate mediated by the mannose receptor differs by the position of 

GalNAcβ1,4GlcNAcβ sulfation (24). 

The identification of α-Klotho GWAS signals in the KL and FGFR1 genes, coding for the two 

components of the fibroblast growth factor receptor, was predictable and supports the overall 

validity of our findings. The ABO gene, also found to be associated with α-Klotho in our 

GWAS, codes for two proteins localising to the Golgi apparatus, alpha 1-3-N-

acetylgalactosaminyltransferase (EC:2.4.1.40) and alpha 1-3-galactosyltransferase 

(EC:2.4.1.37). These enzymes add UDP-N-acetyl-galactosamine (UDP-GalNAc) and UDP-

galactose (UDP-Gal), respectively, to glycoprotein fucosyl-galactosyl residuals (25). 

Conceivably, α-Klotho may serve as a target for these enzymes, thereby altering its turnover 

and degradation, as also postulated for B4GALNT3 and CHST9. However, associations with 

the ABO locus, observed in many previous GWASs including a recent GWAS of severe Covid-

19 with respiratory failure (26), may also have arisen as a result of population stratification 

despite our best attempts to adjust for this.  
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Whereas little causal effect was observed for α-Klotho, bi-directional analyses revealed causal 

effects of genetic liability of Crohn’s disease risk and LDL cholesterol on circulating α-Klotho. 

Moreover, on multivariable MR of lipid indices, a causal relationship was only retained for 

Apolipoprotein B, consistent with the suggestion from another recent multivariable MR that 

Apolipoprotein B underlies the relationship between lipid traits and coronary heart disease risk 

(14). We are not aware of any previous reports linking genetic liability to Crohn’s disease risk 

or LDL cholesterol to α-Klotho levels. That said, our results are consistent with previous 

findings that α-Klotho expression is down-regulated in hyperlipidaemic mouse models and 

oxidized-LDL treated tubular cells (27,28). There was reasonably strong statistical evidence 

for the causal effects of Crohn’s disease which we observed, even when taking into account 

the multiple traits examined in our MR analyses and the bidirectional causal effects which were 

evaluated. On the other hand, statistical evidence with respect to causal effects of LDL 

cholesterol was somewhat weaker having adjusted for multiple comparisons. In the absence of 

other sources of evidence, further confirmation is required in the case of both of these novel 

putative causal pathways for α-Klotho levels. 

Whereas Crohn’s disease and metabolic traits were selected for MR analysis on the basis of 

their relationship with endocrine FGFs, FGF19 and FGF21 pathways (involved in Crohn’s 

disease and lipid metabolism respectively) are mediated by β-Klotho, as opposed to α-Klotho 

(1). Though there is currently no other evidence linking α-Klotho to FGF19 and FGF21 

pathways, the present findings certainly raise this as a possibility. Alternatively, relationships 

between Crohn’s disease susceptibility, LDL cholesterol and circulating α-Klotho which we 

observed may be independent of endocrine FGFs. It is well recognised that circulating α-Klotho 

exerts a number of effects independently of FGF23, such as inhibition of insulin, WNT or 

transforming growth factor-β  signalling (6). In addition, as well as having anti-inflammatory 

effects by suppressing the transcription factor NFκB (29), α-Klotho renal expression has been 
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found to be downregulated in mouse models of colitis, which was prevented by neutralising 

antibodies against TNF-α (30). Accordingly, renal α-Klotho expression is reduced by TWEAK 

and TNF-α (31), and circulating α-Klotho levels are negatively correlated with circulating 

markers of inflammation (32).  

Many of the genetic factors associated with Crohn’s disease risk represent inflammatory 

mediators, such as IL-23 (33), which could conceivably also affect α-Klotho levels. This raises 

the possibility of horizontal pleiotropy, whereby genetic factor(s) related to Crohn’s disease 

affect α-Klotho levels directly, as opposed to via Crohn’s disease risk. That said, sensitivity 

analyses such as the MR-Egger intercept test did not suggest that pleiotropy contributed to our 

results,  although we recognise that this test is often under-powered.  

The main limitation of the present study is the relatively small GWAS sample size. That said, 

the genetic signals which we identified seemed plausible and provided a relatively strong 

genetic instrument for subsequent MR analyses. In addition, other characteristics which we 

examined in relation to α-Klotho were supported by well-powered GWASs that were derived 

from large datasets. In terms of other limitations, the commercial ELISA employed to measure 

α-Klotho in the GWAS samples has inferior performance compared to the IP-IB assay, though 

the latter is unsuitable for use in large cohorts due to its labour-intensive nature (34).  

In conclusion, we present findings from the first GWAS of circulating α-Klotho levels, in 

which we identified six genome-wide significant signals across five genes. Given the function 

of two of the genes identified, B4GALNT3 and CHST9, it is tempting to speculate that post-

translational modification contributes to genetic influences on α-Klotho levels, presumably by 

affecting protein turnover and stability. In subsequent MR analyses, we found no causal 

relationship between α-Klotho and CKD or FGF23-dependent pathways. However, there was 

evidence of a causal effect of Crohn’s disease risk and, to a lesser extent, LDL levels on α-

Klotho levels, pointing to novel interactions which require further study. 
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Materials and Methods 

The Ludwigshafen Risk and Cardiovascular Health (LURIC) 

The Ludwigshafen Risk and Cardiovascular Health (LURIC) study is a prospective cohort 

study of individuals with and without cardiovascular disease and was designed to investigate 

environmental and genetic risk factors for the development of cardiovascular diseases. 

Between July 1997 and January 2000, 3316 participants of German ancestry were enrolled in 

the cardiology unit of a tertiary care medical centre in south-western Germany. The inclusion 

criteria were defined as clinical stability except for acute coronary syndromes (ACS), German 

ancestry, and availability of a coronary angiogram (indicated after standard clinical test 

diagnoses like chest pain and a positive, non-invasive stress test). Exclusion criteria were pre-

specified as any acute illness other than ACS, any chronic disease where non-cardiac disease 

predominated, and a history of malignancy within the past five years. The detailed study 

protocol has been published (35). Written informed consent was obtained from each participant 

prior to inclusion. The study was in accordance with the Declaration of Helsinki and approved 

by the ethics committee at the Medical Association of Rhineland-Palatinate (Ärztekammer 

Rheinland-Pfalz). Genotyping was conducted on the Affymetrix 6.0 platform and genotype 

calling using the algorithm Birdseed v2, both at the LURIC study non-profit LLC, Heidelberg. 

Quality control was performed in PLINK v1.90b3s (36), as described before (37). Genotype 

data were imputed to the 1000 Genomes Phase 1 reference panel using SHAPEIT2 and 

IMPUTE2 (38-40). The resulting dataset contained 8,014,018 high-quality variants with a 

MAF ≥1% and an INFO metric ≥0.8 (see Supplementary Methods: LURIC genotype data for 

more details). 

Avon Longitudinal Study of Parents and Children (ALSPAC) 
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ALSPAC is a prospective birth cohort that recruited pregnant women with expected delivery 

dates between April 1991 and December 1992 from Bristol, UK. The initial number of 

pregnancies enrolled was 14,541 (for these, at least one questionnaire has been returned or a 

“Children in Focus” clinic had been attended by July 19, 1999). Of these initial pregnancies, 

there was a total of 14,676 foetuses, resulting in 14,062 live births and 13,988 children who 

were alive at one year of age. Detailed information on the health and development of children 

and their parents were collected from regular clinic visits and completion of questionnaires 

(41,42). Ethical approval was obtained from the ALSPAC Law and Ethics Committee and the 

Local Ethics Committees. Please note that the study website contains details of all the data that 

is available through a fully searchable data dictionary 

(http://www.bristol.ac.uk/alspac/researchers/our-data/). Genotyping of ALSPAC samples was 

conducted on the Illumina Human660W-Quad platform and genotype calling using Illumina 

GenomeStudio. Quality control was carried out in PLINK v1.90 (36). Genotype data were 

imputed to the Haplotype Reference Consortium (HRC) V1.0 reference panel using SHAPEIT 

v2 and IMPUTE v2.2.2 (38-40) The resulting dataset contained 7,122,422 variants with a MAF 

≥1% and INFO ≥0.8. 

Measurement of α-Klotho levels 

α-Klotho was measured in plasma samples from both cohorts using the human circulating α-

Klotho assay kit (Immuno-Biological Laboratories Co., Ltd., Japan) (43). The lower detection 

limit was 6.15 pg/mL with a measurement range from 93.75 to 6000 pg/mL. The coefficient of 

variation was 11.4 % at 165.47 pg/mL and 2.9 % at 2903.01 pg/mL. 

α-Klotho levels in B4GALNT3 null mice 

B4galnt3−/− mice were generated by breeding B4galnt3tm1c(EUCOMM)Wtsi male mice (Institut 

Clinique de la Souris, Illkirch, France), having LoxP sites introduced upstream of exon 8 and 
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downstream of exon 9 of the B4galnt3 gene, with female mice expressing cre recombinase 

under the control of the phosphoglycerate kinase-1 promoter (PGKcre) (44). The offspring 

were heterozygous B4galnt3+/− mice. To generate B4galnt3−/− knockout mice, heterozygous 

B4galnt3+/−, and littermate WT control mice, female and male  B4galnt3+/−  mice were mated. 

The mice were housed in a standard animal housing facility with a 12h dark/light period. Food 

and water were available ad libitum. Before termination at 13 weeks of age, the mice were 

given an intraperitoneal injection with Ketalar (Pfizer, New York, NY, USA) and Dexdomitor 

(Orion Pharma, Esbo, Finland) before they were bled and euthanized with cervical dislocation. 

The animal experiments were approved by the Ethics Committee at University of Gothenburg, 

and the care of the animals was according to their guidelines. Circulating α-Klotho in mouse 

serum of B4galnt3 wildtype, heterozygous, and knockout mice was measured by an established 

immunoprecipitation-immunoblot (IP-IB) assay at the UT Southwestern (Texas, USA) (45). 

Differences between groups were analysed by the Steel-Dwass test. 

GWAS meta-analysis 

α-Klotho levels were transformed using rank-based inverse normal transformation before 

analysis. GWAS was conducted using linear regression on imputed probabilities in PLINK for 

LURIC and SNPTEST for ALSPAC data. Sex, age, and the first eight ancestry principle 

components (PCs) were used as covariates in LURIC, where sex, age and the first ten PCs were 

used as covariates in ALSPC. The final sample sizes were n=2,234 for LURIC and n=2,142 

for ALSPAC (see Supplementary Table S1). Results from both GWAS were combined using 

fixed-effects meta-analysis in METAL (46), the pooled dataset containing 6,439,450 common 

variants and N=4376 individuals. A threshold of p<5×10-8 was used to denote genome-wide 

significance. A Z-score test, comparing mean estimates of associations between the two 

cohorts, was used to evaluate heterogeneity. 

Conditional analysis 
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To detect multiple independent association signals at each of the genome-wide significant α-

Klotho loci, we carried out an approximate conditional and joint genome-wide association 

analysis using the software package GCTA‐COJO (13). Single‐nucleotide polymorphisms 

(SNPs) in linkage disequilibrium (LD) (LD r2 > 0.9) were ignored, and those situated more 

than 10 Mb away were assumed to be in complete linkage equilibrium. A reference sample of 

8890 unrelated individuals of ALSPAC mothers was used to model patterns of linkage 

disequilibrium (LD) between variants. The reference genotyping data set consisted of the same 

6.44 million variants assessed in our GWAS meta-analysis. Conditionally independent variants 

that reached GWAS significance were annotated to the physically closest gene with the hg19 

gene range list available in dbSNP (https://www.ncbi.nlm.nih.gov/SNP/). 

LD score regression 

Two analyses were conducted using LD score regression (47,48). First, we quantified the 

overall SNP-based heritability using LD score regression utilising a subset of 1.2 million 

HapMap SNPs (with INFO >0.9 and MAF ≥1%). Second, we estimated the genetic correlation 

between plasma α-Klotho levels and 832 human traits implemented in the LD Hub database 

(49). This method uses the cross‐products of summary test statistics from two GWASs and 

regresses them against a measure of how much variation each SNP tags (i.e., its LD score). 

Variants with high LD scores are more likely to contain more true signals and thus provide a 

greater chance of overlap with genuine signals between GWASs.  

Mendelian randomisation (MR)  

We examined the evidence for a causal relationship between plasma α-Klotho levels and 

several renal phenotypes using two-sample MR (50). Primary analyses were performed using 

the inverse-variance weighted method, followed by sensitivity analyses (MR Egger, weighted 

median, simple mode, and weighted mode (51-53)). Bi-directional analyses were also 
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performed to examine reverse causality, where α-Klotho was considered as the outcome. In 

addition, MR analyses examined causal relationships between α-Klotho and other FGF23-

dependent pathways and phenotypes, namely bone mineral density (BMD), vitamin D and 

phosphate.  

LD score regression suggested possible relationships with IBD and metabolic outcomes, with 

which the other endocrine FGFs, FGF19 and FGF21, have previously been implicated(1). 

Therefore, MR analyses also examined relationships between α-Klotho and inflammatory 

bowel disease, and between α-Klotho and metabolic outcomes. In total, 24 outcomes were 

selected for the MR analysis (see Supplementary Table S2 for GWAS sources). After adjusting 

the influence of correlations among the 24 outcomes using PhenoSpD (54), 14 independent 

variables/tests remained. Therefore, in this further set of MR analyses, the threshold corrected 

for multiple testing using Bonferroni’s method was defined as α = 0.05 / 14 = 0.004. This figure 

was then divided by two to account for the bi-directional analyses performed for each outcome, 

giving a final figure of 0.002. 

In addition, given lipid traits are correlated with each other, multivariable MR (55) was 

conducted for five lipid traits on α-Klotho to control for such a correlation. Three multivariable 

MR models were used:   

1. Low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol 

(HDL-C), and triglyceride versus α-Klotho. 

2. LDL-C, triglyceride, and apolipoprotein B (APOB) versus α-Klotho. 

3. HDL-C and apolipoprotein A-I (APOA1) versus α-Klotho. 

Genetic functional analyses 

Cis-acting effects of the genome-wide significant GWAS signals were examined by lookups 

in the GTEx database v8 (56) and the eQTLGen database (57). Regulatory elements in non-
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coding regions of the human genome were identified using RegulomeDB v1.1 (58). To further 

estimate whether the top association signals of α-Klotho and gene expression quantitative trait 

loci (eQTLs) of the cis genes share the same causal variants within a 1Mb window around the 

top signals of the α-Klotho GWAS, we used a Bayesian model (coloc) to estimate such 

posterior probabilities (PP) (59). The default priors for colocalisation analyses were used (the 

prior probability a SNP is associated with the α-Klotho was 1×10-4; the prior probability a SNP 

is associated with the gene expression of the cis gene was 1×10-4; and the prior probability a 

SNP is associated with both the α-Klotho and the gene expression was 1×10-5). A lack of 

evidence (i.e., a PP< 80%) in the colocalisation analysis goes against the hypothesis that the 

cis gene mediates the effect of the genetic signal in question on α-Klotho levels. The gene 

expression data were extracted from the eQTLGen database. We treated colocalised findings 

(PP ≥ 80%) as “colocalised” and other results that did not pass colocalisation as “not 

colocalised”. 

DNase-I hypersensitivity site data was obtained from the ENCODE database (60) or two 

replicates of human kidney tubule primary cell cultures (accessions: ENF428WYR and 

ENCFF711TUV). Called peaks were lifted-over to hg19 using the liftOver utility (61)  with 

‘minMatch=0.1’, all other settings left to default. Peaks were considered replicable if present 

in both samples – the middles of overlapping peaks were padded to define 150bp regions. 

Genome wide significant SNPs (defined as reported p-value < 1e-8) were intersected with 

regions using bedtools intersect (62). Additionally, ATAC-seq open-chromatin regions from 

mouse embryonic (E15.5) distal femur growth plate (GEO accession GSM2687479) (63)  were 

obtained and lifted-over to hg19 using the liftOver utility as above. Whether genome wide 

significant SNPs overlapped with these regions was then examined using bedtools. 
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Figure 1: Results from the α-Klotho GWAS meta-analysis  

A: Manhattan plot. The x-axis indicates the chromosomal position of each SNP, whereas the 

y-axis denotes the evidence of association shown as -log10(p-value). The red line indicates 

genome-wide significance of association (p=5×10−8). B-F: Locus-specific Manhattan plots of 

the genome-wide significant loci at (B) the ABO locus, (C) the B4GALNT3 locus, (D) the 

CHST9 locus, and (E) the KL locus, and (F) the FGFR1 locus. The x-axis indicates the 
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physical position of each SNP on the chromosome, the y-axis denotes the evidence of 

association as the -log10(p-value). The linkage disequilibrium (LD) r2 between SNPs, based 

on the 1000 Genomes EUR superpopulation, is shown in colour. 

Tables 

Table 1: Top-associated SNPs of the meta-analysis of both GWAS on plasma α-Klotho 

levels. 

SNP 
Ch

r. 

E

A 

O

A 

EA

F 
Gene β SE P 

Pair-wise 

Z 
P_Z 

rs126076

64 
18 T G 

31.6

1 
CHST9 

0.24

3 

0.02

2 

2.28×10-

27 
3.337 

0.00

1 

rs817667

2 
9 T C 7.18 ABO 

0.40

6 

0.04

1 

2.11×10-

23 
1.785 

0.07

4 

rs532436 9 G A 
23.9

9 
ABO 

0.20

4 

0.02

6 

5.86×10-

15 
0.691 

0.49

0 

rs105600

8 
12 C T 

26.8

2 

B4GALN

T3 

0.18

4 

0.02

4 

1.80×10-

14 
0.478 

0.63

2 

rs733396

1 
13 A G 4.62 KL 

-

0.32

7 

0.05

1 

1.73×10-

10 
0.816 

0.41

5 

rs881301 8 C T 
41.2

8 
FGFR1 

-

0.11

9 

0.02

1 

2.23×10-

08 
0.087 

0.93

1 

 

The effect size (β) represents SD difference in α-Klotho relative to the mean (i.e. Z score) per 

effect allele. Results show univariate/simple linear regression estimates for the six 

conditionally independent SNPs. The effect size (β) represents SD difference in α-Klotho 

relative to the mean (i.e., Z scores) per effect allele.  Chr., chromosome; EA, effect allele; OA, 

other allele; EAF, effect allele frequency in the pooled sample in %; SE, standard error. Pair-

wise Z and P_Z are the pair-wise Z estimating the difference between two effect estimates (in 

LURIC and ALSPAC) and P value of the Z score 

 

Table 2: LD score regression between α-Klotho and human traits (for associations with 

p<0.05) 
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Trait 1 Trait 2 rg SE Z  P 

Klotho Excessive frequent and irregular menstruation 0.48 0.21 2.3 0.02 

Klotho Fibroblastic disorders -0.38 0.17 -2.2 0.03 

Klotho Triglycerides in small VLDL -0.54 0.24 -2.2 0.03 

Klotho Chronotype -0.17 0.08 -2.1 0.03 

Klotho Crohn’s disease 0.25 0.12 2.1 0.03 

Klotho Eczema -0.48 0.23 -2.1 0.04 

Klotho Co-codamol 0.44 0.21 2.1 0.04 

Klotho Prostate cancer 0.49 0.25 2.0 0.05 

rg, genetic correlation; SE, standard error of the genetic correlation analysis; Z, corresponding 

Z score; P, corresponding p-value. VLDL, very low-density lipoprotein. 

Table 3: Bidirectional MR results between α-Klotho- and FGF-related outcomes  

Outcome MR of α-Klotho vs. outcomes Reverse MR of outcomes vs. α-

Klotho 

 β 95% CI P β 95% CI P 

Renal outcomes 

CKD -0.019 -0.077 to 0.039 0.525 -0.170 -0.337 to -0.004 0.055 

0.387 eGFR (crea) 0.000 -0.003 to 0.004 0.871 0.405 -0.512 to 1.322 

eGFR (cys) 0.005 -0.291 to 0.300 0.976 0.381 -0.436 to 1.198 0.361 

FGF23 pathway outcomes 

eBMD 0.020 -0.017 to 0.056 0.288 0.022 -0.068 to 0.113 0.626 

Phosphate 0.009 -0.007 to 0.025 0.288 0.085 -0.073 to 0.243 0.291 

Vitamin D -0.001 -0.018 to 0.015 0.861 0.150 -0.003 to 0.304 0.055 

FGF19 pathway outcomes 

IBD -0.030 -0.109 to 0.049 0.454 0.059 0.026 to 0.093 5.4×10-4 

UC -0.055 -0.151 to 0.041 0.261 0.039 -0.007 to 0.085 0.099 

CD 0.011 -0.102 to 0.124 0.848 0.044 0.003 to 0.086 0.034 

FGF21 pathway lipids/obesity 

BMI -0.010 -0.029 to 0.009 0.304 -0.080 -0.228 to 0.067 0.286 

LDL-C -0.097 -0.237 to 0.044 0.178 -0.198 -0.332 to -0.063 3.9×10-3 

HDL-C 0.018 -0.033 to 0.070 0.490 -0.063 -0.133 to 0.007 0.078 

TG 0.006 -0.031 to 0.043 0.748 0.032 -0.087 to 0.152 0.594 

Apo A1 -0.006 -0.068 to 0.056 0.843 0.004 -0.030 to 0.037 0.833 

Apo B -0.046 -0.159 to 0.068 0.430 -0.023 -0.052 to 0.007 0.130 

FGF21 pathway insulin sensitivity 

Fasting 

glucose 

-0.010 -0.040 to 0.020 0.520 0.186 -0.108 to 0.481 0.215 

Fasting insulin 0.009 -0.008 to 0.026 0.296 0.829 -0.702 to 2.360 0.288 
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HbA1C -0.019 -0.043 to 0.005 0.120 0.158 -0.266 to 0.583 0.465 

HOMA-B 0.015 -0.012 to 0.042 0.279 -0.264 -1.035 to 0.508 0.503 

The effect size (β) represents SD change in outcome per SD change in exposure. eGFR (crea), 

estimated glomerular filtration rate by creatinine plasma concentration; eGFR (cys), estimated 

glomerular filtration rate by Cystatin C plasma concentration; BMD, bone mineral density; 

IBD, inflammatory bowel disease; UC, ulcerative colitis; CD, Crohn’s disease; BMI, body 

mass index; LDL, low-density lipoprotein; HDL, high-density lipoprotein; TG, triglycerides; 

ApoA1, Apolipoprotein A1; ApoB, Apolipoprotein B; HbA1C, glycated hemoglobin A; 

HOMA-I, Homeostasis model assessment. 

Table 4: Multivariable MR analyses for lipid traits on α-Klotho  

Model Exposure Outcome N SNPs β SE P 

Model 1 LDL-C α-Klotho 309 -0.173 0.060 3.6×10-3 

HDL-C α-Klotho 309 -0.069 0.043 0.106 

TG α-Klotho 309 0.042 0.065 0.513 

Model 2 Low density lipoprotein α-Klotho 365 0.070 0.236 0.766 

Triglyceride α-Klotho 365 -0.227 0.216 0.295 

Apolipoprotein B α-Klotho 365 0.114 0.056 0.041 

Model 3 High density lipoprotein α-Klotho 459 -0.070 0.135 0.601 

Apolipoprotein A-I α-Klotho 459 0.025 0.152 0.870 

Model refers to the three multivariable MR models used to examine relationship between lipids 

and α-Klotho. The effect size (β) represents SD change in outcome per SD change in exposure.  

N SNPs, the number of SNPs used in the genetic instrument for the exposure; LDL, low-density 

lipoprotein; HDL, high-density lipoprotein; TG, triglycerides; β, causal effect size of each lipid 

subtype on α-Klotho; SE respective standard error; P, respective p-value. 

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article/doi/10.1093/hm
g/ddab263/6372546 by G

SF Zentralbibliothek user on 15 O
ctober 2021


