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Proteinuric chronic kidney disease is associated
with altered red blood cell lifespan, deformability
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Translational Statement

This study demonstrates that proteinuric kidney disease
in murine models leads to premature red blood cell
(RBC) clearance, ultimately causing the development of
anemia. Increased RBC death also occurs in patients with
chronic kidney disease and anemia. RBC dysfunction in
the uremic milieu is an important mechanism for RBC
loss and the development of renal Q6anemia, irrespective
of endogenous erythropoietin secretion.
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Anemia is a common complication of chronic kidney
disease, affecting the quality of life of patients. Among
various factors, such as iron and erythropoietin deficiency,
reduced red blood cell (RBC) lifespan has been implicated
in the pathogenesis of anemia. However, mechanistic data
on in vivo RBC dysfunction in kidney disease are lacking.
Herein, we describe the development of chronic kidney
disease-associated anemia in mice with proteinuric kidney
disease resulting from either administration of doxorubicin
or an inducible podocin deficiency. In both experimental
models, anemia manifested at day 10 and progressed at
day 30 despite increased circulating erythropoietin levels
and erythropoiesis in the bone marrow and spleen.
Circulating RBCs in both mouse models displayed altered
morphology and diminished osmotic-sensitive
deformability together with increased phosphatidylserine
externalization on the outer plasma membrane, a hallmark
of RBC death. Fluorescence-labelling of RBCs at day 20 of
mice with doxorubicin-induced kidney disease revealed
premature clearance from the circulation. Metabolomic
analyses of RBCs from both mouse models demonstrated
temporal changes in redox recycling pathways and Lands’
cycle, a membrane lipid remodeling process. Anemic
patients with proteinuric kidney disease had an increased
proportion of circulating phosphatidylserine-positive RBCs.
Thus, our observations suggest that reduced RBC lifespan,
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mediated by altered RBC metabolism, reduced RBC
deformability, and enhanced cell death contribute to the
development of anemia in proteinuric kidney disease.
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T he development of anemia is a typical complication of
advanced chronic kidney disease (CKD) and is associ-
ated with impaired quality of life,1 increased risk for

cardiovascular events2 and hospitalization,3 and cognitive
decline.4 The severity of anemia has been viewed as an in-
dependent predictor of mortality in both dialysis- and non–
dialysis-dependent CKD patients.5 The pathophysiology of
renal anemia is complex and involves iron and erythropoietin
(EPO) deficiency in the setting of low-grade inflammation,
which, in turn, compromise normal erythropoiesis in CKD
1
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patients.6 In advanced CKD, the EPO response is inadequately
low in relation to the degree of anemia.7,8 The high preva-
lence of concomitant iron deficiency in CKD is a consequence
of disturbed iron homeostasis.9 A neglected mechanism of
iron loss in CKD is proteinuria, which can lead to urinary
losses of transferrin-bound iron (up to 0.3 mg/d) when
proteinuria reaches the nephrotic range.10

Another factor that is thought to contribute to renal
anemia in CKD patients is the shortened lifespan of red blood
cells (RBCs), first described >60 years ago.6,11,12 A recent
study using a carbon monoxide breath test demonstrated that
the RBC lifespan progressively decreased from 120 days in
patients with stage 1 CKD to 60 days in patients with stage 5
CKD.13 Notably, transfusion of allogenic RBCs from healthy
donors to CKD patients was followed by a rapid clearance of
transfused RBCs without evidence of hemolysis.12 A plausible
mechanism for this observation may be the stimulation of
apoptosis-like cell death in anucleate RBCs, denoting an
injury pattern in which the cell membrane integrity is not
compromised and the cytoplasmic content remains intact.14

RBCs undergoing cell death exhibit various morphologic al-
terations resulting from cytoskeletal damage, such as surface
bleb formation, loss of membrane elasticity, and/or cellular
dehydration.15 On a molecular level, RBC death is associated
with intracellular Ca2þ accumulation, altered cellular energy
status, and breakdown of phospholipid asymmetry, ultimately
leading to externalization of phosphatidylserine (PS) on the
outer plasma membrane.15,16 As a consequence, macrophages
and specialized dendritic cells swiftly recognize PS-
externalized RBCs, leading to erythrophagocytosis and their
catabolism in spleen and liver.17

Because of the confounding pathophysiology of renal
anemia in humans, animal studies are warranted to pinpoint
the contributing mechanisms. Doxorubicin-induced ne-
phropathy (DIN) in 129S1/SvImJ mice18 and mice with
inducible podocin deficiency (Nphs2Dipod)19 are 2 models that
are characterized by the induction of nephrotic-range pro-
teinuria within days, progression to renal failure after 3 weeks,
and death in 6 to 7 weeks.19–21 Both mouse models effectively
recapitulate all stages of human CKD. In the present study, we
tested whether progressive renal failure in these mice with
proteinuric kidney disease affects RBC lifespan and contrib-
utes to anemia. In parallel, we examined RBC phenotype in
blood drawn from CKD patients with nephrotic-range
proteinuria.

METHODS
Detailed information about the materials and methods is provided in
the supplementary file.

Mouse studies
Experiments were performed on 8-week-old wild-type 129S1/SvImJ
mice of both sexes (Charles River). DIN was induced by a single
injection of doxorubicin (14.5 mg/g body weight), as described
previously.18 To control for the myelotoxic effect of doxorubicin
unrelated to the development of nephropathy, doxorubicin-resistant
C57BL/6 mice were also subjected to the same treatment protocol.22
FLA 5.6.0 DTD � KINT2759_proof �
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In addition, similar experiments were conducted on 8-week-old
mice with inducible deletion of podocin (B6-Nphs2tm3.1Antc*Tg
[Nphs1-rtTA*3G]8Jhm*Tg[tetO-cre]1Jaw) or Nphs2Dipod mice, which
were treated with doxycycline for 14 days.19 All animal experiments
were conducted according to the National Institutes of Health Guide
for the Care and Use of Laboratory Animals and the German Law for
the Welfare of Animals, with approval from the local authorities
(Regierungspräsidium Tübingen, approval numbers M12/17 and
M17/19G).

The experimental design of the mouse studies is outlined in
Supplementary Figure S1.

Patients
The patient study was conducted in compliance with the Declaration
of Helsinki and was approved by the local ethics committee of the
University Hospital Tübingen (556/2018BO2). Lithium-heparin
blood and urine samples were obtained from patients with
nephrotic-range proteinuria and preserved glomerular filtration rate
(GFR; stages 1–2; n ¼ 10) and patients with reduced GFR (CKD
stage 3–5; n ¼ 15) at the University Hospital Tübingen. As a control
group, blood from age- and sex-matched healthy volunteers (n ¼ 25)
was provided by the blood bank of the University Hospital Tübingen.
All human samples were collected after informed consent. Clinical
characteristics of the patients are stated in Table 1.

Flow cytometry analyses
Different parameters of RBC cell death were determined by flow
cytometry.14 To determine RBC lifespan in vivo, 25 ml of 5(6)-CFDA,
SE Qdye was injected at a concentration of 9.96 mM (solubilized in
dimethylsulfoxide) into the retro-orbital plexus of wild-type 129S1/
SvImJ and doxorubicin-injected mice, as described previously.23 At
the indicated time points, blood was drawn from the retro-orbital
plexus of the mice, and the percentage of 5(6)-CFDA, SEþ cells
was detected by flow cytometry analysis. Finally, data were analyzed
using FlowJo software (FlowJo LLC).

RBC deformability and osmotic gradient ektacytometry
RBC deformability was measured using the Laser-Assisted Optical
Rotational Cell Analyzer (LORCA MaxSis; RR Mechatronics), which
has been described in detail elsewhere.24 The osmotic gradient
ektacytometry (osmoscan) analyses were also performed using the
LORCA MaxSis and measure deformability under various osmotic
conditions.25

Histologic examination
For hematoxylin and eosin staining, spleens and femurs were stained
with hematoxylin and eosin. All slides were stained with the primary
antibody Ter119 (BD Pharmingen; dilution 1:500). For periodic
acid–Schiff staining, 2.5-mm-thick slices of the kidneys were stained
with periodic acid–Schiff reagent (Carl Roth) and hematoxylin
(abcam). May-Grünwald-Giemsa staining (Pappenheim method)
was performed to determine RBC shape changes, as described pre-
viously.26 Glomeruli isolation was done by using a biotinylation
approach and cell sorting.19 For protein detection of podocin, an
antibody from Sigma was applied (P0372).19 Roti-Mount Fluor Care
DAPI Q(Carl Roth) was used to stain nuclei.

Ultra-high-performance liquid chromatography–mass
spectrometry metabolomics from mouse RBCs
Analyses were performed as previously published.27 Briefly, the
analytical platform employs a Vanquish ultra-high-performance
7 October 2021 � 12:12 am � ce
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Table 1 | Characteristics of the CKD patients and healthy blood donors

Parameter

CKD due to primary nephrotic
syndrome

with preserved GFR
(>60 ml/min per 1.73 m2)

Proteinuric CKD with reduced
GFR (<60 ml/min per 1.73 m2) Healthy blood donors

No. and gender of patientsQ29 10 (3\, 7_) 15 (7\, 8_) 25 (10\, 15_)
Age, yr 44 (32–62) 63 (52–75) 59 (46–63)
Cause of nephrotic syndrome/CKDQ30

Focal segmental glomerulonephritis 1 2
Minimal change glomerulopathy 3
Membranous glomerulonephritis 6 1
Focal segmental glomerular sclerosis
Interstitial nephritis 2
Diabetic nephropathy 6
ANCA-positive vasculitis 1
Polycystic kidney disease 1

AL-amyloidosis 1
Unknown 1
Plasma creatinine concentration, mg/dl 1.0 (0.8–1) 2.2 (1.5–3.3)a Q310.7 (0.7–0.9)
GFR-CKD-EPI, ml/min per 1.73 m2 90 (69–90) 31 (16–49)a

Plasma urea, mg/dl 36 (26–48) 90 (62–141)b

Plasma total protein, g/dl 5.5 (4.5–6.6) 6.5 (6–6.9)
Plasma C-reactive protein, mg/dl 0.03 (0.01–0.29) 0.37 (0.09–0.96) 0.04 (0.01–0.17)
Proteinuria, mg/g creatinine 6362 (4467–8141) 3624 (676–7681)
MCV, fl 87 (85–88) 85 (80–90)c 90 (87–93)
MCHC, g/dl 34.9 (34.3–35.5)c 34.3 (33–35.6) 32.8 (32.5–33.8)
Hematocrit, % 41.9 (39.1–44.7) 35.2 (32–37.1)a 43.5 (41.6–45)
Concurrent medication

Diuretics 7 12
RAS blocker 9 12
Immunosuppressants 5 6
Anticoagulants 3 3
Statins 6 9
Proton-pump inhibitors 3 7
Vitamin D 6 8
Phosphate binders 2
ESA 2
Bicarbonate 6

AL Q32, xxx; ANCA, anti–neutrophil cytoplasmic antibody; CKD, chronic kidney disease; EPI, Epidemiology Collaboration; ESA, xxx; GFR, glomerular filtration rate; MCHC, mean
corpuscular hemoglobin concentration; MCV, mean corpuscular volume; RAS, renin-angiotensin system.
Values are given as number or median (interquartile range).
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liquid chromatography system (Thermo Fisher Scientific) coupled
online to a Q Exactive mass spectrometer (Thermo Fisher
Scientific).

Statistical analyses
Data are provided as arithmetic means � SEM or as median with
interquartile range (25th–75th percentile) with n representing the
number of used animals or included patients, respectively. Data were
tested for normality with the Kolmogorov-Smirnov test, the D’Ag-
ostino test, and the Shapiro-Wilk test. Variances were analyzed by
Bartlett test for equal variances. Tukey or Dunn multiple-comparison
posttest, unpaired Student t test, or Mann-Whitney U test was per-
formed by GraphPad Prism 8 (GraphPad Software). P < 0.05 with 2-
tailed testing was considered statistically significant. Additional
graphs were plotted through GraphPad Prism 8.

RESULTS
Experimental proteinuric kidney disease induces anemia in
mice
After induction, 129S1/SvImJ mice with DIN and Nphs2Dipod

mice developed nephrotic-range proteinuria (Figure 1a and
Supplementary Figure S2C) and progressive renal failure
FLA 5.6.0 DTD � KINT2759_proof �
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characterized by high plasma urea levels from day 20 onwards
(Figure 1b and Supplementary Figure S2D). During the first
10 days, mice experienced body weight gain with ascites
(Figure 1c and Supplementary Figure S2E), reflecting sodium
retention caused by the excretion of serine proteases or pro-
teasuria.18 After spontaneous reversal of sodium retention,
these mice steadily lost weight. In mice with DIN and in
Nphs2Dipod mice, light microscopy images, captured after 10
days, revealed typical histomorphologic changes consistent
with focal segmental glomerular sclerosis (Figure 1d and
Supplementary Figure S2B). These were absent in
doxorubicin-injected C57BL/6 mice (Figure 1d). Doxorubicin
treatment induced a strong decline in hemoglobin, RBC
count, and hematocrit (Figure 1e–g) from day 10 on in
129S1/SvImJ and C57BL/6 mice, which in the latter were
normalized at days 20 and 30. In contrast, on days 20 and 30,
doxorubicin-injected 129S1/SvImJ and podocin-deficient
mice developed progressive anemia, characterized by
reduced mean corpuscular volume (Figure 1h) and reduced
hemoglobin (Supplementary Figure S2F), suggesting that
7 October 2021 � 12:12 am � ce
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Figure 1 | Renal function and overt anemia in doxorubicin-injected 129S1/SvImJ mice. (a–d) Doxorubicin-injected 129S1/SvImJ mice
developed (a) high proteinuria, (b) progressive increase of plasma urea concentration, (c) transient body weight increase, and (d) typical
histomorphologic changes indicative of focal segmental glomerular sclerosis on day 10 (periodic acid–Schiff staining; bar ¼ 10 mm). (e–h) In
addition, these mice developed anemia reflected by (e) a decreased hemoglobin level, (f) lower red blood cell (RBC) numbers, (g) diminished
hematocrit levels, and (h) decreased mean corpuscular volume. (a–d) Doxorubicin-injected C57BL/6 mice did not show any sign of kidney
injury, and (e–g) anemia on day 10 was normalized on days 20 and 30. Arithmetic means � SEM are shown. *Significant Q16difference between
healthy 129S1/SvImJ and doxorubicin-injected 129S1/SvImJ mice; #significant difference to baseline of doxorubicin-injected 129S1/SvImJ mice;
§significant difference between doxorubicin-injected 129S1/SvImJ and doxorubicin-injected C57BL/6 mice. To optimize viewing of this image,
please see the online version of this article at www.kidney-international.org. Q17Crea, creatinine.

bas i c re sea r ch R Bissinger et al.: Anemia in proteinuric chronic kidney disease

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
anemia is associated with progressive renal failure and not
with doxorubicin treatment per se.

Anemia in experimental proteinuric kidney disease is not
caused by compromised erythropoiesis
Both anemic mouse models displayed a significant increase in
the percentage of circulating reticulocytes (Figure 2a and
Supplementary Figure S3C). Plasma EPO concentrations were
dramatically increased at day 10 in 129S1/SvImJ with DIN
and healthy C57BL/6 mice but were normalized again on days
20 and 30 (Figure 2b). In podocin-deficient mice, plasma
EPO concentrations spiked at day 10 and remained increased
at days 20 and 30 (Supplementary Figure S2H). In histologic
analyses from bone marrow and spleen, the number of
erythroid precursor cells compared with myeloid precursors
FLA 5.6.0 DTD � KINT2759_proof �
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was increased at day 30 (Figure 2d–g), pointing to stimulated
erythropoiesis in anemic 129S1/SvImJ mice with DIN.

Reduced RBC lifespan is the primary cause of anemia in
experimental proteinuric kidney disease
Externalization of PS on the outer leaflet of the RBC plasma
membrane is an indicator of cell death and a promoter of
erythrophagocytosis.14 RBC cell death was quantified using
fluorescence-activated cell sorting analyses of fluorescent
annexin V–bound surface PS.14 In freshly drawn blood, the
percentage of PS-exposing cells was >4-fold higher on day 20
in mice with DIN (4.16% � 0.86%) compared with healthy
mice (1.00% � 0.11%) (Figure 3a). Similarly, Nphs2Dipod

mice showed an approximate 2-fold increase in PS exposure
(1.27% � 0.20%) compared with healthy mice (0.58% �
7 October 2021 � 12:12 am � ce
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Figure 2 | Erythropoiesis is stimulated in doxorubicin-injected 129S1/SvImJ mice with anemia. (a) Anemia in doxorubicin-injected
129S1/SvImJ mice occurred despite increased reticulocyte numbers at days 20 and 30. (b) Plasma erythropoietin concentration was highly
increased at day 10 in doxorubicin-injected 129S1/SvImJ and C57BL/6 mice, but was normalized again on days 20 and 30. (c–e) Quantification
of the absolute numbers of (c) myeloid and (d) erythroid cells in bone marrow, and the (e) ratio of myeloid-to-erythroid cells in healthy and
doxorubicin-injected 129S1/SvImJ mice in bone marrow showed a higher number of erythroid precursor cells in doxorubicin-injected 129S1/
SvImJ mice on day 30. (f,g) The (f) spleen and (g) bone marrow histology showed an increase in erythroid precursor cells, observed even at
lower magnification, in doxorubicin-injected 129S1/SvImJ mice (right panels) compared with healthy mice (left panels) on day 30. (f,g) Ter119
immunohistochemistry (lower panels) supported the hematoxylin and eosin (H&E) findings. Ter119 is positive in the erythroid precursors
(nucleated cells) and in the red blood cells (nonnucleated cells). Bar ¼ 100 mm; insets ¼ 25 mm. Arithmetic means � SEM are shown.
*Significant Q18difference between healthy 129S1/SvImJ and doxorubicin-injected 129S1/SvImJ mice; #significant difference to baseline of
doxorubicin-injected 129S1/SvImJ mice; §significant difference between doxorubicin-injected 129S1/SvImJ and doxorubicin-injected C57BL/6
mice. To optimize viewing of this image, please see the online version of this article at www.kidney-international.org.
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0.05%) on day 30 (Supplementary Figure S3A). It is known
that RBCs are eliminated from the circulation by macrophages
residing in the spleen.17 This observation may, therefore,
explain the higher spleen/body weight ratio of Nphs2Dipod mice
(Supplementary Figure S2G), wherein twice as many RBCs are
degraded compared with healthy C57BL/6 mice.

As nephrotic-range proteinuria leads to dysproteinemia,28

we further investigated whether enhanced RBC cell death may
be stimulated by a component in the plasma of mice with
DIN. As depicted in Figure 3b, PS exposure at days 10 and 20
was twice as high following incubation (30 minutes at 37 �C)
FLA 5.6.0 DTD � KINT2759_proof �
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of healthy RBCs in plasma of doxorubicin-injected 129S1/
SvImJ mice compared with incubation in plasma of healthy
mice. Ca2þ influx into RBCs, mediated by voltage-gated and
voltage-independent nonselective cation channels,29,30 is one
of the key regulators of RBC cell death. In RBCs collected at
days 20 and 30 from 129S1/SvImJ mice with DIN, intracel-
lular Ca2þ concentrations were increased (Figure 3c); this
phenomenon was recapitulated in Nphs2Dipod mice on day 20
(Supplementary Figure S3B).

In both mouse models, there was a significant negative
correlation of the percentage of PS-positive RBCs, with
7 October 2021 � 12:12 am � ce
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Figure 3 | Mice with doxorubicin-induced nephropathy develop enhanced red blood cell (RBC) death mediated by increased
intracellular calcium levels. (a) Externalization of phosphatidylserine (PS), reflecting RBC death, was enhanced on days 20 and 30 after
induction of doxorubicin-induced nephropathy. (b) Incubation of healthy RBCs in plasma taken on days 10 and 20 from these mice led to PS
externalization. (c) PS externalization was accompanied by enhanced intracellular calcium levels of RBCs taken on days 20 and 30 after
induction. (d–g) The (d) percentage of PS-exposing RBCs was correlated with hemoglobin levels, and kidney damage was indicated by (e)
plasma urea concentration and (f) proteinuria, as well as with (g) reticulocyte formation. (d–g) Data include each time point (0, 10, 20 and 30
days) of each healthy 129S1/SvImJ and 129S1/SvImJ mouse with doxorubicin-induced nephropathy. Arithmetic means � SEM are shown.
* Q19Significant difference between healthy 129S1/SvImJ and doxorubicin-injected (inj.) 129S1/SvImJ mice; #significant difference to baseline of
doxorubicin-injected 129S1/SvImJ mice; §significant difference between doxorubicin-injected 129S1/SvImJ and doxorubicin-injected C57BL/6
mice. Crea, creatinine; MFI, mean fluorescence intensity.
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severity of anemia reflected by hemoglobin levels (Figure 3d
and Supplementary Figure S3D). Moreover, there was a sig-
nificant correlation with kidney damage reflected by plasma
urea concentration (Figure 3e and Supplementary Figure S3E)
and to a lesser degree with proteinuria (Figure 3f and
Supplementary Figure S3F). To compensate RBC loss in ane-
mia, formation of new RBCs was stimulated in both mice, as
indicated by increased percentage of circulating reticulocytes,
and was significantly correlated with the magnitude of PS-
exposing RBCs (Figure 3g and Supplementary Figure S3G).

Doxorubicin-induced renal injury alters murine RBC lifespan,
morphology, and biophysical properties
Twenty days after induction of DIN, coinciding with the
development of reduced renal function (Figure 1b), the
FLA 5.6.0 DTD � KINT2759_proof �
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fluorescent dye 5(6)-CFDA, SE,23 which is rapidly taken up
into RBCs, was i.v. injected to examine RBC clearance rate at
the indicated time points in vivo. Representative histograms,
shown in Figure 4a, indicate the removal of labeled RBCs
from the circulation and replacement by unlabeled RBCs.
Increased RBC loss was already apparent 3 days after
administration of the dye, and clearance of RBCs was
significantly faster in 129S1/SvImJ mice with DIN up to day
37. On day 41, z17% more RBCs were removed from the
circulation in these mice compared with healthy mice
(Figure 4b).

Images taken from a blood smear revealed morphologic
changes in RBCs drawn from 129S1/SvImJ mice with DIN
(Figure 4c) and Nphs2Dipod mice (Supplementary
Figure S4A). In healthy mice, RBCs display a biconcave disc
7 October 2021 � 12:12 am � ce
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Figure 4 | Shortened red blood cell (RBC) survival and altered morphology of RBCs in in mice with doxorubicin-induced
nephropathy. After a single doxorubicin injection, survival rate of red blood cells was analyzed using 5(6)-carboxy-fluorescein-diacetate (5[6]-
CFDA), SE dye, injected into the retrobulbar plexus at day 20, coinciding with development of renal failure. RBC survival was analyzed from
day 20 until day 41 after induction. (a) Representative histograms of 5(6)-CFDA, SE fluorescence of healthy (black lines) and nephrotic mice
(red lines) are shown. (b) Faster clearance of RBCs from the circulation in doxorubicin-injected mice compared with healthy mice. (c) May-
Grünwald-Giemsa staining (Pappenheim method) revealed morphologic changes on day 30 in doxorubicin-injected mice (bar ¼ 10 mm). (d)
Ektacytometry performed on day 30 revealed that in nephrotic syndrome mice, RBC deformability was significantly affected as maximum
elongation index (EImax) was significantly reduced. (e,f) Shear stress (SS) for (e) 1/2 EImax was significantly enhanced in doxorubicin-injected
mice as well as (f) SS 1/2 EImax ratio, indicating stiffer RBCs. Arithmetic means � SEM are shown. * Q20Significant difference between healthy
129S1/SvImJ and doxorubicin-injected 129S1/SvImJ mice. To optimize viewing of this image, please see the online version of this article at
www.kidney-international.org.
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shape. In 129S1/SvImJ mice with DIN, we observed an
increased number of stomatocytes (red stars), teardrop cells
(black triangle), schistocytes (black points), and microcytic
cells (black arrow) (Figure 4c). Nphs2Dipod mice showed an
increased proportion of schistocytes (black points,
Supplementary Figure S4A, lower image, left side), and cells
were polychromatic (Supplementary Figure S4A, lower image,
right side).

To further investigate RBC functional changes, deform-
ability measurements on day 30 were performed using ekta-
cytometry.31 RBC deformability was significantly reduced in
129S1/SvImJ mice with DIN as well as in Nphs2Dipod mice, as
FLA 5.6.0 DTD � KINT2759_proof �
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indicated by a reduced maximum elongation index (EImax)
(Figure 4d and Supplementary Figure S4B). Shear stress for
50% of EImax (Figure 4e) and, thus, SS1 Q

/2 EImax ratio
(Figure 4f) were significantly increased in 129S1/SvImJ mice
with DIN, indicating stiffer RBCs. Shear stress for 50% of
EImax was similar in Nphs2Dipod mice (Supplementary
Figure S4C). SS1/2 EImax ratio tended to be augmented in
Nphs2Dipod mice compared with healthy C57BL/6 mice; the
difference did, however, not reach statistical significance (P ¼
0.06) (Supplementary Figure S4D).

As exposure of RBCs to hypertonic extracellular conditions
in vitro mimics the osmotic environment encountered in the
7 October 2021 � 12:12 am � ce

7

http://www.kidney-international.org


p
ri
n
t
&
w
e
b
4
C
=
F
P
O

Figure 5 | Diminished osmotic resistance in doxorubicin-injected 129S1/SvImJ mice. (a–c) An osmoscan on day 30 revealed (a) higher
Omin Q21(mOsm/kg), (b) higher Ohyper, and (c) increased maximum elongation index (EImax) at isotonicity in doxorubicin-injected 129S1/SvImJ
mice. (d) Proportion between osmolality (mOsm/kg) and elongation index (arbitrary unit [AU]) in healthy and doxorubicin-injected 129S1/
SvImJ mice, illustrating the higher elongation index of healthy mice as well as a shift in osmolality in 129S1/SvImJ mice with DIN. Arithmetic
means � SEM are shown. * Q22Significant difference between healthy and doxorubicin-injected 129S1/SvImJ mice Q23. **, xxx.
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kidney medulla, an osmoscan was performed on day 30 and
several osmosensitive parameters were determined, as
described previously.32 Omin represents the osmolality at
minimum RBC deformability, beyond which RBCs would lyse
with a further decrease in osmolarity. Omin values were higher
in 129S1/SvImJ mice with DIN and shifted to the right
(Figure 5a and d). A similar tendency toward a higher Omin

was observed in Nphs2Dipod mice (Supplementary Figure S4E).
Values of Ohyper, reflecting the hydration state of the cells, were
significantly higher in 129S1/SvImJ mice with DIN (Figure 5b),
but were similar in Nphs2Dipod mice and their respective
control mice (Supplementary Figure S4F). The maximum
deformability (EImax) at isotonicity is the point at which cells
have attained maximum ellipticity. EImax at isotonicity was
significantly reduced in 129S1/SvImJ mice with DIN
(Figure 5c) but showed no differences in Nphs2Dipod mice
compared with healthy C57BL/6 mice (Supplementary
Figure S4G). Overall, these results indicate reduced mem-
brane integrity and elasticity but also shape changes in 129S1/
SvImJ and Nphs2Dipod mice as well as a higher osmotic fragility
of the RBCs from 129S1/SvImJ mice with DIN.

RBCs are metabolically reprogrammed during proteinuric
kidney disease in mice
To better understand the molecular adaptations associated
with changes in RBC abundance and morphology as a
FLA 5.6.0 DTD � KINT2759_proof �
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function of kidney injury, RBCs from 129S1/SvImJ mice with
DIN and Nphs2Dipod mice were analyzed by mass
spectrometry–based metabolomics (Figure 6a and
Supplementary Figure S5A). Using this approach, the relative
levels of 256 metabolites were determined for 129S1/SvImJ
mice and Nphs2Dipod mice. To analyze these data in a sys-
tematic manner, multivariate analyses, including partial-least
squares discriminant analysis and hierarchical clustering
analysis, were performed. Interestingly, partial-least squares
discriminant analysis of RBC metabolomes from both models
revealed similar clustering patterns. Specifically, although the
samples at the time of model induction clustered together
with healthy samples from all time points, samples from
nephrotic mice clustered independently from healthy control
samples along component 1 (Figure 6b and Supplementary
Figure S5B). In line with clustering patterns evident in the
2 models, hierarchical clustering analysis of the metabolomics
data for each model highlighted similar trends for metabolites
involved in oxidative stress management, as well as nucleo-
tides, amino acids, acylcarnitines, and fatty acids (Figure 6c
and Supplementary Figures S5C, S6, and S7). For example,
the levels of allantoin, a purine catabolite and marker of
oxidative stress in RBCs,33 and reduced glutathione both
significantly accumulated over time in both nephrotic mouse
models, indicating ongoing reactive oxygen species generation
and activation of the antioxidant glutathione system
7 October 2021 � 12:12 am � ce
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Figure 6 | Metabolomics indicates accumulation of oxidative stress and activation of membrane lipid remodeling within red blood
cells (RBCs) in doxorubicin-induced nephropathy. RBCs were isolated from 129S1/SvImJ control mice or those receiving a single
doxorubicin injection at day 0. (a) Samples were extracted and analyzed by mass spectrometry–based metabolomics analysis. (b) Partial-least
squares discriminant analysis of red blood cell samples from healthy 129S1/SvImJ mice before injection (day 0) and at 10, 20, and 30 days
after injection (healthy 129S1/SvImJ mice samples colored from gray to black during time progression, and doxorubicin-injected samples
colored from pink to red during time progression). Hierarchical clustering analysis of metabolomics data. Values are colored from blue to red
according to Z-score normalized values from row minimum to maximum, respectively. (c) Areas enriched with compounds from oxidative
stress, amino acid, nucleotide, acylcarnitine, and fatty acid (FA) compound classes are indicated. (d) Relative levels of oxidative stress
metabolites allantoin, reduced glutathione (GSH), and oxidized glutathione (GSSG) in RBCs over time are shown for healthy 129S1/SvImJ
(black) or doxorubicin-injected 129S1/SvImJ mice (red). (e) Relative levels of coenzyme A (CoA) precursor pantothenate, carnitine, and acetyl
carnitine are shown. (f) Relative levels of FAs hexadecenoic acid (C16:1), octadecenoic acid (C18:1), and docosapentaenoic acid (C22:5) are
shown. (g) Relative levels of hydroxyoctanoyl-carnitine (AC Q24C8-OH), hydroxydecanoyl-carnitine (AC C10-OH), and dodecanoyl-carnitine (AC
C12:1) are displayed. (h) A pathway overview of RBC membrane lipid remodeling. All y-axes values are given in arbitrary units. *Significant Q25

difference between healthy 129S1/SvImJ and doxorubicin-injected 129S1/SvImJ mice. PLA2, xxx Q26; ROS, reactive oxygen species.
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(Figure 6d and Supplementary Figure S5D). Likewise, the
levels of the coenzyme A (CoA) precursor pantothenate accu-
mulated over time (Figure 6e and Supplementary Figure S5E).

Similar patterns were evident in the levels of the free fatty
acids hexadecenoic acid (C16:1), octadecenoic acid (C18:1),
and docosapentaenoic acid (C22:5), although each model had
unique temporal patterns (Figure 6f and Supplementary
Figure S5F).

On top of fatty acids, acylcarnitines, including
hydroxyoctanoyl-carnitine (AC C8-OH), hydroxydecanoyl-
carnitine (AC C10-OH), and dodecanoyl-carnitine (AC
C12:1), also responded to induction of proteinuric ne-
phropathy in both models (Figure 6g and Supplementary
Figure S5G).

Taken together, these findings suggest that on induction of
proteinuric kidney disease in 2 similar mouse models,
increased levels of oxidative stress may impart damage to acyl
chains on membrane lipids. Because RBCs are devoid of the
capacity to synthesize new lipids, they make use of a system
that depends on phospholipase-mediated removal of
damaged acyl chains and replacement with undamaged fatty
acids. Referred to as the Lands cycle,34 this system depends on
acyl-chain activation by conjugation to CoA, which estab-
lishes an equilibrium with acyl carnitine for membrane
replacement35 (Figure 6h and Supplementary Figure S5H).

Proteinuric CKD patients with anemia display enhanced RBC
death
To confirm that PS-exposing RBCs occur also in human CKD,
as described earlier,36 we analyzed blood samples from 25
patients treated by our outpatient clinic. To match the mouse
models that represent nephrotic syndrome with preserved
GFR during the first 10 days, and then advanced CKD with
reduced GFR from day 20 onwards (Figure 1 and
Supplementary Figure S2), we analyzed 10 patients with
primary nephrotic syndrome representing proteinuric CKD
with preserved GFR (>60 ml/min per 1.73 m2) and 15 pa-
tients with CKD with nephrotic-range proteinuria and
GFR <60 ml/min per 1.73 m2. The patient characteristics are
shown in Table 1. Renal anemia, as defined by a hemoglobin
concentration <13.5 g/dl in men and <12 g/dl in women, was
observed in 4 of the 10 nephrotic patients (red triangles in
Figure 7), whereas 14 of 15 CKD patients with nephrotic-
range proteinuria and reduced GFR were anemic
(Figure 7a). In the latter group, plasma EPO concentrations
and reticulocyte production index were not increased
(Figure 7b and c), consistent with reduced erythropoiesis. In
fluorescence-activated cell sorting analysis, nephrotic patients
and patients with advanced CKD had a higher rate of PS-
exposing cells (mean, 1.0% � 0.3% and 1.4% � 0.7%,
respectively) compared with healthy subjects (mean, 0.6% �
0.1%; Figure 7d). RBC cell death in patients with nephrotic
syndrome and advanced CKD was triggered by higher levels
of reactive oxygen species (Figure 7e) and increased ceramide
levels (Figure 7f). Augmented intracellular calcium concen-
tration was found in patients with advanced CKD (Figure 7g).
FLA 5.6.0 DTD � KINT2759_proof �
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Human RBCs from patients with nephrotic syndrome and
advanced CKD showed morphologic alterations, as observed
in the mouse models (Figures 4c and 7j–l and Supplementary
Figure 3A). Although RBC morphology was normal in con-
trols, anemic patients with nephrotic syndrome and advanced
CKD patients had an increased number of teardrop cells
(black triangles) and echinocytes (black crosses) (Figure 7k
and l). In addition, target cells occurred in nephrotic patients
with anemia and in patients with advanced CKD (red crosses;
Figure 7k and l). All patient groups, including nephrotic
patients without anemia, had an increased proportion of
spherocytes (blue arrows; Figure 7j–l).

To analyze deformability of human RBCs, ektacytometry
was performed. In comparison to healthy controls, maximum
deformability (EImax) was reduced in patients with advanced
CKD (Figure 7h); EImax tended to be lower in patients with
primary nephrotic syndrome without reaching statistical
significance (Figure 7h). The parameters SS1/2, Omin, Ohyper,
and EImax at isotonicity were not significantly different be-
tween healthy controls, nephrotic patients, and patients with
advanced CKD (Supplementary Figure S8A–D).

DISCUSSION
The present study reveals novel pathophysiological mecha-
nisms leading to renal anemia in 2 murine models of pro-
teinuric kidney disease with severely impaired renal function.
Our study demonstrates that in these models, anemia is the
result of a reduced RBC lifespan triggered by exposure of PS
and accelerated phagocytic clearance. Intriguingly, anemia in
these mice developed despite stimulated erythropoiesis, sug-
gesting that reduced RBC lifespan, through increased RBC cell
death, might be an alternative explanation for these findings.
Contrary to CKD patients with anemia (Figure 7,7) Q, both
mouse models were characterized by increased plasma EPO
concentration. This can be surmised by preservation of EPO-
secreting ability in these models that probably spares the
EPO-secreting cells located in the renal interstitium. The
increased EPO secretion in these models, however, does not
invalidate the conclusion that RBC cell death is a major player
in the pathogenesis of renal anemia. On the contrary, stim-
ulation of erythropoiesis by increased EPO secretion can be
considered as a compensatory mechanism to increased RBC
death induced by renal failure in these models. Along the
lines, increased extramedullary erythropoiesis with increased
spleen volume was recently observed in another proteinuric
mouse model with anemia.37

In patients with proteinuric CKD and concomitant ane-
mia, we also observed an increased percentage of PS-exposing
RBCs along with higher levels of reactive oxygen species and
ceramide. This suggests that accelerated RBC death might be
involved in the pathogenesis of renal anemia in human CKD.
Plasma EPO concentrations and reticulocyte production in-
dex were not increased in anemic CKD patients, pointing to
reduced erythropoiesis, which in concert with RBC death is
expected to aggravate renal anemia. The reasons for the loss
of renal EPO secretion in human CKD remain unclear.
7 October 2021 � 12:12 am � ce
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Figure 7 | Red blood cell (RBC) death in proteinuric chronic kidney disease (CKD) patients with anemia. (a–c) The (a) hemoglobin, (b)
plasma erythropoietin concentration, and (c) reticulocyte production index in healthy, nephrotic patients and patients with advanced CKD.
(d–f) Percentages of (d) phosphatidylserine (PS)–exposing RBCs, (e) DCFDA Q27fluorescence, and (f) ceramide-dependent fluorescence as factors
associated with RBC death were augmented in nephrotic patients and in patients with advanced CKD. (g) Intracellular calcium concentration
was enhanced in advanced CKD patients. (h) Ektacytometry measurements revealed that RBC deformability of patients with advanced CKD
was significantly impaired, as indicated by a diminished maximum elongation index (EImax). (i–l) May-Grünwald-Giemsa staining (Pappenheim
method) revealed morphologic alterations in nephrotic syndrome patients (j) without anemia and (k) with anemia, and in (l) patients with
advanced CKD compared with RBCs obtained from (i) healthy donors. Arithmetic means � SEM are shown. *Significant Q28difference between
groups. Dep., dependent. To optimize viewing of this image, please see the online version of this article at www.kidney-international.org. GFR,
glomerular filtration rate; MFI, mean fluorescence intensity; NS, not significant.
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Remarkably, although not all patients with normal GFR had
anemia, those with reduced GFR were all anemic, pointing to
an effect of long-standing and advanced CKD. Notably, the
relative EPO deficit in CKD can be overcome by using the
new class of prolyl hydroxylase inhibitors,38 suggesting per-
turbed oxygen sensing as a possible cause for EPO
hyposecretion.

Our data demonstrate diminished RBC deformability in
both mouse models of proteinuric nephropathy, which may
be directly related to elevated cytoplasmic Ca2þ levels.39

Together, these mechanisms could act in concert to facilitate
the induction of RBC cell death and removal of senescent and
injured RBCs from the blood circulation.15 Furthermore, we
observed metabolic reprogramming in these cells, indicative
FLA 5.6.0 DTD � KINT2759_proof �
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of oxidative stress and membrane lipid remodeling. Although
CoA and acyl-CoA were not directly measured in these
samples, they are actively converted in RBCs to acylcarnitines
by carnitine palmitoyl transferase.35 Accumulating levels of
the latter compound class indicate activation of these mech-
anisms in nephropathy, as these metabolites are not readily
transported across RBC membranes.40 In further support, we
observed accumulation in both models of CoA precursors,
including pantothenate, which is taken up41 and metabo-
lized42 by RBCs, in parallel to increasing free fatty acids and
decreasing free carnitine. Interestingly, we previously found
that these alterations occur in association with supra-
physiologic levels of intracellular Ca2þ.16 Although those re-
sults were generated ex vivo, we report herein similar
7 October 2021 � 12:12 am � ce
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responses in vivo. Furthermore, acylcarnitines are capable of
directly modulating membrane properties43 and correlate
with RBC deformability,44 as well as osmotic and oxidative
hemolysis.45 Unconjugated free carnitine promotes mem-
brane deformability through the mediation of interactions
between membrane proteins.46 Our observations of signifi-
cantly decreased levels of carnitine in RBCs from mice with
nephropathy, presumably due to increased consumption for
the generation of acylcarnitines, may contribute to the
impaired rheological parameters we observed in parallel.

Our findings suggest common mechanisms leading to RBC
death in mice with both DIN and podocin deficiency, which
may be related to both nephrotic-range proteinuria and, more
important, development of severe renal failure in the mouse
models observed from day 20 on. In humans, advanced CKD
with reduced GFR is a strong predictor of anemia,47 and
stimulation of RBC death could be related to the uremic
milieu. One has to acknowledge that in advanced CKD, many
factors and derangements might come into play and promote
renal anemia. The contribution of heavy proteinuria to the
stimulation of RBC death remains unclear, but, although not
proven, might involve factors that are lost in the urine, such
as transferrin or others regulating RBC metabolism.48 So far,
current treatment of renal anemia focuses on increasing
erythropoiesis by iron or EPO substitution,49 by application
of oral hypoxia-inducible factor protein stabilizers,50 or by
oral or i.v. iron administration.51 However, these treatments
do not consider increased RBC death. In a previous cross-
sectional study in hemodialysis and peritoneal dialysis pa-
tients, we found that patients with a higher percentage of PS-
exposing RBCs were treated with higher EPO doses.14

Therefore, amelioration of RBC cell death promises to be a
possible therapeutic approach in treating renal anemia. In this
context, the inhibitory effect of various pharmacologic agents
on RBC cell death52 requires further human and animal
studies.

In conclusion, altered cellular metabolism contributes to
RBC dysfunction, enhanced RBC death, and hence anemia in
mouse models of proteinuric CKD, despite increased serum
EPO levels. The findings of this study may partly explain the
mechanisms of anemia associated with CKD in humans.
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