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Abstract

With progress in genome-wide association studies of depression, from identifying zero hits in ~16 000 individuals in 2013 to
223 hits in more than a million individuals in 2020, understanding the genetic architecture of this debilitating condition no
longer appears to be an impossible task. The pressing question now is whether recently discovered variants describe the
etiology of a single disease entity. There are a myriad of ways to measure and operationalize depression severity, and major
depressive disorder as defined in the Diagnostic and Statistical Manual of Mental Disorders-5 can manifest in more than

10 000 ways based on symptom profiles alone. Variations in developmental timing, comorbidity and environmental contexts
across individuals and samples further add to the heterogeneity. With big data increasingly enabling genomic discovery in
psychiatry, it is more timely than ever to explicitly disentangle genetic contributions to what is likely ‘depressions’ rather
than depression. Here, we introduce three sources of heterogeneity: operationalization, manifestation and etiology. We
review recent efforts to identify depression subtypes using clinical and data-driven approaches, examine differences in
genetic architecture of depression across contexts, and argue that heterogeneity in operationalizations of depression is likely
a considerable source of inconsistency. Finally, we offer recommendations and considerations for the field going forward.

Introduction A typical cohort used in genetic studies of depression
includes cases with the same diagnosis. However, cases often
differ in many respects including symptoms, number of
episodes, comorbidities and disease course. This heterogeneity,
often hidden and unexamined in genome-wide association
studies (GWAS) cohorts, has been identified as one of the main

Depression is a common, complex and debilitating condition
with a lifetime prevalence of 20% worldwide. Whether it is
one unitary construct, or better conceptualized as different and
potentially overlapping disorders, has been the subject of vigor-
ous debate over the past decades.

Received: June 5, 2020. Revised: June 5, 2020. Accepted: June 8, 2020

© The Author(s) 2020. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

R10

1202 1890100 G| udliesn wniyuszsbunyosiod 4S9 Aq $280985/0 | ¥/ LB/6Z/0101e/Buy/woo dno-oiwepeoe/:sdiy WwoJ) pepeojumod


http://www.oxfordjournals.org/
http://creativecommons.org/licenses/by/4.0/

It
Healthy g Self report-y ems

R ;

symptoms Diagnosis |
___________ (binary) - ;
H Scale 2
>=5 Electronic
symptoms. health H
\ record :
! Impairment-, Ezm

(EHR)
Treatment __
resistance

2. How do we measure depressive
symptoms?

Scale 3

Severity (dimensional)

Scale 4

1. What do we mean by “depression”?

Human Molecular Genetics, 2020, Vol. 29, No.R1 | R11

S1 S2 S3 S4 S5 S6 S7 S8 S9

Early onset
20
Peripartum (Females)

40 .
Non-peripartum
Late-onset

60
Recurrent episodes

80

3. Are there differences in symptom

4. When do episodes develop?
profiles?

Ph){SlroIoglcal

Epigenetics

Gene expressions

< 3>
< >

c
k]
g2
58
igx §“g Neuroimaging
Socioeconomic status .
Genetic ancestry Metabolites
Environment
Culture
Ascertainment res;?onses
Measurement

5. How is depression different between 6. Are there physiological differences

people? between individuals?

Genetic liability Genetic liabili
Low High
. . en_e_tic.\ ° enellc
MDD Bipolar g iability Early ° iability
patients disorder 2 a dversny \
<
. S
£ Los:
x z loved ones @ Ghronic
o dlsease
Type ll o Financial
x dle)\l etes 2 difficulty .
i 28
3
1 Low soclal
Q
5| wmbp support .
Coronary patients
it oo
Disease Iiab=
7. Are there shared liabilities with other 8. What are some causal factors?
conditions?

Figure 1. Sources of heterogeneity that impact depression research in terms of operationalization (phenotype, measurement), manifestation (symptoms, time course,

group characteristics, endophenotypes, comorbidities), and etiology.

roadblocks to successfully unraveling the genetic architecture
of depression, as initial GWAS efforts were limited by both
heterogeneity and low power (1,2). In response, many studies
relaxed ascertainment criteria to increase sample sizes (3-7),
which likely increased rather than decreased heterogeneity
within their cohorts. Although this strategy has given us more
GWAS associations over the past 5 years, it has also brought
into sharper focus the issues of measurement and construct
heterogeneity (8).

Heterogeneity is irrelevant if depression reflects a single,
specific disorder that carves nature at its joints (9), but work
in the last decades should have disabused us of this notion.
Instead, depression may consist of various subtypes with differ-
entunderlying biological pathways and environmental contribu-
tions. Systematically studying heterogeneity may be crucial for
psychiatric genetics moving forward.

Sources of heterogeneity

We distinguish three sources of heterogeneity that impact
genetic studies of depression, shown in Figure 1.

First, operationalization, including the construct definition and
its measurement. The term ‘depression’ is an umbrella term that
has been used to refer to, among others, depressive symp-

toms as a continuum and clinical depression as a category. The
Diagnostic and Statistical Manual of Mental Disorders (DSM-
5) (10) offers a formal definition of major depressive disorder
(MDD); criteria encompass the presence and duration of key
symptoms as well as their cumulative functional impairment.
Yet, it was not created with the goal to define a genetically
homogeneous phenotype, and have been shaped by the complex
history of psychiatry (11,12). Over 280 rating scales have been
used to assess depressive symptoms, and common scales only
overlap moderately in symptom content (13). Clinical diagnoses
and self-report measures have been used to determine depres-
sion cases for genetic studies, but rely on different criteria and
identify sets of cases that do not fully overlap. Minimal pheno-
typing approaches may assess a different construct than MDD
specified by DSM-5 (8), and referring to all these phenotypes as
‘major depression’ (14) obfuscates important differences. Fur-
ther, cultural differences across ethnicity and nationality may
also contribute to heterogeneity in measurement (15-17). In the
remainder of this review, we refer to ‘depression’ as all opera-
tionalizations described above, and MDD as defined by formal
diagnostic criteria (e.g. DSM-5).

Second, manifestations, which encompass symptoms, sever-
ity, developmental timing, comorbidities and physiology. DSM-5 cri-
teria for MDD include diverse symptoms such as low mood,
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loss of interest, sleep disturbance, weight changes, psychomotor
slowing/agitation and suicidal ideation. There are up to 10377
unique ways to meet these diagnostic criteria (18), and cohorts
used in genetic studies on MDD likely include cases who differ
dramatically in both symptom profiles and severity. Depression
is also heterogeneous in other aspects: patients differ in their
onset of disease (e.g. adolescence versus old age), time course
(single episode versus multiple episodes) and comorbidities—
important dimensions that are often unmeasured and unmod-
eled in genetic studies. Variations in physiology at the cellular
and molecular levels, such as tissue-specific gene expression
and neuronal function, may present biological manifestations
that underlie the above phenotypic differences.

Third, etiology, encompassing the diverse combination of
genetic, environmental and other factors leading to one’s disease, as
well as their interactions. Individuals may have different levels
of genetic liability to depression through carrying different risk
alleles at genetic loci with effects on the molecular pathways
leading to the disease, and they may be exposed to different
environmental factors that also add to their disease liability.
Further, the effects on depression liability contributed by the
risk alleles one carries may change depending on one’s phys-
iological (through gene-gene interactions, GXG) and external
environments (through gene-environment interactions, GXE).

Progress in the past years stems largely from genetics
research studying heterogeneity in depression manifestations
and etiology. Below, we review recent efforts to identify
depression subtypes using clinical and data-driven approaches,
examine differences in genetic architecture of depression across
contexts, and discuss their promises and limitations. We argue
that heterogeneity in operationalizations of depression cuts
across these sections and is likely a considerable source of
inconsistency.

Using manifestations to understand etiology

Subtypes of depression have been proposed based on clini-
cal observations and data-driven approaches, and research has
largely focused on comparing their genetic architectures and
how well they can be predicted with existing polygenic risk
scores (PRS).

Theory-driven depression subtypes

Decades of clinical experience and patients’ own accounts have
led to clinical subtypes of MDD that are reflected in current DSM-
S specifiers such as atypical, melancholic and anxious depres-
sion. Subtypes have also been proposed based on developmental
timing (19,20), treatment resistance (21) and recurrence (22).
These clinical subtypes have been the primary target of genetic
studies.

As an example of a symptom-based clinical subtype, atyp-
ical depression is primarily characterized by hypersomnia and
weight gain, as opposed to depression more typically character-
ized by insomnia and weight loss. Typical and atypical depres-
sion subtypes differ in heritabilities (43% versus 38%, though
with large standard errors), with PRS for other psychiatric traits
showing stronger associations with the typical than atypical
subtype (23). Conversely, PRS for immune-metabolic traits such
as body mass index (BMI) and C-reactive protein are strongly
associated with the atypical depression (24), and patients with
the atypical subtype were found to carry more genetic risk
variants for BMI and C-reactive protein (25). This suggests that
atypical MDD may share greater genetic liability with immune-
metabolic conditions (26).

In terms of developmental timing, genetic overlap between
early and late-onset MDD has been shown to be only moderate
(27). PRS from a recent GWAS meta-analysis of depression
predicted early onset MDD is better than late-onset (5), and in
hospital-treated cases the iPSYCH study, PRS from both bipolar
disorder (BIP) and schizophrenia (SCZ) were associated with
earlier MDD onset (28,29). Another longitudinal study found
that PRS from SCZ and attention deficit hyperactive disorder
(ADHD) were associated with early adolescent rather than
later-adolescent onset trajectories, suggesting shared genetic
contributions for early onset MDD and other psychiatric and
neurodevelopmental conditions (30,31). Different heritabilities
have also been found between depression occurring during the
perinatal period (e.g. postpartum) and non-perinatal depression
(44% versus 32%) (32), with preliminary evidence suggesting
stronger associations between PRS of BIP and SCZ with perinatal
depression than non-perinatal depression (33,34).

However, research into distinctions between subtypes,
whether symptom- or timing-based, relies on data that is often
not available. For example, The China, Oxford and Virginia
Commonwealth University Experimental Research on Genetic
Epidemiology (CONVERGE), due to its strict enrollment criteria,
is the only genetically informed cohort with a high proportion
of cases presenting with melancholic depression (35); no
replication cohorts were available to date. Early GWAS attempts
on other clinical features such as episodity (36) and treatment
response (37-39) were limited in power and did not produce
positive findings. As larger efforts have been recently invigorated
(40,41), we may gain new insights with them.

Data-driven depression subtypes

A body of complementary research has emerged to identify
depression subtypes using agnostic, data-driven methods. There
is over half a century of literature characterising depression
heterogeneity based on symptom data. There are two principled
ways, reviewed extensively elsewhere (42-45). First, exploratory
and confirmatory factor analyses (exploratory factor analysis—
EFA, confirmatory factor analysis—CFA) aim to identify underly-
ing symptom dimensions using the symptom covariance matrix.
Studies consistently extract more than two factors, and results
largely depend on which symptoms are included (42,46-50).
Second, latent class analysis (LCA) aims to determine more
homogeneous subgroups of individuals. Across studies, the most
consistent finding is that classes are often organized by sever-
ity on all symptoms (indicating a continuum rather than sep-
arate classes), though specific results are mixed and depend
on assessment instruments (42,45,51,52). Overall, measurement
heterogeneity across cohorts has made inferences challenging
(42). Three further complications are that symptoms are often
not fully assessed in controls due to skip-out assessments; anal-
yses are often performed on cases using the very symptoms
with which they were selected, incurring collider biases (53); and
methods have assumptions, such as conditional independence
in LCA, that are not always met (51,54).

Despite these challenges, there are increasing efforts to
recover latent dimensions and classes at the genetic level.
Building on the identification of three genetic factors reflecting
mood, psychomotor/cognitive and neurovegetative features of
MDD using twin modeling (55), a recent EFA on self-reported
depression symptoms in UKBiobank obtained similar results
and explored associations with depression PRS (56). A new
framework, GenomicSEM, generalizes the structural equation
modeling (SEM) approach to genetic covariance matrices (57),
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which can be generated from a joint analysis of GWAS summary
statistics of individual depression symptoms, and can be used
to test for genetic loadings on latent dimensions of depression.

Other data-driven approaches have been applied to phys-
iological measures to identify etiologically meaningful sub-
types. Variations of canonical correlation analysis (CCA) have
characterized relationships between depressive symptoms
and neuroimaging measures (58), and hierarchical clustering
on resting-state fMRI measures have identified groups of
depressed patients and their differential network dysfunctions
(59), and machine learning methods have been used to cluster
longitudinal responses to antidepressants to identify stable
treatment response classes (60). In the future, these may
be integrated with multi-omics for example, transcriptome-
wide association (TWAS) approaches have begun to identify
depression subtypes driven by brain and adipose tissue-specific
gene expression (61).

Finally, genetic data have been used to directly identify
data-driven subtypes. For example, subsets of MDD cases in
UKBiobank with distinct genetic risks for SCZ, high neuroticism
and early age of menopause (62) were identified using BUHMBOX
(63), a statistical approach that involves identifying individuals
who may carry genetic variants pleiotropic for other traits.
Overall, continued efforts to incorporate new types of data and
development of new data-driven methods hold great promise
for subtype identification and validation.

Contexts as part of etiology

This section reviews genetic investigations aiming to dis-
entangle etiological heterogeneity across the contexts in
which depression manifests. We also discuss challenges to
these approaches, including measurement differences and
ascertainment biases.

Individual characteristics

Few genetic studies of depression have been performed in non-
European populations, and the extent to which etiological fac-
tors for depression differ across populations remains unknown.
A recent preprint compared ICD10-based MDD in individuals of
African American ancestry (AA, N=59600) in the Million Vet-
erans Program (MVP) in the USA with a meta-analysis of sev-
eral depression cohorts of individuals with European ancestry
(EUR, N=1.1 million), including MVP (7). Although no GWAS hits
for MDD were found in AA, likely due to insufficient power,
61% of the GWAS hits from depression in EUR showed the
same directions of effect, suggesting a modest overlap in genetic
factors leading to depression in people with both ancestries.
This echoes results from a study comparing severe recurrent
MDD of Han Chinese women (CHN, N=10640) in the CON-
VERGE cohort to MDD of EUR in various cohorts from the Psychi-
atric Genomics Consortium (PGC, EUR N = 18 662) (64). Low trans-
ancestry genetic correlations were found between MDD in CHN
and EUR (57-59) (p = 0.33, 95% CI=0.27-0.39), and the two GWAS
hits from CONVERGE were not replicated due to drastic allele
frequency differences (3,5,35).

In the studies discussed above, MDD from AA and CHN was
compared with depression measured very differently in EUR.
Despite reports of high rG between depression assessed in differ-
ent ways within EUR to justify their use in cross-ancestry com-
parisons (rG=0.81-1.07) (8,65), it has been demonstrated very
clearly that they are distinct phenotypes with different genetic
architectures (8). As such, genetic heterogeneity of depression
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may be overestimated across ancestries due to differences
in operationalization. Differences in cultural norms around
depression (15,16,66) and study participation (67) can incur
ascertainment biases and further affect interpretation of results;
assessing depression across populations requires greater efforts
to understand how this condition manifests differently across
settings.

This also applies to heterogeneity across other groups,
including those defined by biological sex. Differences in MDD
genetic architecture between sexes have been shown in both
twin studies (68,69) and major GWAS cohorts (70), where
heritability of MDD was found to be higher in females. However,
this can be obfuscated by differences in operationalizations and
ascertainment strategies between studies. Contrary to previous
studies, heritability of depression in females was found to be
lower in UKBiobank (8), and it is the only dataset whose PRS
for depression in both sexes better predict MDD in males than
females in an independent dataset (71). Ascertainment differ-
ences are likely to be a major contributor to this discrepancy,
and minimizing such differences may unmask patterns across
studies.

Environments

Environmental factors contribute a large proportion of variability
in depression risk, and stratifying depression cohorts by
environmental factors may help identify differential genetic
effects between those exposed and not exposed. For example,
stratifying by exposure to stressful life events has revealed
genetic heterogeneity in severe recurrent MDD from CONVERGE
(72-74), with three significant GWAS hits and higher heritability
of MDD in the non-exposed group (72), suggesting divergent
genetic factors at play among the two groups. However,
when MDD and stress exposure were differently defined in
the UKBiobank, the opposite finding emerged, with higher
heritability of MDD in the exposed group (75). Similar contra-
dictions arose between two studies on interactions between
MDD PRS and childhood trauma: in The Netherlands Study of
Depression and Anxiety, MDD PRS was more strongly predictive
of depression in trauma-exposed cases (76), while in RADIANT
UK, it was more predictive of non-exposed cases (77). Further,
a subsequent meta-analysis using cohorts ascertained with a
range of strategies identified the third possible outcome—a
null-finding (78). This non-replication was attributed to chance
findings in the small cohorts used, and to a smaller extent
gene-environmental (GE) correlation (78). But a further issue for
replication may lie in operationalization differences between
studies. Ascertainment biases, as well as heterogeneous
measurement of both depression and stress exposures, may
lead to differences in unmeasured environmental factors and
inconsistencies in both polygenic and environmental contri-
butions to disease liability. GXE effects detected between PRS
and environmental contexts could therefore differ accordingly
(78,79).

One potential solution is to target efforts at identifying and
replicating GXE effects between single variants and environ-
mental exposures. Though efforts to test single-variant GXE have
often been thwarted by difficulties in correcting for confounding
factors and a general lack of power, recently proposed methods
may overcome this. StructLMM extends a linear mixed model
approach to test random effects at genetic variants interacting
with one or more environmental variables (80), and reverse
GWAS (RGWAS) infers subtypes by clustering multiple traits
and environmental factors, and tests for genetic heterogeneity
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between identified subtypes while robustly controlling for
confounding factors (73). With larger datasets becoming
increasingly available, these methods may start yielding results
for depression.

Way forward: splitting versus lumping

As depression may reflect several highly heterogeneous pheno-
types, and it is difficult to agree upon a single construct that can
be consistently measured, perhaps studying it at the level of a
categorical diagnosis or dimensional symptom total score is not
the only or best solution. Here, we discuss two alternative ways
forward.

First, splitting, i.e. refocusing genetic discovery efforts on
more granular phenotypes with higher validity and reliability
such as individual symptoms (81,82). Recent studies have inves-
tigated genetic contributions to individual depressive symptoms
(83-86) and how they vary across contexts (87). Analyses have
shown that genetic contributions to individual symptoms are
not equivalent to those for MDD (average rG=0.6), nor to each
other (rG range 0.6-0.9) (56,62). Going beyond symptoms, recent
expansions in sequencing and phenotyping technologies such
as neuroimaging (88-90) and molecular data (91,92) have enabled
genetic analyses on endophenotypes (93). Though genetic con-
tributions to such endophenotypes have not yet been found to
have larger individual locus effect sizes (94) or to be any less
polygenic (95) than complex diseases, they have been proposed
to be more tractable (96). Clustering based on endophenotypes
may reveal etiologically meaningful subtypes of depression, and
investigating these may allow us to fill in the missing causal
links between genetic variants and disease.

Second, lumping, i.e. moving beyond depression alone and
embracing transdiagnostic features across related disorders.
High comorbidity (97) and pleiotropy (98-100) between psychi-
atric disorders have motivated attempts to identify common
genetic factors and implicated molecular pathways underlying
multiple psychiatric disorders (57,101-103). Underlying liability
for psychiatric conditions such as the p factor has been proposed
(104), with preliminary evidence of a corresponding genetic basis
(105).

Integrating both splitting and lumping, transdiagnostic
insights gained from studies of endophenotypes may help us
redefine diagnostic boundaries, a goal set out by the Research
Domain Criteria (RDoC) 10 years ago (106).

Conclusions

To summarize, we have identified three overarching sources of
heterogeneity: operationalization, manifestations and etiology.
The first pertains to heterogeneity in how we do science, the
second and third to heterogeneity of the phenotype itself as
well as its causes. Gaining a better understanding of how these
three sources impact results in our field is a necessary (though
not sufficient) step towards improving diagnostics and targeted
treatments. From reviewing the literature, four lessons emerge.

(1) Measure consistently: Inconsistent findings in subtype
identification and their genetic architecture are inevitable if
depression is not operationalized consistently. Overall, this
calls for harmonizing assessments of depression across
studies.

(2) Measure more: Both theory- and data-driven approaches
to disentangle the complex phenotype of depression
rely on data, and even the most sophisticated statistical

approaches cannot overcome missing input data. One
crucial step forward is to assess a broader range of data—
including individual depression symptoms and salient
clinical characteristics such as age of onset, number of
episodes and recurrence—and utilize them to study depres-
sion heterogeneity. Further, new types of data, including
those from activity trackers in wearable technologies,
text and voice through natural language processing, and
longitudinal mood assessment by computerized adaptive
screening questionnaires, may be helpful to identifying
subtypes for genetic analysis.

(3) Collaborate: Complex traits like depression cannot be
understood in a mono-disciplinary vacuum, because
they require, in addition to knowledge of quantitative
genetics, a nuanced understanding of the phenotype
under investigation. The goal to identify and validate
depression subtypes therefore calls for collaborations with
patients, clinicians, epidemiologists, statisticians, computer
scientists, sociologists, anthropologists and many others.

(4) Follow through: To make good on the promise of GWAS
to deliver genetic insights that would improve diagnosis,
treatment and prevention of depression in individuals
with diverse etiological causes, we need to look beyond
our findings of differences in genetic architecture and PRS
associations. Fine-mapping using sequencing datasets may
help identify candidate causal variants with heterogeneous
effects on depression subtypes; integration of multi-omics
data may point to the different tissues and biological
pathways involved; single cell transcriptomics across
developmental time points may lend spatial and temporal
resolution; experimental designs in re-differentiated
human induced pluripotent stem cells, organoids or model
organisms may allow us to validate the biological relevance
of effects we find and identify potential targets for drug
interventions.

Doing all of this, we may find that depression really con-
sists of an entangled web of partly overlapping biopsychosocial
constructs, with overlapping genetic contributions and under-
lying biological mechanisms. Perhaps now is the right time for
us to take the bold next step and acknowledge the complex
reality that the field is searching for the genetic architecture
of ‘depressions’ rather than depression. This is a challenge,
but simultaneously a great opportunity and offers a clear path
forward towards embracing the heterogeneity of depressions in
our theories, measures and methods.
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