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Abstract | Fat accumulation outside subcutaneous adipose tissue often has unfavourable effects
on systemic metabolism. In addition to non-alcoholic fatty liver disease, which has received
considerable attention, pancreatic fat has become an important area of research throughout

the past 10 years. While a number of diagnostic approaches are available to quantify pancreatic
fat, multi-echo Dixon MRl is currently the most developed method. Initial studies have shown
associations between pancreatic fat and the metabolic syndrome, impaired glucose metabolism
and type 2 diabetes mellitus. Pancreatic fat is linked to reduced insulin secretion, at least under
specific circumstances such as prediabetes, low BMI and increased genetic risk of type 2 diabetes
mellitus. This Review summarizes the possible causes and metabolic consequences of pancreatic

fat accumulation. In addition, potential therapeutic approaches for addressing pancreatic fat

accumulation are discussed.

Currently, no widely accepted terminology for fat
accumulation in the pancreas has been established.
Various terms, such as ‘pancreatic steatosis’?, ‘pancre-
atic lipomatosis™*, ‘fatty infiltration of the pancreas™*,
‘non-alcoholic fatty pancreas” and ‘pancreatic fat accu-
mulation™’, can be found to describe this phenomenon.
A 2011 review proposed that pancreatic steatosis should
refer to fat accumulation in the pancreas in general'’.
The irreversible infiltration of fat as a consequence of
acinar cell death could be called pancreatic replace-
ment, while the potentially reversible obesity-mediated
accumulation of pancreatic fat could be termed fatty
infiltration or non-alcoholic fatty pancreas disease'.
Given that pancreatic replacement and non-alcoholic
fatty pancreas are difficult to differentiate in practice,
this Review uses the general term ‘pancreatic steatosis’
to refer to all cases of fat accumulation in the pancreas
unless otherwise stated.

The prevalence of pancreatic steatosis in the gen-
eral population is estimated to lie between 16% and
35%''"", depending on ethnicity and age. Fat storage
in the pancreas might be the result of adipocyte infil-
tration or intracellular ectopic accumulation as lipid
droplets. Adipocyte infiltration in the exocrine pancreas
is the most common degenerative change in the pan-
creas found in multiple autopsy studies™'*. An extensive
degree of fatty infiltration has been observed in 23-48%
of all pancreatic histological sections and has been
described as a phenomenon that diffusely affects the

whole organ®'®. While intracellular ectopic lipid stor-
age within islet cells increases during ageing and with
development of type 2 diabetes mellitus (T2DM)'”'%, the
majority of pancreatic lipids are stored in adipocytes that
reside in the exocrine pancreas and, to a lesser extent,
in the endocrine pancreas'’-*!. Pancreatic adipocytes
express adiponectin and leptin and store triglycerides
in a large lipid droplet (FIC. 1)***>. Replacement of pancre-
atic exocrine tissue (which accounts for about 95-98%
of the pancreas'”*’) with adipose tissue was observed
in cotton rats prone to metabolic disorders* as well as in
albino rats as a result of pancreatic duct ligation, which
left islets of isolated Langerhans cells surrounded by adi-
pose tissue'”. In addition, a case report of an autopsy in
an older patient described almost complete replacement
of acini with adipocytes and (presumably normal) islets
embedded within the adipose tissue®.

Detection of pancreatic fat

Histology

Histological examination of pancreas specimens enables
the detection and localization of fat within the organ.
However, due to its anatomical location, the pancreas
is only accessible for tissue sampling via a direct sur-
gical approach or endoscopy. Therefore, in the absence
of a clear medical indication, tissue sampling of the
pancreas is not practicable in daily hospital routine.
Our current histological information about pancre-
atic fat accumulation is therefore based upon studies
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Key points

* A number of studies have demonstrated a link between pancreatic fat and impaired
glucose metabolism, as well as between pancreatic fat and type 2 diabetes mellitus.

* Possible causes of pancreatic steatosis include the metabolic syndrome, non-alcoholic
fatty liver disease, alcohol consumption and specific genetic diseases.

* Chronic accumulation of fat in the pancreas can lead to chronic pancreatitis,
pancreatic neoplasia, disturbed glucose metabolism and impaired insulin secretion.

¢ Different approaches, such as a hypocaloric diet, exercise, bariatric surgery and
pharmacological interventions, can reduce pancreatic fat content.

* Preliminary evidence shows that a reduction in pancreatic fat improves insulin
metabolism, but further experimental evidence is needed to untangle the underlying

mechanisms.

Echogenicity

The ability of a surface
to reflect ultrasound
in ultrasonography.

Attenuation
The radiological absorption
of X-rays.

Hounsfield units

(HU). Units for quantitatively
describing the radiodensity
of different body tissues and
materials, standardized in
relation to the attenuation
coefficients of air (-1,000 HU)
and distilled water (0 HU),
named after the developer

of CT, Sir Godfrey Hounsfield.

that analysed samples taken during pancreatic surgery
or autopsy*”*’. One limitation of such a histological
specimen collection is that the sample obtained might
not necessarily be representative of the entire organ.
Furthermore, the underlying disease that prompted
surgery, such as cancer or chronic inflammation, might
have an impact on pancreatic architecture and fat
accumulation.

Imaging

The non-invasive detection and quantification of pan-
creatic fat accumulation by imaging techniques ena-
bles the assessment of fat accumulation in the entire
pancreas. This visualization can be challenging for a
number of reasons. The pancreas lies in the retroperi-
toneal space of the upper abdomen, has a typical length
of 12-15cm, a maximum width of about 5cm and a
thickness of approximately 2-3 cm. Due to its lobular
form and location between the gastrointestinal tract
and intra-abdominal adipose tissue, the pancreas can-
not always be reliably differentiated from its surround-
ing structures. Furthermore, a standardized grading
system for the assessment of pancreatic fat accumula-
tion by imaging techniques has yet to be established.
There is still a considerable amount of variation in the
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feasibility, availability, reproducibility and costs of exist-
ing imaging methods. These currently include ultra-
sonography?”, endoscopic ultrasonography, CT*"*,
proton magnetic resonance spectroscopy (‘H-MRS)
and MRI®!' (BOX 1).

30

Ultrasonography. Transabdominal ultrasonography is a
non-invasive method for the visualization of pancreatic
tissue and detection of fat accumulation within the organ.
The advantages of this technique are that it is widely avail-
able, faster than many alternative imaging techniques and
inexpensive. Pancreatic ultrasonography has therefore
been applied in a number of large cohorts comprising up
to 32,000 participants”-**~**. Pancreatic steatosis is usually
diagnosed by comparing the echogenicity of the pancreas
with that of the kidney or spleen’>*. As the kidney and
pancreas often cannot be compared in the same imaging
window, the pancreas to kidney contrast can be indirectly
obtained by comparing the differences between hepatic
and renal echogenicity and then between hepatic and
pancreatic echogenicity’”*. Assessment of the pancreas
using transabdominal ultrasonography has several major
limitations. First, objective standards for quantification
of ultrasonographic images have not been established.
Second, the sensitivity and specificity of this method
depend largely on the investigator and on patient char-
acteristics. For example, patient obesity and the pres-
ence of intestinal air are the most frequent limitations in
obtaining satisfactory ultrasonographic images’*".
In addition to conventional transabdominal ultra-
sonography, endoscopic ultrasonography has also been
deployed to assess pancreatic fat content'>***. While it
provides unobstructed visualization due to the shorter
distances between the measurement device and area of
interest'**, endoscopic ultrasonography shares other
limitations of transabdominal ultrasonography such
as operator dependency. Additionally, the requirement
for an endoscopic examination makes the procedure
more laborious than transabdominal ultrasonography.
Opverall, ultrasonography does not provide a precise and
unbiased quantification of pancreatic fat. To the best of
our knowledge, there are still no studies that have inves-
tigated the sensitivity and specificity of ultrasonography
in comparison with histology.

Computed tomography. CT is another commonly
applied method for the quantification of pancreatic fat.
CT is less expensive than many other imaging tech-
niques, readily available, and more sensitive and spe-
cific than ultrasonography”>*’. As CT involves exposure
to ionizing radiation, its application in clinical research
is limited. When correlated with histological quantifi-
cation, the difference between pancreatic and splenic
attenuation on CT shows a moderate correlation coef-
ficient of —0.62 (REF."). In CT images, the radiodensity
of different tissues and organic substances is quantified
using Hounsfield units (HU). Adipose tissue has negative
values of around —130 to —90 HU*. As the Hounsfield
scale can show slight variations depending on acqui-
sition and reconstruction parameters, pancreatic fat
is compared with an internal reference tissue with no
lipid content, such as the spleen***. Non-enhanced
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Fig. 1| Histological detection of fat accumulation in adipocytes in pancreatic tissue.
Marked pancreatic steatosis in non-tumorous tissue from a 76-years-old patient (part a).
Low fat content in non-tumorous tissue from a 63-year-old patient (part b). Human pancreas
sections stained for insulin (part c), leptin (part d), adiponectin (arrowheads) (part e) and
triglycerides (part f) (Oil O red). Haematoxylin was used as counter-stain in all preparations.

Dixon method

An MR imaging technique that
enables separation of fat and
water by the inherent chemical
shift difference of protons
bound to lean tissues and
lipids, named after the
American physicist and
developer W. Thomas Dixon.

Proton density fat fraction
The proton density fat fraction
is a non-invasive and accurate
measure of the percentage

of fat infiltration in organs
calculated from multi-echo
Dixon images.

T2*

An effective transverse
relaxation time resulting

from the inherent transverse
relaxation time T2 and
microscopic magnetic field
inhomogenities in MR gradient
echo images.

CT images are required for the quantification of pan-
creatic fat", as radiocontrast agents cause changes in
radiodensity.

'H-MRS. A further technique for the assessment of
pancreatic fat is '"H-MRS'>*. Due to its high cost, limi-
ted availability and required high operator expertise,
'H-MRS is not often used to measure pancreatic fat*>*'.
In addition, localized "H-MRS requires a large volume of
interest (for example, 1 x 1 x 2 cm) that needs to be prop-
erly positioned in a defined region of the pancreas. As the
measurement might be affected by breathing or cough-
ing, there is no guarantee that the spectrum has been
acquired exclusively from pancreatic tissue, as the sur-
rounding tissue (such as extralobar adipose tissue) might
enter the measurement field and confound the resulting
fat fraction. Thus, the repeatability and reproducibility
of pancreatic "H-MRS measurements are rather poor*.

MRI. One commonly used method for the precise quan-
tification of pancreatic fat accumulation is MRI**"*.
By applying the Dixon method, images can be post-processed
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to yield water-selective or fat-selective images*.
Advanced multi-echo Dixon techniques facilitate the cal-
culation of the proton density fat fraction in tissues by cor-
recting for the effective transverse relaxation rate T2 **"%,
These techniques are available for most common field
strengths (measured in tesla; that is, 1.5T and 3 T***")
and scanners from large device manufacturers such
as GE Healthcare (IDEAL IQ’!), Philips Healthcare
(mDIXON®?) and Siemens Healthineers (LiverLab
qDixon*’). Based on an inherent excellent linearity and
reproducibility, these techniques enable reliable
and reproducible mapping of pancreatic proton density fat
fraction. FIGURE 2 provides an example of two individuals
with low (FIG. 2a) and high (FIC. 2b) levels of pancreatic
fat, as acquired using a six-point Dixon sequence on a
3T whole-body imager. MRI has good specificity and
sensitivity and is now widely used as a reliable method
for the quantification of pancreatic fat**>>**, It has also
been shown to be correlated with histologically assessed
fat content with a correlation coefficient of 0.71 (REF°).

Nevertheless, just like the other radiographic tech-
niques, MRI has limitations with regard to availability,
high acquisition cost and the time-consuming nature
of the examination procedure. MRI is also prone to
observer-dependent bias as the distribution of fat
in the pancreas can be utterly inhomogeneous with
very bright local fat inclusions that superimpose on
an almost homogeneous background (FIG. 1b). Thus, a
small region of interest should be carefully chosen for
determination of pancreatic fat content to avoid misin-
terpretation. Regional differences of fat accumulation
between the pancreatic head, body and tail have been
described’>*”. These differences must be considered,
for instance by calculating mean pancreatic fat content.
To minimize partial volume bias (such as contamina-
tion by surrounding visceral adipose tissue), acquiring
thin slices (between 3 mm and 6 mm) is recommended.
Additionally, inclusion of non-parenchymal tissues,
such as pancreatic ducts, and intrusions of visceral
adipose tissue fat can be minimized by thresholding
the images (so-called MR-opsy*'), leading to improve-
ment in the inter-observer coefficient of variation that
is otherwise markedly higher for the pancreas than for
the liver™®.

Is there short-term variability in pancreatic fat content?
Up to now, little is known about the acute turnover rate
of pancreatic fat; to the best of our knowledge there is
currently no reference in the literature addressing the
regulation of pancreatic fat content. It is well described
that levels of intramyocellular lipids show strong diur-
nal changes in skeletal muscle® and that intrahepatic
fat remains almost unchanged in the course of a short-
term dietary intervention®'. Our own preliminary data,
currently available as a preprint®, argue against major
diurnal or dietary effects, but further studies are clearly
needed to finally clarify this finding.

Causes of pancreatic fat accumulation

Associations between pancreatic fat accumulation
and different medical conditions, as well as links with
anthropometric or metabolic parameters, have been
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Tesla

A unit of magnetic field
strength. Typical clinical MR
scanners work with field
strengths between 1.5T
and 3T.

Linearity

Describes the relationship
between the measured signal
and concentration/amount
of the assessed substance,
e.g. amount of lipids within
the pancreas.

investigated'"***'. The main factors affecting pan-
creatic fat accumulation are the metabolic syndrome,
non-alcoholic fatty liver disease (NAFLD), age and
alcohol consumption; however, other factors, such as
sex hormones, low birthweight and some monogenetic
conditions, might also be involved.

The metabolic syndrome

According to the National Cholesterol Education
Program Adult Treatment Panel III (NCEP-ATP-III), the
presence of several criteria confirms the diagnosis of
the metabolic syndrome: abdominal obesity, hyper-
tension, dyslipidaemia and insulin resistance or overt
T2DM. Several studies have found an association
between the metabolic syndrome and an increased
prevalence of pancreatic steatosis. These studies were
conducted in people from different ethnic backgrounds,
including Asian and European ancestry>'**»%%%1,
Therefore, metabolic features that are more preva-
lent in people with certain ethnic backgrounds have
been linked to pancreatic fat accumulation. These fea-
tures include increased BMI and obesity®**>, By
assessing the relationship between pancreatic fat and
BMI, we have shown that pancreatic fat is positively
associated with BMI independent of sex and age’'.
This finding is at least partly due to visceral obesity,
as visceral adipose tissue is positively associated with
pancreatic steatosis®’*"*". Further components of the
metabolic syndrome, such as arterial hypertension
and hyperlipidaemia, have also been reported to be
associated with increased pancreatic fat content'*®.
A longitudinal, 5-year follow-up study in people with
prediabetes has further suggested that elevated BMI
and prediabetes are predictive of the development

of pancreatic steatosis®.

Box 1| Approaches for the quantification of pancreatic fat content

While all approaches can provide information on the absence or presence of pancreatic
fat in general, their sensitivity and specificity are very different. Each technique has its
own advantages and disadvantages, so the appropriate approach strongly depends on

the setting.

Histology enables the detection of cellular and subcellular localization of fat storage.
This approach is prone to selection bias (non-representative sampling). In addition,
the approach is very invasive and might be influenced by the medical condition that

prompted surgery.

Ultrasonography enables a semiquantitative assessment of pancreatic fat. In this
approach, organ echogenicity is compared with that of the renal parenchyma or spleen.
The approach is strongly investigator-dependent; visibility can be limited by air in the
gastrointestinal tract or by excessive abdominal adiposity.

CT is more precise and reproducible than ultrasonography, is widely available, has
short acquisition times and has high spatial resolution. A major limitation of CT is
exposure to ionizing radiation. In addition, an internal reference for estimation of
pancreatic fat content is advised (for example, the spleen).

Proton magnetic resonance spectroscopy (*H-MRS) involves no exposure to ionizing
radiation. However, this approach requires a large scanning volume (1-2 cm®) that might
be contaminated by extrapancreatic structures (e.g. fat outside the pancreas), poor
repeatability and poor reproducibility. A long measurement time (approximately

1-2 min) is also required.

MRI (multi-echo Dixon imaging) is performed by quantitative evaluation of MRI-derived
proton density fat fraction. The approach involves no exposure to ionizing radiation, has
high reproducibility and good spatial resolution, and covers the entire organ. Regional
differences in fat content and partial volume effects have to be considered. This approach
has a short measurement time (155s).

Non-alcoholic fatty liver disease

There is a clear link between NAFLD and obesity, the
metabolic syndrome and T2DM. Multiple studies have
found associations between liver fat content and pan-
creatic steatosis®***~’2. However, in many studies it
was unclear whether this association was confounded
by other variables, such as obesity or increased visceral
adipose tissue content™’*’2. A nested case-control study
ascertained that NAFLD was associated with increased
pancreatic fat independent of sex, age, BMI and T2DM
status®. In further studies, adjustment for visceral adipose
tissue volume® or BMI"' removed the association between
NAFLD and pancreatic fat. Correlative data from the
DIRECT trial suggest that hepatic lipid accumulation
can be a major determinant of pancreatic steatosis’’.
According to this hypothesis, an increased export of
hepatic triglycerides leads to pancreatic fat accumula-
tion, which in turn affects adequate insulin secretion and
results in increased glycaemia’” Visceral and subcutane-
ous adipose tissue, that are major sources of circulating
fatty acids, could also contribute to pancreatic steatosis™.
The finding that increased pancreatic fat accumulation
is observed in insulin resistance, a condition associated
with increased circulating levels of non-esterified fatty
acids, also point towards a probable connection.

A number of studies did not find connections
between pancreatic steatosis and severity or activity
of NAFLD**’""2 In addition, in a longitudinal study,
hepatic fat content was not predictive of future pan-
creatic fat accumulation®. These data could point to a
liver-independent deposition of fatty acids in the pan-
creas, potentially as a direct flux from adipose tissue
independent of hepatic fat export™. In view of the differ-
ent study populations and methods of liver and pancreas
fat assessments, further investigations are required to
clarify the relationship between fat accumulation in the
liver and pancreas and to identify potential confounders.

Age

Increasing age has consistently been associated with
pancreatic fat accumulation®*”. Several autopsy studies
with a total of more than 500 people found higher levels
of pancreatic fat with increasing age**. A cross-sectional
study found increasing pancreatic fat starting in child-
hood and reaching a plateau in middle-aged adults
(FIC. 3). This change was accompanied by an increase
in pancreatic parenchyma volume. Once participants
reached 60 years of age, the volume of their pancreatic
parenchyma decreased, resulting in a proportionately
higher fat content in older than in younger individuals™.
A shift from parenchyma to fat in the pancreas thus
seems to be a physiological process during ageing.

Other potential contributors

Alcohol intake induces fat accumulation in the liver and
is a well-known risk factor for pancreatitis”’*. Even mod-
erate alcohol consumption (more than 14 g per week)
is associated with increased pancreatic steatosis as
assessed by endoscopic ultrasonography”. Men with
obesity have been reported to have more fat in their
pancreas than women with obesity®, suggesting that
sex hormones might influence the accumulation of
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pancreatic fat. However, it is still unclear which sex hor-
mones contribute and what the underlying mechanisms
might be.

Furthermore, adults who had an extremely low birth-
weight are more prone to pancreatic steatosis than adults
with a birthweight in the normal range”. Low birth-
weight has also been associated with an increased risk of
T2DM, obesity and cardiovascular disease risk®. In addi-
tion, maturity onset diabetes of the young type 8, a mono-
genic type of diabetes caused by heterozygous mutations
in the carboxyl ester lipase gene (CEL), is associated with
severe pancreatic lipomatosis from early childhood®'.
In line with observations in humans®’, mouse studies
have indicated that genetic background contributes to
the susceptibility to accumulate adipocytes in the pan-
creas. The diabetes-prone New Zealand obese (NZO)
mouse, which develops a similar phenotype to patients
with T2DM and f-cell failure, exhibits a fatty pancreas
(due to adipocyte accumulation in the pancreas) and a
fatty liver (due to ectopic fat in hepatocytes)®. By con-
trast, C57BL/6-0b/ob mice, which are obese but resistant
to diabetes mellitus, have a very low number of adipo-
cytes in the pancreas and ectopically store fat primarily in
the liver*’. Although some genes associated with diabetes
mellitus have already been discovered in NZO mice, it
is not yet clear which of these genetic factors contrib-
ute to the accumulation of adipocytes in the pancreas™.
Several monogenetic diseases, such as cystic fibrosis®-*
and Shwachman-Diamond syndrome®, are also linked
to increased pancreatic fat content. In addition, other gen-
etic diseases, such as -thalassaemia™** and Diamond-
Blackfan anaemia or hereditary haemochromatosis™, are
also associated with pancreatic steatosis.

Chronic stenosis or occlusion of the pancreatic duct,
often as a result of cancer, can also lead to exocrine tis-
sue atrophy and its subsequent replacement by adipose
tissue'>*.

Impact of pancreatic fat accumulation

Chronic pancreatitis

Whether pancreatic fat accumulation predisposes peo-
ple to chronic pancreatitis is still an open question.
In a cross-sectional analysis, pancreatic fat content
was increased in patients with chronic pancreatitis®.
Similarly, a prospective cohort study found that fat accu-
mulation is a risk factor for the development of subclin-
ical chronic pancreatitis™. In both studies, the patients
with chronic pancreatitis were statistically significantly
older than those in the control groups. Together with
other potential differences, this fact might have con-
founded the relationship between pancreatic fat and
chronic pancreatitis.

Chronic pancreatitis can occur via mechanisms that
do not involve adipocytes. During the development
of obesity, however, increased levels of adipose tissue
are associated with low-grade inflammation”. As with
subcutaneous and visceral adipocytes, pancreatic adi-
pocytes secrete cytokines, chemokines and chemoattrac-
tants. Stimulation with fatty acids and the hepatokine
fetuin-A**, which is an important co-factor for Toll-like
receptor (TLR)-dependent signalling, increases local
inflammation®”'*. This pro-inflammatory scenario seems

Fig. 2| MR tomography detection of fat accumulation in
pancreatic tissue. A patient with low (part a) and a patient
with higher (part b) amounts of pancreatic fat. The images
were acquired with a six-point Dixon sequenceona 3T
whole-body imager. The pancreas is outlined by the blue
line in both parts aand b.

to be particularly relevant under certain unfavourable
metabolic conditions, such as in NAFLD'*'.

Pancreatic neoplasms

Several types of benign and malignant tumours origi-
nate from the pancreas. The two most common types,
ductal adenocarcinoma and intraductal papillary muci-
nous neoplasia, seem to be more common in patients
with obesity and T2DM than in metabolically healthy
individuals'®>. Pancreatic ductal adenocarcinoma
leads to the fourth highest mortality burden across all
types of cancer'”, and the importance of understand-
ing its causes is underlined by the lack of efficacious
therapeutic options in the majority of cases.

In rodent models of pancreatic cancer and in human
pancreatic specimens, pancreatic fat infiltration has been
associated with adenocarcinoma'®. Pancreatic adeno-
carcinoma is often preceded by intraepithelial neopla-
sia, which is considered a premalignant lesion'””. Obesity
and increased pancreatic fat were associated with
intraepithelial neoplasia lesions in human pancreatic
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Fig. 3 | Total, parenchymal and pancreatic fat volumes. Calculated from CT images?.
Total pancreas volume (part a). Parenchymal volume (part b). Fat volume (part c). Fat to
parenchyma ratio (part d). Presented are means + SEM. Reprinted with permission from

REF.2, Wiley.

surgical specimens’. In a cancer mouse model, there
was a higher incidence of intraepithelial neoplasia trans-
forming to adenocarcinoma when the mice received a
high-fat diet'. In patients, a high pancreatic fat content
was associated with the progression of low-risk branch
duct intraductal papillary mucinous neoplasias'”".

Of note, the association between pancreatic fat and
pancreatic adenocarcinoma could be confounded by
insulin resistance in humans, which is associated with
both conditions'®. In one large case-control study,
plasma levels of adiponectin, a proxy for insulin sensi-
tivity in adipocytes, were inversely associated with the
incidence of pancreatic adenocarcinoma'®.

One possible mechanism for the link between pan-
creatic steatosis and premalignant and malignant lesions
is that pancreatic fat might lead to an enhanced produc-
tion of local cytokines, thus causing local inflammation
and a predisposition to a malignant transformation of
pancreatic cells'’. This local inflammatory state could
be aggravated by systemic subclinical inflammation
with increased circulating levels of pro-inflammatory
cytokines, as is often observed in the metabolic
syndrome'".

Disturbed glucose metabolism. Several studies have
addressed the relationship between pancreatic fat and
T2DM. While most studies found increased levels of
fat in the pancreas of patients with T2DM?>*%!12-114,
three studies did not detect such a relationship®''>'°.
Extending cross-sectional data, a 2020 longitudinal
CT study found that lean people with a fatty pancreas
are more likely to develop T2DM than those without
a fatty pancreas over a median follow-up of 6 years'"”

This finding opens up the possibility of using fatty pan-
creas as a marker of risk groups for T2DM in lean peo-
ple who are otherwise metabolically inconspicuous. As
the pathogenesis of T2DM is characterized by insulin
resistance in combination with compromised pancreatic
B-cell function, a number of studies have addressed a
potential relationship between pancreatic fat and these
two pathomechanisms. One of the studies did not detect
any association between pancreatic fat measured using
'H-MRS and insulin secretion'® in small population
samples with normal glucose tolerance and prediabe-
tes. However, the measurements of pancreatic fat in this
study have been questioned™. In humans with normal
glucose tolerance, an association between pancreatic fat
and insulin secretion has been found in some studies'",
whereas others have found no such evidence®*""'%!2,

The partially conflicting findings with regard to
pancreatic fat and insulin secretion, as well as between
pancreatic fat and T2DM, could have many causes. One
of the modulating factors could be the ethnic origin of
study participants. Studies report differences in pan-
creatic fat content”'?' and B-cell function'”' in people
with mild obesity (mean BMI 30+ 1kg/m?*) who were
of different ethnic origins. Another factor that influ-
ences the role of pancreatic fat on glycaemic traits and
T2DM development could be the marked aetiological
heterogeneity of T2DM. Adult-onset T2DM, as well
as prediabetes, is increasingly recognized as a hetero-
geneous condition comprising several pathophysiolog-
ically distinct subphenotypes'”*~'*". Given the apparent
interaction of pancreatic fat with T2DM predisposition
modelled by a genetic risk score’’, we postulate that pan-
creatic fat has different, possibly directionally opposing,
roles across the Ahlqvist clusters of adult-onset T2DM'*.
Prospective data from a 2020 study show a clear associ-
ation between high levels of pancreatic fat and T2DM
in lean individuals only'"”, which suggests that the sub-
phenotype of T2DM with insulin secretion failure that is
not mediated by autoimmunity (severe insulin-deficient
diabetes'®) is affected by pancreatic fat.

To date, the relationship between pancreatic fat and
insulin resistance has been addressed in only two stud-
ies. Both found that pancreatic fat volume is correlated
with HOMA-IR?”!'"3 an estimate of insulin resistance.
This finding was, however, probably confounded by the
relationship between the amount of visceral adipose
tissue and insulin sensitivity”’. There is accumulating
evidence that pancreatic fat contributes to T2DM. In
some patients, it might not only have a role in early dis-
ease development but also contribute to the progression
of T2DM. However, it cannot be fully ruled out that
pancreatic fat accumulates in response to other, still
unknown, damage of the organ that itself causes T2DM.
Whether adipocytes within the pancreatic parenchyma
interfere with insulin secretion, and vice versa whether
islet hormones influence adipocyte function, remain
important questions.

Impaired insulin secretion

While insulin is the most important stimulus of lipo-
genesis and adipocyte differentiation'*”, lipolysis is stim-
ulated by glucagon'*, adrenaline and noradrenaline'*.
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The innervation of islets and direct regulation of insu-
lin secretion by sympathetic and parasympathetic
neurotransmitters indicates a brain-islet hormone
interaction'*”'?. It remains to be established whether
adipocytes within the pancreatic parenchyma modify
this crosstalk, and if pancreatic adipocytes are directly
regulated by autonomic innervation.

Fat accumulation in the pancreas seems not to be
detrimental for insulin secretion per se. Mouse studies
have revealed that pancreatic adipocytes mediate insulin
secretion by releasing fatty acids®. Fatty acids directly
stimulate insulin secretion via free fatty acid receptor 1
(FFARI, also known as GPR40) on B-cells'*’ (FIG. 4).
Co-culture of isolated islets with adipocytes (derived
from either the pancreas or inguinal adipose tissue)
over a period of 2 days resulted in increased insulin
secretion in both the basal state (2.8 mmol/l glucose)
and the stimulated state (20 mmol/l glucose). Of note,
hypersecretion in response to co-culture with adipocytes
was even stronger in diabetes-susceptible mice than in
diabetes-resistant mice®.

However, under certain metabolic circumstances,
the fatty pancreas is accompanied by impaired insulin
secretion. In the prediabetic state, increased amounts
of fat in the pancreas have been linked to reduced insu-
lin secretion, independent of multiple confounders®>****.
While this association might extend to overt T2DM!''>!*,
it was not detected in all studies™. The genetic risk
of T2DM could modulate the association between
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pancreatic fat and insulin secretion. Indeed, insulin
secretion was differently associated with pancreatic fat
dependent on genetic T2DM risk in our 2020 study®'.
Genetic variants that mediate insulin resistance rather
than insulin secretion seem to account for this interaction.
In conclusion, insulin secretion seems to be damaged by
pancreatic fat in individuals with an increased genetic
risk of T2DM?! (FIG. 5).

What are the underlying mechanisms responsible for
this impaired insulin secretion? Besides storing lipids,
adipocytes are secretory cells that release fatty acids
upon stimulation of lipolysis'*. Furthermore, adipo-
cytes secrete metabolites, cytokines, chemokines and
adipokines'. These factors could negatively influence
islet cell function via paracrine effects. In addition, circu-
lating factors characteristic of the prediabetic milieu, such
as the hepatokine fetuin-A and fatty acids, induce the
release of pro-inflammatory chemokines and cytokines
from pancreatic adipocytes via TLR4 (REFS**'"") (FIC. 4).

In agreement with these findings, human islets con-
tain more CD68* macrophages and monocytes when
located in proximity to pancreatic adipocytes com-
pared with islets further away from adipocytes®. These
immune cells release inflammatory factors that can
impair p-cell function'”". Adipocytes within pancreatic
tissue could thus augment local inflammation, which
could then affect B-cell function and survival. However,
so far, transcriptome analyses of human islet tissue iso-
lated by laser capture microdissection have been unable
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Fig. 4 | The metabolic pattern determines the role of pancreatic fat for g-cell function. Adipocytes and pancreatic
B-cells interact under the regulation of extrapancreatic factors, with functional consequences in both cell types. In people
with low amounts of fat within the pancreas (1), insulin secretion is normal. In individuals with a low genetic risk of type 2
diabetes mellitus and a healthy whole-body metabolism (2), prediabetic factors such as liver-originating fetuin-A are
present only in low concentrations. Thus, the pro-inflammatory TLR4 receptor in adipocytes is not stimulated. Under these
conditions, local release of fatty acids from adipocytes stimulates insulin secretion via FFAR1 (REFS?**"%%). However, in
individuals with a genetic risk of type 2 diabetes mellitus as well as unhealthy metabolism, obesity and/or fatty liver (3),

pancreatic steatosis impairs insulin secretion?"*1.7411

. Under such metabolic circumstances, circulating factors, such as

fetuin-A together with fatty acids, activate TLR4 and might thereby hamper the differentiation potential of pancreatic

163

adipocytes

pro-inflammatory chemokines could augment immune cellinfiltration, dysregulate lipolysis and impair -cell function

and alter their secretome?’. The shift in the secretory pattern of adipocytes towards increased release of
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FFAR1, free fatty acid receptor 1; MCP1, monocyte chemoattractant protein-1; TLR4, Toll-like receptor 4.
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Fig. 5| Schematic overview of fat accumulation in the pancreas and possible metabolic consequences. We propose
the following hypothesis: if fat accumulation in the pancreas coexists with healthy glucose metabolism and no genetic risk
of type 2 diabetes mellitus (T2DM), the pancreas shows normal insulin secretion; if a fatty pancreas is accompanied by
impaired glucose metabolism and/or genetic risk of T2DM, insulin secretion will be impaired.

to convincingly demonstrate inflammation in pancreatic
islet tissue of individuals with prediabetes and T2DM*"'*!.
Further experimental evidence is required to deter-
mine the extent to which pancreatic fat accumulation
changes the exposure of islets to fatty acids and whether
fatty acids contribute acutely to an over-secretion of
insulin or chronically to -cell failure in humans.
Although pancreatic adipocytes account for the major
part of pancreatic steatosis'”'%, triglyceride accumulation
in intracellular lipid droplets within the islet endocrine
cells has been detected in rat and human islets'*'*. Intra-
cellular triglyceride storage was associated with reduced
activity of the key enzyme for glucose sensing, gluco-
kinase, and subsequently impaired glucose-stimulated
insulin secretion in rats'*~'**. In agreement with this find-
ing, pharmacological inhibition of hormone-sensitive
lipase impaired glucose-stimulated insulin secretion.
Furthermore, mice with p-cell-specific knockdown of the
hormone-sensitive lipase displayed altered insulin exo-
cytosis and developed hyperglycaemia*®'?’. Further
experimental evidence is required to determine the
extent to which B-cells release fatty acids via lipolysis and
whether fatty acids act in an autocrine fashion on 3-cells.
Increased concentrations of exogenous long-chain
fatty acids, such as palmitate, oleate and stearate, are
now believed to differentially impact B-cells over dif-
fering periods of time. A short-term exposure to fatty
acids augments glucose-stimulated insulin secretion'*,
while chronically elevated levels of saturated long-chain
fatty acids impair both insulin secretion and p-cell
survival*>'*’, Impaired insulin secretion as a result of

chronic lipid infusion for 96 h was observed in human
volunteers®. Of note, the deleterious effect was only
observed in people with a family history of T2DM, indi-
cating that genetic background might also influence the
B-cell response to long-term exposure to fatty acids.
The stimulatory effect of long-chain fatty acids on insu-
lin secretion depends on the activation of FFAR1 (REF.'*)
(FIC. 4). By contrast, the deleterious effects of chronic
exposure of B-cells to saturated long-chain fatty acids are
caused by intracellular changes, such as ceramide pro-
duction, oxidative and ER stress, mitochondrial dysfunc-
tion and activation of stress kinases (such as JNK) and
various protein kinases'*’. Protein kinase C§, for example,
is a regulator of B-cell proliferation and survival*>'*,
Taken together, locally released fatty acids from lipid
droplets in islet cells or from tissue-infiltrating adipo-
cytes could have profound and partially divergent effects
on insulin secretion. The manifold actions of fatty acids
on B-cells depend on factors such as genetic background
and metabolic context. This complex interplay might
explain why it has been such a challenge to obtain a
comprehensive understanding about these processes.

Therapies for pancreatic steatosis

Different approaches to the reduction of pancreatic fat
content have been tested. Hypocaloric diets help to con-
siderably reduce pancreatic steatosis in patients with
T2DM’+1*>1%_ Exercise also reduces pancreatic fat con-
tent in people with prediabetes or T2DM'", although
one small study did not detect this effect in healthy
people”’. However, the extent to which energy intake
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has to be reduced and exercise increased for a meaning-
ful reduction in pancreatic fat is still unclear. In NZO
mice, the fat content in the pancreas could be statistically
significantly reduced by an intermittent fasting interven-
tion (fasting every other day), which also protected the
animals from diabetes mellitus®.

To our knowledge, only GLP1 receptor agonists have
been tested for their potential to decrease fat in the pan-
creas as pharmacotherapy. A 6-month treatment with
exenatide'*, liraglutide'’ or dulaglutide’ did not alter
pancreatic fat levels statistically significantly in patients
with T2DM. However, as these treatments caused only
mild weight loss in the populations of patients investi-
gated, they might not have been potent enough to induce
areduction in pancreatic fat content.

Peroxisome proliferator-activated receptor-y
(PPARY) agonists are antidiabetic agents with pleio-
tropic metabolic effects. They regulate gene transcrip-
tion by activating the nuclear receptor PPARy"'. This
activation promotes the storage of lipids in adipocytes,
thereby removing these lipids from the circulation and
preventing excessive fat storage in intrahepatic and vis-
ceral adipose tissue compartments'*>. A number of other
effects of PPARy agonists have been described, including
preservation and/or improvement of -cell function'.
The PPARy agonist rosiglitazone protects -cells against
fatty-acid-induced dysfunction'** and reduces islet tri-
glyceride content'*>. However, rosiglitazone has been
taken off the market in parts of the world due to safety
concerns'*®. Thus, a decrease in pancreatic fat content
could be a possible mediator of PPARY agonistic effects
on B-cell function, but to our knowledge this has not
been tested in clinical trials yet. Further studies are
necessary to obtain data on feasible pharmacological
approaches to the reduction of pancreatic fat.

A number of studies have analysed the effects of bar-
iatric surgery and subsequent considerable weight loss
on fat in the pancreas. All the studies found a profound
reduction in pancreatic steatosis after surgery'»!4>>7-1%,
Interestingly, this change seems to be independent of the
reduction in liver fat content''”. Whether this beneficial
effect is sustainable for a long period of time has yet to
be ascertained.

Allin all, these results indicate that pancreatic steato-
sis can be modified in vivo. Although it seems likely that
a reduction in pancreatic fat could result in improved
insulin metabolism, experimental evidence to this

effect is still lacking. A number of associative observa-
tions indicate that B-cell function improves in response
to reduced pancreatic fat after bariatric surgery''>'”’,
exercise'”'*"1! or low-calorie diets’*'*>'**. How changes
in pancreatic steatosis affect cancer risk remains unclear.
Deciphering the molecular mechanisms that mediate the
negative effects of a fatty pancreas will enable clinicians
to therapeutically target pancreatic steatosis in the treat-
ment of prediabetes and T2DM, and probably also of
pancreatic diseases such as cancer and pancreatitis.

Conclusions

There is growing evidence to suggest that pancreatic
steatosis can introduce unfavourable effects on sys-
temic metabolism, and it is apparently also involved
in the pathogenesis of T2DM. In view of the ongoing
obesity pandemic, more attention on the role of specific
fat depots, such as pancreatic fat, is warranted. In par-
ticular, it will be important to identify factors that result
in pancreatic fat being harmful. This knowledge could
be the basis for identifying patients at risk of diabetes
mellitus, who are currently not detected by conventional
approaches. Evaluation of pancreatic fat content might
become part of a thorough patient assessment in the
future, just as assessment of liver fat is today. However,
the assessment of pancreatic fat content in routine
patient care requires establishment of standardized
examination methods with clinically meaningful and
prospectively evaluated cut-off values for fat content in
the pancreas.

It is now clear that increased quantities of fatty acids
within the pancreas represent a challenging environment
with potential negative effects on endocrine pancreatic
function. This lipid-rich environment could be either
due to increased circulation of fatty acids and/or local
fat accumulation in the pancreas. In addition, there is
evidence that the presence of fat in the pancreas is not
necessarily harmful by itself, but can induce detrimen-
tal pathomechanisms that impair endocrine functions
under specific circumstances, such as prediabetes,
reduced BMI and increased genetic risk of T2DM.
Further basic and clinical studies that focus on these
pathophysiological mechanisms could lead to new
approaches to preserving or restoring B-cell function
and treating T2DM.
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