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Abstract

Ordinary differential equation models are nowadays widely used for the mechanistic description of biological processes and
their temporal evolution. These models typically have many unknown and nonmeasurable parameters, which have to be
determined by fitting the model to experimental data. In order to perform this task, known as parameter estimation or
model calibration, the modeller faces challenges such as poor parameter identifiability, lack of sufficiently informative
experimental data and the existence of local minima in the objective function landscape. These issues tend to worsen with
larger model sizes, increasing the computational complexity and the number of unknown parameters. An incorrectly
calibrated model is problematic because it may result in inaccurate predictions and misleading conclusions. For nonexpert
users, there are a large number of potential pitfalls. Here, we provide a protocol that guides the user through all the steps
involved in the calibration of dynamic models. We illustrate the methodology with two models and provide all the code
required to reproduce the results and perform the same analysis on new models. Our protocol provides practitioners and
researchers in biological modelling with a one-stop guide that is at the same time compact and sufficiently comprehensive
to cover all aspects of the problem.
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Introduction
The use of dynamic models has become common practice in
the life sciences. Mathematical modelling provides a rigourous,
compact way of encapsulating the available knowledge about
a biological process. Perhaps more importantly, it is also a tool
for understanding, analysing and predicting the behaviour of a
complex system under conditions for which no experimental
data are available. To these ends, it is particularly important
that the model has been developed with that specific purpose
in mind.
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In bio-medicine, dynamic models are used for basic research
as well as for medical applications. On one hand, dynamic
models facilitate an understanding of biological processes, e.g.
by identifying from a list of alternative mechanisms the most
plausible one [1]. On the other hand, dynamic models with
sufficient mechanistic detail can be used to make predictions,
including the selection of drug targets [2], and the outcome of
individual and combination treatments [3, 4]. In bio- and process
engineering, dynamic models are used to design and optimize
biotechnological processes. Here, models are, for instance, used
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2 Villaverde et al.

Figure 1. Block diagram of the model calibration process presented in this protocol.

to find the genetic and regulatory modifications that enhance
the production of a target metabolite while enforcing constraints
on certain metabolite levels [5–8]. In synthetic biology, dynamic
models guide the design of artificial biological circuits where
fine-tuned expression levels are necessary to ensure the correct
functioning of regulatory elements [9–12]. Beyond these topics,
there is a broad spectrum of additional research areas.

The choice of model type and complexity depends on which
biological question(s) the model will be used to answer. Once this
has been decided, the relevant biological knowledge is collected,
e.g. from databases such as KEGG [13], STRING [14] and REAC-
TOME [15], or from the literature. Furthermore, already available
models can be used, e.g. from JWS Online [16] or Biomodels [17],
and information about kinetic parameters can be extracted, e.g.
from BRENDA [18] or Sabio-RK [19]. This information is then used
to determine the biological species and biochemical reactions
that are relevant to the process. In combination with assump-
tions about reaction kinetics – e.g. mass action or Michaelis–
Menten—these elements allow the construction of a tailored
mathematical model, which will usually have nonlinear dynam-
ics and uncertainties associated to its structure and parameter
values [20]. The model can be specified in a standard format such
as SBML, to take advantage of the ecosystem of tools that already
support a standard format [21].

The advent of high-throughput experimental techniques and
the ever-growing availability of computational resources have
led to the development of increasingly larger models. Common
models possess tens of state variables and tens to a few hun-
dreds of parameters ([22, 23]). Large models can even possess
thousands of state variables and parameters [3]. Dynamic mod-
els need to be calibrated, i.e. their unknown parameters have to
be estimated from experimental data. In model calibration, the
mismatch between simulated model output and experimental
data is minimized to find the best parameter values [24–28].
Model calibration may be seen as part of a more general problem
sometimes called reverse engineering [29] or (nonlinear) systems
identification [30]. It is a process composed of a sequence of
steps, which usually need to be iterated [31] until a satisfactory

result is found. The definition of “satisfactory” depends on the
ultimate goal of the model calibration procedure: it may focus
on obtaining the most accurate parameter estimates or the most
accurate predictions. While related, those two applications may
lead to different outcomes, namely in regard to experimental
design.

In this work, we consider the calibration of ordinary differ-
ential equation (ODE) models. ODE models are widely used to
describe biological processes, and their calibration has been dis-
cussed in protocols for different classes of processes, including
gene regulatory circuits [32], signalling networks [26], biocat-
alytic reactions [33], wastewater treatment [34, 35], food process-
ing [36], biomolecular systems [37], and cardiac electrophysiol-
ogy models [38]. Yet, these protocols focus on individual aspects
of the calibration process (relevant for the subdiscipline) and/or
lack illustration examples and codes that can be reused. The
papers [34] and [35] focus on parameter subset selection via
sensitivity and correlation analysis and on subsequent model
optimization. The works of [32], [36] and [33] consider only low-
dimensional models and do not provide in-depth discussion
of scalability. The paper [26] neither covers structural identi-
fiability (SI) analysis nor experimental design and describes
a prediction uncertainty approach with limited applicability.
The works of [33], [37], [38] discuss most aspects of the cali-
bration process, but do not provide a step-by-step illustration
with an example model and codes. The work of [39] is tai-
lored to users of the MATLAB software toolbox Data2Dynamics
[40].

The protocol presented here aims to provide a compre-
hensive description of the steps of the calibration process,
which integrates recent advances. An outline of the procedure
is depicted in Figure 1. The article is structured as follows.
First we describe the requirements for running the calibration
protocol. Then, we describe the individual steps of the protocol.
The theoretical background for each step, along with a brief
review of available methodologies, is provided in boxes. After
some troubleshooting advice, we illustrate the application of
the protocol for two case studies. For the sake of clarity, only a
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A protocol for dynamic model calibration 3

Table 1. Software resources for dynamic model calibration used in this work

Name Type Steps Reference Website Environment

MATLAB Environment All http://www.mathworks.com
Python Environment All https://www.python.org
SBML Model format Input [21] http://www.sbml.org MATLAB, Python
PEtab Data format Input [43] https://github.com/PEtab-dev/PEtab Python
STRIKE-GOLDD Tool (SI analysis) 1 [44] https://github.com/afvillaverde/strike-goldd MATLAB
AMICI Tool (simulation) 2 [45] https://github.com/AMICI-dev/AMICI Python
pyPESTO Tool (various steps) 3, 5, 6 [46] https://github.com/ICB-DCM/pyPESTO Python
Fides Tool (optimization) 3, 5 [47] https://github.com/fides-dev/fides Python
SciPy Tool (various steps) 3, 5 [48] https://www.scipy.org Python
Data2Dynamics Tool (various steps) 3, 5, 6,

(O)
[49] http://www.data2dynamics.org MATLAB

concise summary of the application results is reported in the
main text of this manuscript; complete details are given in the
supplementary information. To ensure the reproducibility of the
results, we provide computational implementations used for the
application of the protocol steps to the case studies in the form
of MATLAB live scripts, Dockerfiles and Python-based Jupyter
notebooks.

Materials
This section describes the inputs and equipment required to run
the protocol.

Hardware: A standard personal computer, or a computer cluster.
For demonstrating the application of the protocol, in the present
work we have performed Step 1 on a standard laptop with a 2.40
GHz processor and 8 GB RAM. Optimization, likelihood profiling
and sampling were performed on a laptop with an Intel Core i7-
10610U CPU (eight 1.80 GHz cores) and 32 GB RAM, with a total
runtime of up to 2 days, per model.

Software: A software environment with numerical computation
and visualization capabilities, along with specialized toolboxes
that facilitate performing specific protocol steps. Table 1 lists the
software resources used in this work.

Model: A dynamic model described by nonlinear ODEs of the
following form:

ẋ = f (x, θ , t), x(t0) = x0(θ ),

y = g(x, θ , t), (1)

in which x(t) ∈ R
nx is the state vector at time t with initial

conditions x0(θ ), y(t) ∈ R
ny is the output (i.e. observables) vector

at time t, f and g are possibly nonlinear functions and θ ∈ R
nθ is

the vector of unknown parameters.
In this work we used a carotenoid pathway in Arabidopsis

thaliana [41] and an Epidermal Growth Factor (EGF)-dependent
Akt pathway of the PC12 cell line [42], taken from the PEtab
benchmark collection [23] (https://github.com/Benchmarking-I
nitiative/Benchmark-Models-PEtab). An illustration of both
models is provided in panels A of Figures 5 and 6.

It is worth noting that, while the focus of our protocol is on
ODE models, some of its steps are applicable to other model
types, either directly of with some adaptation effort. The most

difficult step to generalize to other model types is arguably Step
1. Box 1 mentions recent efforts in this direction.

Data: A set of time-resolved measurements of the model out-
puts. In the present work, data was taken from the aforemen-
tioned PEtab benchmark collection.

Procedure
The protocol consists of six main steps, numbered 1–6, which
consist of substeps. Furthermore, we describe two optional steps.
The workflow is depicted in Figure 1 and described in the follow-
ing paragraphs.

STEP 1: SI analysis

SI is analyzed to assess whether the values of all unknown
parameters can be determined from perfect continuous-time
and noise-free measurements of the observables under the given
set of experimental conditions [66, 67]. Structural nonidentifi-
abilities imply that there are several model parameterizations,
e.g. due to symmetries or redundancies in the model struc-
ture, which yield exactly the same observables. An overview
of the available methodologies for SI analysis is provided in
Box 1. Figure 2 illustrates possible sources of structural non-
identifiability and the related issues. The SI analysis can be
complemented by observability analysis, which determines if
the trajectory of the model state can be uniquely determined
from the observables.

The first step in the protocol is thus:

STEP 1.1

Analyze the SI of the model with one of the methods described
in Box 1.

If all parameters are structurally identifiable and all state
variables are observable, we continue with Step 2.1. Otherwise,
we recommend to determine the source of the structural non-
identifiability as an intermediate step (1.2). Ideally, the paramet-
ric form of the nonidentifiable manifold (i.e. the set of parame-
ters that yield identical observables) is determined. Some tools
offer this functionality or at least provide hints, e.g. COMBOS [58],
STRIKE-GOLDD [69], ObservabilityTest [52] or the method in [70].
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STEP 1.2

If parameters are structurally nonidentifiable or state variables
unobservable, use knowledge about the structure of the non-
identifiable manifold to

(i) Reformulate the model by merging the nonidentifiable
parameters into identifiable combinations, OR

(ii) Fix the nonidentifiable parameters to reasonable values,
taken e.g. from the literature or from publicly available
biological knowledge databases.

In both cases, the information about the nonidentifiability needs
to be retained to later perform a proper analysis of the prediction
uncertainties. That is, since parametric uncertainty can propa-
gate to prediction uncertainty, when calculating the confidence
interval of a prediction (STEP 6) the fixed parameters must be
varied along the range of values that was initially considered.
If this point is not taken into account, the obtained confidence
intervals are only valid for the reformulated model, but not for
the original one—a fact that is often disregarded.

Model reformulation can be illustrated with the example
in Figure 2. Using the AutoRepar function in STRIKE-GOLDD, a
structurally identifiable reparameterization of the mRNA trans-
lation model is obtained. The new variables are M = k · s · mRNA,
P = s · GFP, M0 = k · s · mRNA0. The new equations are Ṁ = −γ · M,
Ṗ = −δ · P + M, y = P. Note that, while the resulting model is
structurally identifiable and observable, its variables no longer
have their original full mechanistic meaning. This is very often,
but not always, the case [69]. The model user must decide if
such a transformation is acceptable depending on the model
purposes. It should also be noted that it is not always possible
to find an identifiable reparameterization.

An alternative to the reformulation of the model or the fixing
of parameters is to plan additional experiments, if possible.
These can be experiments with new experimental conditions,
new observables or both (keeping experimental constraints in

mind). The additional information should be recorded such that
more, ideally all, parameters are structurally identifiable.

STEP 2: Formulation of objective function

The objective function measuring the mismatch of simulated
model observables and measurement data is defined. The choice
of the objective function depends on the characteristics of the
measurement technique and accounts for knowledge about its
accuracy. Possible choices are discussed in Box 2.

STEP 2.1

Construct an objective function.

STEP 3: Parameter optimization

Parameter estimates are obtained by minimizing the objective
function. To this end, numerical optimization methods suited
for nonlinear problems with local minima should be employed.
Available methodologies and practical tips for their application
are discussed in Box 3, and key aspects are illustrated in Fig. 3.

STEP 3.1

Launch multiple runs of local, global or hybrid optimization
algorithms. The number of runs required is model-dependent.
For an initial optimization we recommend at least 50 runs with
purely local searches or at least 10 runs with global or hybrid
searches.

Accurate gradient computation is required for gradient-based
optimization. Before optimization, check that the gradients
appear correct by evaluating the gradient at a point, and
then compare this with forward, backward and central finite
difference approximations of the gradient that are evaluated
with different step sizes. Such a gradient check is a common,
possibly optional, feature of tools that provide gradient-based
optimization.
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Figure 2. SI analysis. (A) Diagram of a simplified model of mRNA translation considering only the process in the cytosol. The model captures the translation of mRNA

and the degradation of mRNA and protein. (B) Mathematical formulation (ODEs) of mRNA translation dynamics [68] involving two states, mRNA and green fluorescent

protein (GFP). (C) The model output is the fluorescence intensity, which is proportional to the GFP level. The model has five unknown parameters: the initial condition of

the unmeasured state (mRNA0), three kinetic parameters (γ , δ, k) and an output scaling parameter(s). Given its simplicity, it is possible to calculate the output time-course

analytically (here shown for γ �= δ). The resulting function contains the product of three parameters (s·k·mRNA0), which is shown in orange, and an expression involving

δ and γ , which are shown in green. The latter expression is symmetrical with respect to δ and γ : their values can be exchanged without changing the result. Thus,

these two parameters are not structurally globally identifiable, but only locally identifiable with two possible solutions. Furthermore, the product (s · k · mRNA0) allows

for an infinite number of parameter combinations; the three involved parameters are structurally nonidentifiable. (D) Illustration of structural nonidentifiability: the

time-course of the model output is identical for an infinite number of parameter vectors. (E) Illustration of unobservability caused by nonidentifiability. For illustration

purposes, three different parameter vectors are shown, all of which produce the same model output. Each of them yields a different simulation of the mRNA time-

course; thus, this state cannot be determined. (F) Illustration of the correlations between the nonidentifiable parameters. The line indicates parameter combinations

for which the time-dependent output is identical.

STEP 3.2

Evaluate the reproducibility of the fitting results by comparing
the optimal objective function values achieved by different runs.
The optimal objective function values should be robustly repro-
ducible, meaning that a substantial number of runs (rule-of-
thumb: 5) should find it. If this is not the case, repeat Step 3.1
with a larger number of runs. Note that the difference between
runs that is considered negligible should be statistically moti-
vated. For the use of log-likelihood and log-posterior this corre-
sponds to an absolute difference, not a relative one [23].

STEP 4: Goodness of fit

The quality of the fitted model should be assessed by visual
inspection or use quantitative metrics. Details are provided in
Box 4.

STEP 4.1

Assess the goodness of the fit achieved by the parameter opti-
mization procedure.

If the fit is not good, further action is required. Proceed to
STEP 4.2.

STEP 4.2

If the fit is not good enough, check convergence of the optimiza-
tion methods.

1. If there are hints that searches were stopped prematurely
(e.g. error messages that indicate that local optimizations
did not converge), go back to STEP 3: modify the settings
of the optimization algorithms (e.g. increase maximum
allowed time and/or number of evaluations) and run the
optimizations again.

2. If there are no signs of a premature stop, the problem may
be that the optimal solution lies outside the initially chosen
parameter bounds → go back to STEP 3: set larger parameter
bounds and run the optimizations again. In fact, this action
is advisable whenever there are parameter estimates that
hit the bounds, even if the fit is good. The exceptions are
parameters with hard bounds, originated by physical or
mathematical constraints, which should not be enlarged
beyond the meaningful limit.

3. If the actions above do not solve the issue, it may be because
the optimization method is not well suited for the problem
→ go back to STEP 3: choose a different method and run the
optimizations again.
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6 Villaverde et al.

Figure 3. Parameter optimization. (A) Multi-start local optimization involves many local optimizations that are distributed within the parameter space. In systems with

multiple optima, many starts may be required to find the global optimum. Trajectories are indicated by arrows, with their initial points indicated with ‘×’. The contour

plot shows the negative log-likelihood, with darker contours indicating lesser (better) values. In all subfigures, the colours green (global) and brown (local) are used to

indicate results that correspond to a particular optimum, and parameters are labelled as θ with an index as the subscript. This subfigure is for illustration purposes only,

as it is generally infeasible to produce. (B) Convergence of starts towards an optimum can be assessed with a waterfall plot, where the existence of (multiple) plateaus

indicates optimizer convergence. If plateau(s) are not seen, possible solutions include: additional starts; alternative initial points or alternative global optimization

methods. (C) A parallel coordinates plot can be used to assess whether parameters are well determined. Here, lines belonging to a single optimum overlap (indicated

with n), suggesting that the parameters that have converged to the corresponding optimum are well determined.

If the new optimizations performed in STEP 4.2 do not yet
yield a good fit, there may be a problem with the choice of
objective function. Proceed to STEP 4.3.

STEP 4.3

If the fit is not good enough, go back to STEP 2 and select a
different objective function.

If the new optimization results are still inappropriate, the
problem might be the model structure. Proceed to STEP 4.4.

STEP 4.4

If the fit is not good enough, go back to the model equations and
perform a model refinement.

STEP 5: Practical identifiability analysis

The task of quantifying the uncertainty in parameter
estimates is known as practical (or numerical) identifiability
analysis. It involves calculating univariate confidence intervals
or multivariate confidence regions for the parameter values.
Key concepts and tools for practical identifiability analysis are
listed in Box 5. Practical identifiability issues are illustrated in
Figures 5D and 6D.

STEP 5.1

Perform practical identifiability analysis with one of the meth-
ods described in Box 5. If this analysis reveals uncertainties in
parameter estimates that are too large for the intended applica-
tion of the model, then proceed to STEP 5.2.

STEP 5.2

If there are large uncertainties, then:

1. If it is possible to perform new experiments → add more
experimental data. In this case, the experiment should be
optimally designed in order to yield maximally informative
data. This is described in the following section.

2. If it is not possible to perform new experiments → assess
the possibility of simplifying the model parameterization
without losing biological interpretability.

3. If neither (1) nor (2) are possible → include prior knowledge
about parameter values. Such information (either about the
value of a parameter or about its bounds) can sometimes be
found in publicly available databases.

After performing one of the above actions, go back to STEP 3.

(OPTIONAL STEP): Alternative experimental design
for parameter estimation

If practical identifiability analysis concludes that there are large
uncertainties in the parameter estimates, a solution may be to
collect new data. Ideally, it should be obtained by designing and
performing new experiments in an optimal way. Optimal exper-
iment design (OED) seeks to maximize the information content
of the new experiments. It can be performed using optimization
techniques that minimize an objective function that represents
some measure of the uncertainty in the parameters. It is also
possible to perform OED for other goals, such as model discrimi-
nation or decreasing prediction uncertainty. OED techniques are
discussed in Box (O).

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbab387/6383562 by G

SF H
aem

atologikum
 user on 27 O

ctober 2021



A protocol for dynamic model calibration 7

.

STEP O.1

Define the constraints of the new experimental setup and, in
case of optimal design, the criterion to optimize.

STEP O.2

Obtain a new set of experiments, either by optimization or from
an educated guess.

STEP O.3

Perform experiments and collect data.

STEP O.4

Include the new data in the objective function and repeat STEPS
2–5.
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STEP 6: Prediction uncertainty quantification

If the calibrated model is used for making predictions, for exam-
ple about the time course of its states, it is useful to assess the
prediction uncertainty. This assessment is nontrivial because
uncertainty in parameters does not directly translate to uncer-
tainty in predictions. Hence, it is pertinent to quantify to which
extent the uncertainty in model parameters leads to uncertainty
in the predictions of state trajectories. Note that, if some param-
eters were fixed in STEP 1 to achieve SI, in this step several values
within their plausible range should be considered, in order to
obtain realistic confidence intervals of the state predictions. The
available methods for prediction uncertainty quantification are
reviewed in Box 6. Their application to case studies is shown in
Figures 5E and 6E.

STEP 6.1

Calculate confidence intervals for the time courses of the pre-
dicted quantities of interest using one of the methods in Box
6.

(OPTIONAL STEP): Model selection

The protocol presented so far assumes that the model structure
is known, except for the specific values of the parameters. Some-
times the form of the dynamic equations that define the model—
and not only the parameter values—is not completely known
a priori, and a family of candidate models may be considered.
Model selection techniques choose the best model from the set
of possible ones, aiming at a balance between model complexity
and goodness of fit. They are discussed in Box (MS).
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Troubleshooting
Troubleshooting advice can be found in Table 2.

Examples
Here, we demonstrate the protocol by describing its application
to two examples. The results described here can be reproduced
with Matlab live scripts and Jupyter notebooks, which are pro-
vided as supplementary material. Additionally, pdf documents
that show the scripts and the output generated by them are also
included.

Carotenoid pathway model

Our first case study is the carotenoid pathway model by Bruno
et al. [41], with 7 states, 13 parameters and no inputs. The model
output differs among the experimental conditions: in each of
the six experimental conditions for which data is available, only
one of the 7 state variables is measured (one is measured in two
experiments, and two states are never measured).

The application of the protocol is summarized in the follow-
ing paragraphs, and the main results are shown in Figure 5.

STEP 1.1: SI analysis

We first assess SI and observability for each individual exper-
imental condition, obtaining a different subset of identifiable
parameters for each one. Next, we repeat the analysis after
combining the information from all experiments, obtaining that
all parameters are structurally identifiable. However, the two
state variables that are not measured in any experiment (β-io
and OH-β-io) are not observable. If the initial conditions of these
two states were considered as unknown parameters, they would
be nonidentifiable.

STEP 1.2: Address structural nonidentifiabilities

We are not interested in the two unobservable states. Hence, we
omit this step and proceed with the original model.

STEP 2.1: Objective function

We use the negative log-likelihood objective function described
in Equation 2, which is the common choice in frequentist
approaches.

STEP 3.1 and 3.2: Parameter optimization

We estimate model parameters using the multi-start local opti-
mization method L-BFGS-B implemented in the Python package
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SciPy. With 100 starting points we achieve convergence to the
maximum likelihood estimate (MLE), as indicated in the water-
fall plot (Figure 5). The parameters plot shows that the parameter
vector is similar amongst the best starts, indicating that the
parameters are well determined by the optimization problem
and the optimizer.

STEP 4.1: Assess goodness of fit

Visual inspection indicates a good quality of the fit, with simu-
lations closely matching measurements.

STEP 4.2: Address fit issues

As the fit is good, this step is skipped.

STEP 5.1: Practical identifiability analysis

We analyze practical identifiability using PLs and MCMC sam-
pling. PLs suggest that all parameters are practically identifi-
able, as the confidence intervals span relatively small regions
of the parameter space. The profiles peak at theMLE, suggest-
ing that optimization was successful. MCMC sampling yields
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A protocol for dynamic model calibration 11

.

Figure 4. MCMC sampling and PL. (A) Upper: traces of MCMC chains through parameter space. The initial sample of a chain is indicated with ‘•’. Parameters are labelled

as θ with an index as the subscript. The initial sample of the black chain is the MLE from an optimization (at approximately θ1 = θ2 = 70). Colour is used in all subfigures

to indicate results corresponding to the same MCMC chain. Middle: the marginal distribution (solid line) and 95% credibility interval (shaded region, which corresponds

to the shaded region in the upper plot) for a parameter, given the black MCMC chain without burn-in (the set of samples in the chain before the chain converges).

Lower: the PL for the global optimum after optimization (see Fig. 3) (dotted line, which corresponds to the dotted line in the upper plot). The 95% likelihood cutoff is

indicated with a horizontal line. The corresponding confidence interval is delimited by vertical lines, which are also shown in the upper plot. (B) Traces of the objective

function value across the MCMC chains, including burn-in (indicated with vertical grey lines) as detected by the Geweke test. The bottom plot is a zoom-in of the

second-to-bottom plot.

similar results; parameter marginal distributions span a similar
distance of parameter space compared with PLs, and credibility
intervals are also similar.

STEP 6.1: Prediction uncertainty analysis

We calculate credibility intervals using ensembles of parame-
ters from sampling. In this model, there is a one-to-one cor-
respondence between states and observables; hence, the plots
are the same. The prediction uncertainties are reasonably low,

suggesting that the model has been successfully calibrated and
might be used to predict new behaviour.

Akt pathway model

The second example is an AKT pathway model [42] with 22
unknown parameters, 3 of which are unknown initial conditions,
9 state variables, 3 outputs and 1 input. There are six exper-
imental conditions, each of them with a different input EGF
concentration.
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12 Villaverde et al.

.

.

Results are summarized in the following paragraphs and in
Figure 6.

STEP 1.1: SI analysis

We consider the following scenarios:

1. For a single experiment with constant EGF, 11 parameters
are structurally nonidentifiable, and 3 states are unobserv-
able.

2. For a single experiment with time-varying EGF, the model
becomes structurally identifiable and observable.

3. For multiple experiments (at least two) with constant EGF,
the model is structurally identifiable and observable.

The experimental data available correspond to the scenario (3)
above. The scenario (2) yields an identifiable and observable
model, but it requires a continuously varying value of EGF, which
is not practical. It is also interesting to note the role of initial
conditions in this case study. The results summarized above
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A protocol for dynamic model calibration 13

Table 2. Troubleshooting table. Common problems that may appear at different stages of the procedure, their causes and solutions

Step Problem Possible reason Solution

1 It is not feasible to analyze SI due to
computational limitations

The model is too large and/or too
complex

(A) Reduce the model complexity
by fixing several parameters
(conservative approach) (B) Use a
numerical method (e.g. PL) to
analyze practical identifiability
as a proxy of SI

3 Parameter optimization takes very
long

The size of the model makes this step
computationally very expensive

Use parallel optimization
approaches to decrease
computation times, or try a
different optimizer

4 Parameter optimization does not
result in a good fit

(A) The optimizer was stuck in a local
minimum

(A) Use a global method and
allow for enough time to reach
the global optimum

(B) The parameter bounds are too small (B) Set larger bounds
(C) The model is not an adequate
representation of the system

(C) Modify the model structure

In general: use hierarchical
optimization if applicable

4 Parameter optimization resulted in
overfitting

Fitting the noise rather than the signal:
very good calibration result that
however generalizes poorly

Use cross-validation to detect
overfitting. If present: (A) Use
regularization in the calibration;
(B) Simplify overparameterized
models

5 The confidence intervals of the
parameters are too large for the
intended application of the model

The data are not sufficiently
informative to constrain the values of
the parameters sufficiently

(A) Add prior knowledge about
parameter values and repeat the
optimization (B) Obtain new
experimental data (ideally
through OED) and repeat the
optimization

6 The confidence intervals of the
predictions are too large for the
intended application of the model

The data are not sufficiently
informative to constrain the values of
the predictions sufficiently

(Same as the above solution)

are obtained with generic (nonzero) initial conditions. However,
in the available experimental datasets, there are several initial
conditions equal to zero. Introducing this assumption in the
analyses of the scenarios (2) and (3) leads to a loss of identifia-
bility and observability: four parameters become nonidentifiable
and one state becomes unobservable.

STEP 1.2: Address structural nonidentifiabilities

We assume a realistic scenario corresponding to the available
experimental data: several experimental conditions with a con-
stant input, EGF and certain initial conditions equal to zero. In
this case the model has four nonidentifiable parameters and
one unobservable state. To make the model fully observable and
structurally identifiable, it is necessary and sufficient to fix the
value of two of the nonidentifiable parameters. Thus, we fix two
of these parameters and proceed with the next steps.

For comparison, we also performed the remaining steps with-
out fixing the nonidentifiable parameters. We found that fixing
the nonidentifiability issues resulted in slightly faster and more
robustly convergent optimizations, as well as in better practical
identifiability and reduced state uncertainty.

STEP 2.1: Objective function

We choose the negative log-likelihood objective function
described in Equation 2.

STEP 3.1 and 3.2: Parameter optimization

Similarly to the other case study, we initially use the multi-start
local optimization method ‘L-BFGS-B’.

STEP 4.1: Assess goodness of fit

Visual inspection (i.e. comparison of the simulations produced
by the MLE with the measurements) reveals a poor fit to the data
(not shown). This result is obtained even with the best result
obtained from thousands of optimization runs from different
starting points.

STEP 4.2: Address fit issues

First we try to improve the fit by tuning the settings of the
optimization method, L-BFGS-B, without success. Then, we try
a different method, Fides, which has a higher computational
cost but achieves higher quality steps during optimization. With
Fides we find an MLE that produces a fit comparable to the one
reported in the original publication. The high number of starts (in
the order of 103) required to find this fit reproducibly indicates
that this is a difficult parameter optimization problem.

STEP 5.1: Practical identifiability analysis

Credibility intervals obtained from MCMC sampling indicate that
several parameters are practically nonidentifiable. This result is
not significantly improved by fixing parameters as suggested in
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14 Villaverde et al.

Figure 5. Calibration of the carotenoid pathway model. (A) Schematic of the model pathway. (B) Visualization of the fit. The plot shows the trajectories of the model

observables, as well as the means (points) and standard errors of the means (error bars) of the measurements. (C) Upper: A waterfall plot, showing the number

of starts that converged to the MLE. Here and in the remaining subfigures, green indicates results that correspond to the MLE. Lower: A parameters plot, showing

variability of parameters among starts that converged to the possible global optimum (green). Vertical dotted lines indicate parameter bounds. (D) Plots related to

parameter uncertainty analysis. Upper: a trace of the function values of samples from a MCMC chain. The vertical dotted line indicates burn-in. Middle: marginal

density distributions of two parameters, using samples from the converged chain. The plots show a kernel density estimate, histogram and rug plot. Lower: profile

likelihood of two parameters. (E) Plots related to prediction uncertainty analysis, computed as percentiles from predictions of samples. Upper: prediction uncertainties

of two states. Lower: prediction uncertainties of two observables. Note that in this model, observables are states without transformation; hence, the observables and

states have the same uncertainties.
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A protocol for dynamic model calibration 15

Figure 6. Calibration of the Akt pathway model. (A) Schematic of the model pathway. (B) Visualization of the fit. The plot shows the trajectories of the model observables,

as well as the means (points) and standard errors of the means (error bars) of the measurements. (C) Upper: A waterfall plot, showing the number of starts that converged

to the MLE. Here and in the remaining subfigures, green indicates results that correspond to the MLE. Lower: A parameters plot, showing variability of parameters among

starts that converged to the possible global optimum (green). Vertical dotted lines indicate parameter bounds. (D) Plots related to parameter uncertainty analysis. Upper:

a trace of the function values of samples from an MCMC chain. The vertical dotted line indicates burn-in. Middle: marginal density distributions for two parameters,

using samples from the converged chain. The plots show a kernel density estimate, histogram and rug plot. Lower: profile likelihood of two parameters. The dotted

vertical line indicates a parameter bound. (E) Plots related to prediction uncertainty analysis, computed as percentiles from predictions of samples. Upper: prediction

uncertainties of two states under one experimental condition. Lower: prediction uncertainties of two observables under one experimental condition.
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16 Villaverde et al.

STEP 1.2. Improving the practical identifiability of these param-
eters would require repeating the calibration with additional
experimental data.

STEP 6.1: Prediction uncertainty analysis

Credibility intervals obtained from MCMC sampling indicate that
the uncertainties in the observable trajectories are reasonably
low. However, the state trajectories have larger uncertainties,
which make this calibrated model unsuitable for predictions
involving these states. The quality of the predictions can be
improved by reducing practical nonidentifiabilities in the model,
as mentioned in the previous step.

Discussion and conclusion
In this paper, we have proposed a pipeline of methods and
resources for calibrating ODE models in the context of bio-
logical applications. Its end goal is to obtain a model that is
capable of making predictions about quantities of interest with
quantifiable uncertainty.

The pipeline consists of a series of steps, each of which
represents a task that should be fulfilled before proceeding to
the next one to ensure a successful calibration. Performing these
tasks entails applying computational methods of different types,
symbolic and numerical. The analyses and calculations can be
computationally challenging in practice. While the protocol is
not dependent on a particular choice of software, we have rec-
ommended a number of state-of-the-art tools that implement
the methods.

To facilitate the application of the protocol by novices as well
as by experienced modellers, we have described in detail how to
perform each of the protocol steps. We have also provided the
theoretical background required for understanding the under-
lying problems. Furthermore, we have illustrated its use with
two case studies: a carotenoid pathway model in A. thaliana and
an EGF-dependent Akt pathway of the PC12 cell line. Finally, we
have highlighted some of the most common pitfalls in biological
modelling, showing how to avoid them.

Key Points
• The correct calibration of dynamic models is essential

for obtaining correct predictions and insights.
• While a wide range of tools and resources are cur-

rently available, there are also many potential pitfalls,
even for the expert.

• Here we propose a model calibration protocol that
covers all aspects of the problem.

• The present paper guides the user through all the
steps of the pipeline, providing a one-stop guide that
is at the same time compact and comprehensive.

• We provide all the code required to reproduce the
results and perform the same analysis on new mod-
els, so that the biological modelling community can
benefit from this pipeline.

Supplementary data

All data, scripts and examples presented in this paper can
be downloaded from https://github.com/ICB-DCM/model_ca
libration_protocol. Supplementary data are also available
online at https://academic.oup.com/bib.
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