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There is conflicting evidence on the influence of weather on COVID-19 transmission. Our aim

is to estimate weather-dependent signatures in the early phase of the pandemic, while

controlling for socio-economic factors and non-pharmaceutical interventions. We identify a

modest non-linear association between mean temperature and the effective reproduction

number (Re) in 409 cities in 26 countries, with a decrease of 0.087 (95% CI: 0.025; 0.148)

for a 10 °C increase. Early interventions have a greater effect on Re with a decrease of 0.285

(95% CI 0.223; 0.347) for a 5th - 95th percentile increase in the government response index.

The variation in the effective reproduction number explained by government interventions is

6 times greater than for mean temperature. We find little evidence of meteorological con-

ditions having influenced the early stages of local epidemics and conclude that population

behaviour and government interventions are more important drivers of transmission.
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Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has rapidly spread across the globe, traversing
diverse climatic and environmental conditions. Sustained

local transmission has occurred in most countries, leading to
political, social and economic challenges and devastating loss of
life. From the early phase of the pandemic, there has been
speculation that weather conditions could modulate SARS-CoV-2
transmission patterns. The debate has been driven by analogy
with existing seasonal endemic respiratory viral infections, such
as influenza and other human coronaviruses, which tend to peak
in the drier and colder winter months in temperate climates1.
However, specific mechanisms behind this seasonality, in terms of
host immunity and susceptibility, viral stability or weather-
sensitive human behaviour are poorly understood2. Dynamic
transmission modelling has shown that meteorological variables,
such as temperature and humidity, are unlikely to have been a
dominant transmission risk factor in the early stages of the
COVID-19 pandemic, given high population susceptibility3,4. As
SARS-CoV-2 is a new virus to humans, with <1 year of data
available at the time of writing, ascertaining the potential for
weather modulated transmission is challenging. Several studies
have attempted such analyses. However, many such studies had
methodological weaknesses and the results were at times
conflicting5,6. Study findings for temperature resulted in either a
positive7,8, negative9,10, non-linear11,12 or non-significant
association13,14 with the COVID-19 response variable. For
example, most studies did not control for key modulating factors,
such as varying government restrictions, socio-economic indica-
tors, population density or age structure15–17.

In this study, we overcome methodological issues of previous
approaches by using a two-stage ecological modelling approach to
examine the impact of meteorological variables on SARS-CoV-2
transmission by comparing cities located across the globe, while
accounting for confounding of non-pharmaceutical interventions
(NPIs) and city-level covariates. The study is based on an
extensive dataset, collected by the Multi-Country Multi-City
MCC Collaborative Research Network (https://
mccstudy.lshtm.ac.uk/), consisting of time series of daily
COVID-19 cases registered between 11 January and 28 April
2020 in 409 locations (cities or small regions) in 26 countries. In
the first stage, we estimated the effective reproduction number
(Re), in each city, over a city-specific time window early in the
epidemic. We use a renewal equation-based approach that esti-
mates latent infections and then map these infections to observed
notifications via an incubation period, a report delay and a
negative binomial observation model with a day of the week
effect18. Focusing on the early phase of the pandemic allows us to
minimise possible biases coming from factors impacting Re (in
particular non-pharmaceutical interventions (NPIs)), which
developed as the pandemic progressed. These include change of
ascertainment methods and strategies, the implementation of
strong NPIs (e.g. travel bans, school closures and lockdown), the
appearance of new variants and ultimately vaccination cam-
paigns. Also, in the first stage we define our exposure variables as
mean values of meteorological variables (including daily mean
temperature, relative and absolute humidity, solar radiation, wind
speed and precipitation), for each city, over the early-phase time
window, using the ERA5 fifth-generation European Centre for
Medium-Range Weather Forecast atmospheric reanalysis of the
global climate19. In a second ‘cross-sectional’ stage, we estimate
the association of city-level Re, calculated for the city-specific
window (allowing for standard errors), with each meteorological
variable, controlling for confounding by total population, popu-
lation density, gross domestic product (GDP) per capita, per-
centage of population >65 years, pollution levels (i.e. particulate
matter, PM2.5) and the lagged Oxford COVID-19 Government

Response Tracker (OxCGRT) Government Response Index at the
endpoint of the selected time window (lagged by 10 days),
allowing for the two-level (cities and countries) structure of the
data using a multilevel meta-regression model20 (see ‘Methods’
for further details). We believe the data used and the analysis
performed in this study improves upon previous approaches.
Specifically, the fine spatial scale of the city-level data and the
methodological design, accounting for confounding of NPIs and
city-level covariates, allows us to accurately quantify the rela-
tionship between meteorological variables and Re.

Results
Descriptive analysis of meteorological variables and Re. The
bivariate distribution of mean temperature and the effective
reproduction number (Re) across the 409 study cities is shown in
Fig. 1, and the characteristics of the 26 countries are reported in
Table 1. The mean effective reproduction number (Re) across all
cities was 1.4, ranging from 0.7 to 2.1, with all but ten cities
experiencing an epidemic curve with a reproduction number >1.
Mean temperatures over the observation period (between January
and April 2020) reflect the late winter/early spring in 381 cities
situated in the northern hemisphere and the summer/early
autumn seasons in 28 cities in the southern hemisphere. Of the
136 cities classified as having high Re values, 35 cities experienced
low temperatures, 64 medium temperatures and 34 high tem-
peratures (Fig. 1). When visualising the unadjusted association of
Re with mean temperature, relative humidity (RH), absolute
humidity (AH), solar radiation at the surface and stratified by
climate zone, we found no clear pattern (Fig. 2).

Associations between meteorological variables and Re. Using a
two-stage meta-regression model, we quantified the influence of
meteorological variables, including mean temperature, on Re
between cities, while controlling for confounding factors includ-
ing government interventions. After adjusting for the city-level
characteristics (e.g. socio-economic and demographic factors)
and the country’s OxCGRT Government Response Index, we
found a modest, non-linear association of mean temperature and
AH with Re (Table 2). Less strong evidence of association was
found for RH, with no evidence of association for solar radiation,
wind speed and precipitation (Table 2). The association between
mean temperature and Re is non-linear, with Re initially rising to
a peak at 10.2 °C, then falling to a trough at 20 °C, 0.087 (95%
confidence interval (CI): 0.025; 0.148) lower than the peak, and
finally rising again (Fig. 3). AH has a similar non-linear shape
with a maximum difference of 0.061 (95% CI: 0.011; 0.111)
between the peak at 6.6 g/m3 and the trough at 11 g/m3.

The effect of NPIs on Re. Although we calculated Re over a time
window in which the OxCGRT Government Response Index,
lagged by 10 days, had not yet reached 70, we included the value
of the lagged OxCGRT Government Response Index at the end of
the city-specific window in the model, to control for residual
confounding. Despite being capped at 70, the OxCGRT Gov-
ernment Response Index had a strong association with the
reproduction number (p < 0.0001) (Supplementary Table 4),
explaining 13.8% of its variability (Fig. 3 and Supplementary
Table 4, Models D1–D7) with an estimated reduction of Re equal
to 0.285 (95% CI: 0.223; 0.347) when levels of the Government
Response Index increase from 21 (5th percentile) to 66 (95th
percentile). Mean temperature explained 2.4% and AH 2.0% of
the variation in Re, and the five city-level characteristics explained
1.4% of the variability of the reproduction number (Supplemen-
tary Table 4, Models D1–D8).
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Sensitivity analyses. We performed several sensitivity analyses to
evaluate the robustness of the results considering alternative
analytic or selection choices (see Supplementary Table 5). The
main results are stable when including a country-level fixed effect
in the meta-regression model, i.e. considering the only within-
country variation of covariates and outcome. Restricting the
analysis to cities with weaker interventions (OxCGRT Govern-
ment Response Index <60) also gives similar results to the main
analysis, apart from wind speed and precipitation also showing an
association with Re. The association between mean temperature
and the effective reproduction number holds across all the sen-
sitivity analyses, apart from in tropical and southern hemisphere
cities, when stratifying by tropical and non-tropical or northern
and southern hemisphere regions. However, this may be
explained by the small number of cities and the resulting low
power in the tropical and southern hemisphere sub-group. The
association between AH and the effective reproduction number is
somewhat less robust with no association observed when
excluding tropical or southern hemisphere cities, when excluding
China and Brazil (countries with earlier and later observation
periods) and when considering meteorological variables lagged by
10 days. Excluding the ten cities with Re < 1 shows a tendency of
an increased Re for cities with low RH (p= 0.009) and a lower Re

in cities with higher solar radiation at the surface (p= 0.047)
(Supplementary Figure 5). We observed similar overall tendencies
to our main results when we did not control for the OxCGRT
Government Response Index in our model, although the effect of
temperature and AH was enhanced (Supplementary Figure 6),
and when considering meteorological variables lagged by 10 days
(Supplementary Table 5). We found no evidence of an interaction
between mean temperature and RH categorised in two levels
(≤65% and >65%) using the median value of 65% as the category
threshold (p= 0.428).

Discussion
We combined datasets of COVID-19 transmission with meteor-
ological, demographic, socio-economic and intervention data for
409 cities in 26 countries across the world to estimate the asso-
ciation between meteorological factors and Re in the early phase
of the COVID-19 pandemic. We found evidence of a modest
non-monotonic association of outdoor mean temperature and
AH with early-phaseRe, after controlling for potential con-
founders, including NPIs. Temperature explained 2.4% and AH
2.0% of the variation in Re, compared to 13.8% explained by the
OxCGRT Government Response Index in the adjusted analysis.
The associations of temperature and AH with Re were not

Fig. 1 Effective reproduction number and mean temperature in the observation window for 409 cities. Bivariate plot of effective reproduction number
(Re) and mean temperature (Ta) (°C) in the observation window for each of the 409 study cities. Dark purple circles represent cities with both high Re and
high Ta, while pale purple circles show areas with both low Re and low Ta. Red circles represent cities with low Re and high Ta and blue circles depict areas
with high Re and low Ta. The bar chart (bottom right) represents the number of cities in each category defined in the bivariate legend (bottom left).
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Table 1 Characteristics of the 26 countries included in the study.

Country Number of cities Reported COVID-19 cases Mid-period Re Government index

Australia 3 1747 20/03/2020 1.39 38.5
Brazil 18 17,179 10/04/2020 1.29 61.9
Canada 9 2709 21/03/2020 1.50 58.9
Chile 4 2587 27/03/2020 1.32 55.9
China 11 4178 03/02/2020 1.13 57.3
Czech Republic 1 358 21/03/2020 1.36 69.2
Ecuador 1 1014 20/03/2020 1.39 46.2
Estonia 1 209 20/03/2020 1.16 41.0
Finland 1 710 16/03/2020 1.37 30.1
France 17 5834 17/03/2020 1.51 55.8
Germany 12 7759 16/03/2020 1.43 41.1
Italy 19 11,796 11/03/2020 1.49 67.9
Japan 9 1178 12/03/2020 1.29 37.0
Kuwait 1 108 05/03/2020 1.31 21.8
Mexico 8 1894 25/03/2020 1.25 28.4
Norway 1 626 12/03/2020 1.32 16.7
Peru 1 428 18/03/2020 1.45 57.7
Philippines 2 215 21/03/2020 1.40 64.7
Singapore 1 56 15/02/2020 0.87 30.1
South Korea 4 5877 06/03/2020 1.17 54.8
Spain 52 43,331 11/03/2020 1.51 42.1
Switzerland 7 6908 13/03/2020 1.54 34.3
United Kingdom 45 9354 26/03/2020 1.41 58.0
United States 179 136,303 27/03/2020 1.45 60.7
Uruguay 1 271 19/03/2020 0.91 46.2
Vietnam 1 38 25/03/2020 1.10 45.5

The number of cities per country, total reported COVID-19 cases in the time window, mid-period of the pre-defined window of early transmission, effective reproduction number (Re) and the lagged
OxCGRT Government Response Index at the endpoint of the pre-defined window.

Fig. 2 Effective reproduction number vs key weather variables by climate zone. a Mean temperature (°C), b relative humidity (%), c absolute humidity
(g/m3) and d solar surface radiation (J/m2) vs effective reproduction number (Re) by climate zone (409 cities). The area of the circles is proportional to
the precision (inverse of the variance) of Re estimates.
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independent; the high correlation between them precluded con-
trol of one for the other. Overall, there was little evidence for any
change in the Re of COVID-19 associated with RH and no evi-
dence for precipitation and wind speed.

Associations between temperature, humidity and SARS-CoV-2
transmission might be explained by three mechanisms. First, like
other viruses with a lipid envelope, SARS-CoV-2 has been found
to be sensitive to temperature, humidity and solar radiation under

laboratory conditions21–25, which affects its ability to survive on
surfaces and in aerosols. The droplet behaviour in aerosols
changes with different temperature and humidity levels. Low RH
promotes the accumulation of aerosol particles (since evaporation
leaves behind floating droplet nuclei) increasing the likelihood to
be inhaled26,27. Second, innate and adaptive immune response
mechanisms have been shown to be modulated by seasonal
changes. Lower levels of vitamin D, mediated by decreased

Table 2 Association between weather variables and Re.

+Variables Contrast for which effect size is
presenteda

Effect size 95% CI P value Difference in the likelihood ratio
RLR

2 statistic

Mean temperature (°C) 10.2 vs 20 0.087 (0.025; 0.148) 0.014 +2.5
Absolute humidity (g/m3) 6.6 vs 11 0.061 (0.011; 0.112) 0.036 +2.0
Relative humidity (%) 60 vs 75 0.043 (−0.001; 0.087) 0.058 +1.5
Surface solar radiation downwards
(J/m2)

248 vs 124 −0.053 (−0.117; 0.011) 0.208 +0.6

Wind speed (m/s) 1.1 vs 3.0 −0.038 (−0.090; 0.014) 0.152 +0.7
Total precipitation (m) 0.1 vs 6 −0.031 (−0.075; 0.014) 0.175 +0.4
OxCGRT (0–100) 21 vs 66 0.285 (0.223; 0.347) <0.0001 +13.8

Effect size and variation explained by including, in turn, mean temperature (°C), absolute humidity (g/m3), relative humidity (%), surface solar radiation downwards (J/m2), wind speed (m/s), total
precipitation (m) and OxCGRT (0–100) in the model of Re. P values were obtained from a two-sided Wald test in the multivariable meta-regression multilevel models adjusted by population (log scale),
population density (log scale), GDP (log scale), % population >65 years, PM2.5 (μg/m3, log scale) and the OxCGRT Government Response Index, with cities nested within countries.
aThe exposure contrast for which effect size is presented is that between the values predicting minimum and maximum Re, where clear minima and maxima are observed (mean temperature, absolute
humidity and relative humidity), otherwise the 5th to 95th percentiles.

Fig. 3 Associations between weather variables, non-pharmaceutical interventions and the effective reproduction number. Non-linear associations
between (a) mean temperature (°C), (b) relative humidity (%), (c) absolute humidity (g/m3) and (d) OxCGRT Government Response Index and predicted
Re difference. Curves and their 95% confidence intervals show the predicted difference in Re with respect to a reference value set to the value at the trough
of the curve for meteorological variables (a–c), or for the OxCGRT Government Response Index= 50 (d). Two-sided Wald test p values and adjusted
curves with 95% confidence intervals were obtained from multivariable meta-regression multilevel models adjusted by population (log scale), population
density (log scale), GDP (log scale), % population >65 years of age, PM2.5 (μg/m3, log scale) and OxCGRT Government Response Index, with cities nested
within countries. The marginal distribution along the x-axis represents the observed data for that covariate.
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ultraviolet B radiation exposure during winter might lead to
impaired antiviral innate immune defences28–30. Breathing dry
air can impair mucociliary clearance, reducing the ability of cilia
cells to secrete mucus and remove viral particles (innate immune
response)27,31. Interferon-stimulated genes, usually inducing an
antiviral state as part of the innate immune response have been
found to be impaired at low RH32. High temperatures have been
shown to hinder virus-specific CD8+ T cell responses and anti-
body production (adaptive immune system)33. Third, human
mobility, contact patterns and time spent indoors are affected by
weather conditions34. Very hot and very cold conditions can lead
to more time spent in enclosed spaces, which might increase the
likelihood of SARS-CoV-2 transmission.

Findings from this study are only partly consistent with findings
from other global studies using statistical approaches to investigate
meteorological effects on COVID-19 transmission. Meyer et al.9

found that mean temperature had a modest negative association
with COVID-19 incidence for temperatures above −15 °C based
on a dataset of 100 countries, after controlling for surveillance
capacity, time since first reported case, population density and
median population age, whereas RH had a negative non-
significant association with case incidence. Jüni et al.13 covering
144 geopolitical areas showed that temperature and humidity
measures were not significantly associated with epidemic growth
while significant associations were found for restrictions of mass
gatherings, school closures and measures of social distancing,
which are consistent with our findings of a stronger impact of the
OxCGRT Government Response Index compared to climatic
conditions. Wu et al.35 incorporating data from 166 countries
found that a 1 °C increase in temperature and RH was associated
with a 3% and 0.85% decrease in daily new cases, respectively,
after controlling for wind speed, median population age, Global
Health Index, Human Development Index and population den-
sity. Interestingly, non-linear associations between mean daily
temperature and the instantaneous reproduction number (Rt) in
the United States of America were found in a study by Rubin
et al.12 with Rt decreasing to a minimum as temperatures rose to
11 °C, increasing between 11 and 20 °C and then declining again at
temperatures >20 °C. The shape of the association may be influ-
enced by the indirect effect of weather in varying the likelihood of
social interactions, e.g. at higher temperatures people may con-
gregate in public cities, such as beaches and festivals12, while
colder temperatures could limit social activities, such as sporting
events34. Runkle et al.11 concluded from varying longitudinal
associations in four cities that specific humidity in the range of
6–9 g/kg (i.e. AH range of 7.6–11.4 g/m3) was a significant pre-
dictor of the COVID-19 growth rate, in line with our findings.

Unclear and inconsistent findings related to temperature and
humidity may be due to methodological challenges and data
limitations. Similar methodological challenges were highlighted
when evaluating the association between air pollution and
COVID-19 outbreaks36,37. The novelty of the virus, with less than
a full annual cycle of data available in most places, makes it
difficult to disentangle a seasonal signal or inter-annual trends
from meteorological factors using time-series models38. More-
over, different interventions (e.g. restrictions of mass gatherings,
international travel and school closures) adopted by countries at
different times after the onset of local outbreaks potentially
confound the association between weather variables and COVID-
19 spread. These challenges have led us to consider an ecological
approach where we compared the outbreak curve early in the
epidemic, minimising the confounding effect of NPIs. Despite
this, we found a strong association of the OxCGRT Government
Response Index with Re, confirming the importance of inter-
ventions implemented early on in the epidemic in controlling
COVID-19 dynamics39.

Comparing the early-phase outbreak curves in different
countries is challenging given that countries have different case
definitions, and early COVID-19 data only captured a small
portion of cases, mainly hospitalised patients or individuals with
severe symptoms. The estimated high proportion of asympto-
matic cases compromises the use of COVID-19 case counts to
estimate transmission dynamics40. We used an estimated
response variable, i.e. the effective reproduction number, calcu-
lated accounting for reporting delays and other sources of
uncertainty. The 20-day duration was chosen as a compromise
between needing enough days for a more precise Re estimation,
while, at the same time, limiting the window to provide more
constant weather, case ascertainment and Re estimates within the
window. A larger window would bias estimates in ways that
cannot be readily adjusted for. Our meta-analysis approach
accounts for the uncertainty in Re estimates, which in turn
reduces the level of certainty in the results. Further, 20 days is ~4
generations of infections, which, under most reporting scenarios,
is sufficient to be confident about estimates in the level of
transmission. We assume that within the 20-day time window,
the case definition is constant within a city or country and Re is
not affected by differences in case definition between countries.

A clear strength of this study is the use of an extensive dataset
of 409 cities, representing 44.8% of all cumulative reported
COVID-19 cases registered by 31 May 2020 in the John Hopkins
University Coronavirus Resource Center. Our analysis covers all
major climate zones across the globe, ranging from temperate,
continental to tropical and dry climate settings. Another strength
is our flexible methodological and statistical approach. We used
multilevel meta-analytic models that take into account uncer-
tainty of the response variable, i.e. the effective reproduction
number. The model allowed for possible non-linearity of the
exposures, and we adjusted for a selection of key socio-economic
and demographic factors, as well as using a random effect to
account for the country- and city-level differences. We chose
covariates based on their potential impact on viral transmission
that might confound the examined association of weather and
COVID-19 dynamics. Indeed, population density leads to higher
contact rates, potentially increasing the likelihood of
transmission41. The age structure of a population is relevant given
that elderly people were found to be more susceptible to infection
and more likely to experience clinical symptoms of COVID-19
compared to younger age groups, increasing the likelihood of
seeking medical care and getting tested42. Moreover, differences
in contact patterns among different age groups can further affect
the number of COVID-19 cases in each age group42. Socio-
economic indicators, such as GDP per capita, are important to
consider as more deprived populations might be at higher risk of
infection due to potential conditions of overcrowded accom-
modation, inability to work from home or limited access to
medical care43. Also, among air quality factors, a positive asso-
ciation between PM2.5 and COVID-19 incidence and mortality
has been reported44,45.

We investigated model uncertainties with several sensitivity
analyses, e.g. excluding cities with R < 1, excluding China and
Brazil, cities in the southern hemisphere, cities with a latitude
lower than 45°, and cities with an OxCGRT Government
Response Index of more than 60. Previous studies compared cities
within a country or considered large geographical units13,35,46,
which could lead to a limited exposure range with narrow tem-
perature and humidity variability reported during winter seasons,
or high measurement errors for meteorological variables defined
over large geographical units. We considered small area/city units
distributed among 26 countries worldwide, allowing a good
exposure range and minimising the measurement error of the
exposures.
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Our study has several important limitations in addition to
those already discussed. Cities in the northern hemisphere were
overrepresented compared to southern hemisphere cities, which
indicates that the findings might be more representative for cities
in the global north. Our results need to be put into the context of
complex uncertainties surrounding characteristics of the novel
virus, such as incomplete knowledge on possible underlying
mechanisms between weather conditions and the virus itself, the
role of host immunity and the potential influence of weather-
sensitive human behaviour, such as indoor crowding47. However,
AH was found to demonstrate the strongest indoor-to-outdoor
correlation, indicating that outdoor AH measures could reflect
indoor conditions48,49. Data limitations regarding the novel virus,
including varying accuracy of COVID-19 case numbers, limited
data availability across cities and temporal constraints of an
incomplete seasonal cycle of SARS-CoV-2 contribute to the
limitations of this analysis.

Despite these limitations, the associations of weather with Re in
this study suggests that such effects are likely to be small com-
pared to other drivers of transmission. NPIs had a stronger
impact on variation in transmission between cities than meteor-
ological variables. We found no weather conditions in which
transmission is impeded if precautions (social distancing, mask
use, etc.) are not taken. These results support the statement that,
to date, COVID-19 interventions are critical regardless of
meteorological conditions.

Methods
Data. Data in this study were obtained from a well-established MCC Collaborative
Research Network50. The current MCC network covers 750 locations (cities or
regions) in 43 countries/regions. For this study, 26 countries provided a daily time
series of COVID-19 cases for a total of 502 locations (cities or small regions).
COVID-19 data were downloaded from a publicly available repository or obtained
from health agencies (Supplementary Table 1) and data management was per-
formed using Microsoft Excel 2019. The time series from 1 January 2020 to 31 May
2020 comprises 2,771,137 COVID-19 cases, representing 44.8% of the cumulative
cases registered by 31 May 2020 in the Johns Hopkins database (https://
coronavirus.jhu.edu/). Supplementary Table 1 shows the sources used for each
country along with the definition of COVID-19 cases.

To limit potential confounding by NPIs and temporal variation in case
ascertainment, we selected a 10–20-day window early in the epidemic, starting after
at least ten confirmed cases had occurred in a 10-day period, to reduce noise
introduced by imported cases. We excluded days for which the OxCGRT
Government Response Index exceeded 70, accepting reduced windows down to
10 days in length. The OxCGRT collates publicly available information on 18
indicators about governments’ policy responses to the COVID-19 pandemic
(https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-
response-tracker). These indicators are categorised as containment or closure
policies (e.g. school and workplace closures, restrictions on gatherings and
movement), economic policies (e.g. income support) or health policies (e.g.
COVID-19 testing programmes). The OxCGRT Government Response Index
aggregates these indicators into a single score between 0 and 100 and provides a
measure of how many policies a government has enacted, and to what degree. We
chose 70 as the maximum value of OxCGRT Government Response Index
allowable as a compromise between limiting confounding by government
interventions and including enough cities to enable estimation of the associations
studied (see Supplementary text 1). Applying these conditions/restrictions reduced
our dataset to 409 cities or small regions in 26 countries with an observation period
between 11 January 2020 and 28 April 2020.

Most of the 409 cities are situated in the northern hemisphere (n= 381), and in
temperate (n= 292) or continental (n= 65) climatic zones, with few cities located
in tropical (n= 23) and dry (n= 29) climatic zones. The COVID-19 cases were
observed in the early phase of the epidemics, ranging from the first week of
February 2020 in China to mid-April 2020 in Brazil (Supplementary Figure 1). This
early epidemic phase is characterised in many countries (except Uruguay and
Singapore) by a reproduction number >1 (Table 1).

We estimated Re for infections in the time window of interest using EpiNow2
1.3.218. This R package implements a Bayesian latent variable method for
estimating Re, where infections at time t are estimated using the sum of previous
infections, weighted by an uncertain, gamma-distributed, generation time
probability mass function, and multiplied by an estimate of Re51,52. Initial
infections (prior to the first reported case) were estimated using a log-linear model
with priors based on the observed growth in cases. Complete infection trajectories
were then mapped to reported case counts by first convolving over the incubation

period distribution and an estimated distribution representing the delay between
symptom onset and case report (both assumed to be log-normal). Reporting noise
was then added using a negative binomial observation model combined with a
multiplicative day of the week effect (modelled using a simplex). Re was considered
to be piecewise constant with a breakpoint 3 days into the time window. The Re
estimate from the first 3 days of the window was discarded with the Re estimate
from the remainder of the window used in all analyses. Each region was fitted
independently using Markov chain Monte Carlo. Four chains were used with a
warmup of 1000 samples and 4000 samples post warmup. Convergence was
assessed using the R hat diagnostic53.

We used a gamma-distributed generation time with a mean of 3.6 days
(standard deviation (SD) 0.7) and a SD of 3.1 days (SD 0.8)54,55. This generation
time was slightly shorter than the consensus estimate reported by Ferretti et al.56,
leading to our Re estimates and subsequent effect sizes being conservative. We used
a log-normally distributed prior for the incubation period with a mean of 5.2 days
(SD 1.1) and SD of 1.52 days (SD 1.1)57. The log-normal prior for the delay from
symptom onset to case report was estimated globally using a subsampled Bayesian
bootstrapping approach (with 100 subsamples each using 250 samples) using data
from an international line list of cases. The resulting distribution had a mean of
6.4 days and a standard deviation (SD) of 17 days (or a log mean of 0.83 (SD 0.15)
and a log SD 1.44 (SD 0.12). The subsampled bootstrap approach was used to
incorporate both the temporal and spatial uncertainty in the reporting distribution
as data specific to each setting and time point was not available.

To define our exposures, we considered the following time series from the ERA5
dataset: 2 m temperature, 2 m dewpoint temperature, surface solar radiation
downwards, precipitation, and 10 m eastward (u) and northward (v) components
of wind. These are published by the Copernicus Climate Change service on a
regular latitude/longitude grid of 0.25° (~25 km × 25 km) in NetCDF format19. The
hourly 2 m temperature, 2 m dewpoint temperature and surface solar radiation
downwards were averaged for each day to derive daily mean temperature, dewpoint
temperature and surface solar radiation. From dewpoint temperature and the
corresponding temperature (T; °C) we obtained RH (%) using the R ‘humidity’
0.1.5 package58. The following formula was used to calculate AH (g/m3), which
represents the mass of water vapour in the air mixture59:

AH ¼ ð6:112 ´ eð17:67 ´TÞ=ðTþ243:5Þ ´ 2:1674 ´RHÞ=ð273:15þ TÞ:
The hourly 10 m u and v components of wind were averaged for each day, and

the daily average u and v components were used to compute the wind speed using
the formula wind speed= sqrt(u2+ v2). Hourly precipitation data were summed to
derive daily totals. The daily variables were calculated for each 25 km2 grid cell and
assigned to a city if the city centroid fell within the grid cell.

Mean temperature (and other meteorological variables, Supplementary Table 3)
observed during the city-specific time window reflect the late winter/early spring
observation period in cities situated in the northern hemisphere and in temperate
or continental climatic zones. We found a high correlation between mean
temperature and AH (Supplementary Figure 2). Socio-economic and demographic
characteristics were extracted from the OECD Regional and Metropolitan
database60 and Worldcities database61 (Supplementary Table 2). We selected, a
priori, the following set of confounders: total population, population density, %
elderly population (>65 years) and GDP (per capita). Pollution data (PM2.5) for the
observation period (10–20 days) was obtained from the Copernicus Atmosphere
Monitoring Service global near-real-time service62–64. This product provides
hourly modelled values of surface PM2.5 (μg/m3) at a 0.4 × 0.4 arc degrees grid cell
resolution. The hourly time series were averaged over the observation period and
linked to the city using the city centroid coordinates. Cities vary in terms of socio-
demographic characteristics (Supplementary Table 3). The correlation between
socio-demographic characteristics is shown in Supplementary Figure 3 and the
correlation between meteorological variables, OxCGRT Government Response
Index, day of the year and Re in Supplementary Figure 4. To account for differences
in NPIs we used the OxCGRT Government Response Index65. In this study, we
considered the 10 days lagged value of the OxCGRT Government Response Index,
and for each city, we assigned the index on the last day of the specified window for
each city39. Note, in our analysis, meteorological variables and socio-demographic
covariates were collated and summarised at the city level, while the COVID-19
time series were defined at the smallest administrative level containing the city. We
only included cities for which the COVID-19 time series were available for an area
in which most of the population resided in that city. We, therefore, refer to our unit
of analysis as a city.

Statistical analysis. For descriptive purposes, the following statistics (mean,
standard deviation and range) were calculated for meteorological variables (mean
temperature, AH, RH, surface solar radiation, wind speed, total precipitation) and
covariates considered in this study (total population, population density, % elderly
population (>65 years), GDP (per capita), PM2.5, OxCGRT Government Response
Index). We also calculated the correlation (Pearson coefficient) among meteor-
ological variables and among covariates.

The association between city-level covariates and climatic variables with the
effective reproduction number were evaluated using multilevel meta-regression
models with two levels (cities nested within countries)20 using the R ‘mixmeta’
1.1.0 package. The inclusion of country as a random effect allowed the model to
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account for country differences (e.g. data reporting) with efficient use of the within-
and between-country information. Moreover, the meta-regression models allowed
us to consider the precision of the Re estimates, as estimated by its variance, giving
less weight to more imprecise estimates for shorter time windows.

Firstly, we used two-level meta-regression models to evaluate the possible non-
linear association between each meteorological variable and the reproduction
number Re. We considered possible non-linearity in the association with Re using a
natural spline parameterisation of the meteorological variables with a variable
number of internal knots from 0 (linear term) to 5, placed at respective percentiles
of the variable. We compare the models with different non-linear
parameterisations of the meteorological variable using the Akaike Information
Criteria (AIC), choosing models with the lowest AIC.

We fitted the following two-level random-effects meta-regression models with
cities nested within countries and an increasing number of predictors; Model A
with two random effects (cities and countries) and the intercepts, Model B
including the OxCGRT Government Response Index, Model C considering also
total population, density, GDP, % population older than 65 years, and PM2.5 (total
population, density, GDP and PM2.5 were log-transformed due to the skewness of
their distribution).

Then for each meteorological variable, we fitted two-level meta-regression
models (D1–D6) with the meteorological variable as exposure and total population,
density, GDP, % population older than 65 years, PM2.5 and the OxCGRT
Government Response Index as covariates. We considered non-linearity in the
association with Re using a natural spline parameterisation of the climatic variables
with the number of internal knots as determined in the univariate analysis. The
coefficients of the natural spline parameterisation of the meteorological variable
were used to derive the plot of the association between the meteorological variable
and Re in the 5–95th percentile of the meteorological variable distribution (Fig. 3
and Supplementary Figures 5 and 6). The coefficients of the natural spline
parameterisation of the meteorological variable were also used to test the
association between the meteorological variable and Re using the multivariate Wald
test. All the tests were two-sided. Given the small number of pre-defined exposures
variables, no adjustment was made for multiple comparisons.

We quantified heterogeneity between cities with standard measures of I2 66.
These measures are estimated once from a meta-regression model without meta-
predictors (Model A) and once from the meta-regression models (Models B, C and
D1–D6) to assess the reduction in residual heterogeneity provided by the different
set of predictors. For each model, we calculated the likelihood ratio test (RLR2)
statistic67. RLR2 is calculated as 1− exp(−2/409 × (log Likm− log Lik0), where
log Likm is the log-likelihood of the model of interest and log Lik0 is the log-
likelihood from a null model including only city and country random effect (i.e.
Model A). For each meteorological variable, we calculated the difference in the
likelihood ratio test R2 (RLR2) with respect to Model C (including random effects,
OxCGRT Government Response Index and city-level covariates). For OxCGRT
and city-level covariates, the RLR2 represents the reduction in RLR2 when dropping
OxCGRT or city-level covariates from Model D1 with temperature and all other
terms (i.e. random effects, OxCGRT and city-level covariates).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
COVID-19 data were downloaded from publicly available repositories or obtained from
health agencies (Supplementary Table 1). COVID-19 data for Australia, Brazil, Canada,
Chile, China, Czech Republic, Estonia, Finland, Germany, Italy, Kuwait, Mexico,
Norway, Peru, Philippines, Romania, South Korea, Spain, United Kingdom, United
States and Vietnam are publicly available. COVID-19 data for Japan and Singapore are
available upon request. COVID-19 Data for France, Switzerland and Uruguay were
obtained by a specific request to health agencies and are not publicly available.
Meteorological variables (mean temperature, dewpoint temperature, solar radiation,

wind components and precipitation) were derived from ERA5 reanalysis product ‘https://
cds.climate.copernicus.eu/cdsapp#!/search?type=dataset’.
Pollution levels (PM2.5) was derived from CAMS near real time ‘https://

apps.ecmwf.int/datasets/data/cams-nrealtime/levtype=sfc/’.
The OxCGRT Government Response Index was downloaded from the public

repository: https://github.com/OxCGRT/covid-policy-tracker/raw/master/data/
OxCGRT_latest.csv (downloaded 3 August 2020).
Socio-economic and demographic characteristics were extracted from the OECD

Regional and Metropolitan database ‘https://www.oecd.org/regional/regional-policy/
regionalstatisticsandindicators.htm’ and Worldcities database.
Data were processed and harmonised at the city level. The city-level data used in the

main and supplementary analysis of the paper are available in the GitHub directory:
https://github.com/fsera/COVIDWeather/ 68.

Code availability
The code developed in the study to perform the city-level main analysis is available in the
following GitHub repository68.

For each meteorological variable, the effect size was calculated using predicted curves
from multivariable meta-regression multilevel models. We calculated the difference in
the likelihood ratio test R2 (RLR2) with respect to a model including random effects,
OxCGRT Government Response Index, and city-level covariates (Model C,
Supplementary Table 4). RLR2 is calculated as 1− exp(−2/409 × (log Likm− log Lik0),
where log Likm is the log-likelihood of the model of interest and log Lik0 is the log-
likelihood from a null model including only city and country random effect (i.e., Model
A, Supplementary Table 4). For OxCGRT, the RLR2 represents the reduction in RLR2

when dropping OxCGRT from the model with temperature and all other terms (i.e.,
random-effects and city-level covariates).
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