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Abstract 

Cachexia, a multifactorial wasting syndrome, is highly prevalent among advanced-stage cancer patients. Unlike 
weight loss in healthy humans, the progressive loss of body weight in cancer cachexia primarily implicates lean body 
mass, caused by an aberrant metabolism and systemic inflammation. This may lead to disease aggravation, poorer 
quality of life, and increased mortality. Timely detection is, therefore, crucial, as is the careful monitoring of cancer 
progression, in an effort to improve management, facilitate individual treatment and minimize disease complications. 
A detailed analysis of body composition and tissue changes using imaging modalities—that is, computed tomogra-
phy, magnetic resonance imaging, (18F) fluoro-2-deoxy-d-glucose (18FDG) PET and dual-energy X-ray absorptiome-
try—shows great premise for charting the course of cachexia. Quantitative and qualitative changes to adipose tissue, 
organs, and muscle compartments, particularly of the trunk and extremities, could present important biomarkers for 
phenotyping cachexia and determining its onset in patients. In this review, we present and compare the imaging 
techniques that have been used in the setting of cancer cachexia. Their individual limitations, drawbacks in the face of 
clinical routine care, and relevance in oncology are also discussed.
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Introduction
Cachexia is a multifactorial wasting disorder associated 
with neoplastic diseases such as cancer and other, mainly 
chronic, diseases. Cancer cachexia is characterized by a 
substantial loss of body weight, including muscle wasting 
and, but not necessarily, adipose tissue loss. These fea-
tures are driven by disturbances in protein, carbohydrate, 
and lipid metabolism and are associated with a systemic 
inflammatory state, conferring a negative energy balance 
[1, 2]. Simultaneously, cachexia-associated anorexia fur-
ther exacerbates an already catabolic state, accelerating 
disease progression. Unlike starvation, a key feature of 
cancer cachexia is the inability to fully treat involuntary 

weight loss with standard nutritional support therapies 
[3], highlighting a critical energy homeostatic and meta-
bolic disruption.

Cancer cachexia is classified into three linear stages: 
(1) Precachexia describes the early stage of the disease 
where minor weight loss changes occur that may present 
with prior glucose intolerance and anorexia. (2) Cachexia 
describes a body weight loss of > 5% within 6  months, a 
weight loss of > 2% in patients with a BMI of < 20, or sar-
copenia. (3) Refractory cachexia describes the state at 
which reversibility of the disease, given the current day 
treatment strategies, is dramatically decreased, and aver-
age life expectancies reach below 3 months, with tumor 
treatments remaining unresponsive [3]. Progression 
through these stages may, however, vary from patient 
to patient, imparting the complexity of the underlying 
mechanisms and potential phenotypic regulators [2].
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The heterogeneous presentation of cachexia in can-
cer is a culmination of multiple interplaying factors. 
This has hindered a clear consensus regarding clinical 
description in the past, leading to the frequent omis-
sion of cachexia-related deaths in national statistical 
databases, occluding prevalence and clinical relevance 
data [2]. The vast majority of data originates from 
nutritional screens conducted in national cancer cent-
ers [4–7]. However, the differing scores and selection 
criteria hamper clear readouts when combining out-
comes. Cancer cachexia rates, given the nature of the 
disease, are comparable to those of untreatable termi-
nal illnesses and are thus uniformly high toward end 
of life. Importantly though, cachexia must not always 
develop in late-stage cancer; this is supported by 
reports of skeletal muscle anabolism in patients with 
advanced-stage cancer [8, 9]. Certain cancers are also 
known to be more likely associated with cachexia: the 
cachexia incidence for prostate and breast cancer lies 
at approximately 20%, around 40–50% for hematologi-
cal, colorectal and lung cancer, while gastroesophageal 
and pancreatic cancers exhibit alarmingly high rates 
ranging from 60 to 70% [4, 5]. The amount of weight 
patients will typically lose parallels the occurrence rates 
concerning cancer type, with approximately 2% body 
weight loss in prostate cancer, but up to 15% in pancre-
atic cancer [4, 5].

The high prevalence rate of cancer cachexia calls for 
cancer patient treatment frameworks which incorporate 
adequate cachexia management as well as transparent 
documentation of therapy outcomes. The dramatic sarco-
penia, anorexia and fatigue experienced by patients have 
a severely detrimental impact on their quality of life [10]. 
This extends to family members and loved ones, who 
visually experience the ineffectiveness of treatment strat-
egies and the decline in well-being of the patient, provok-
ing frustration and fear, ultimately further decreasing 
the patient’s quality of life [11]. Involuntary weight loss 
is commonly the initial clinical presentation of cachexia, 
and thus it is critical that weight is carefully monitored 
after cancer diagnosis, as precachexia may reveal itself 
before weight loss begins [12]. The decrease in skeletal 
muscle mass often has devastating outcomes regard-
ing cancer prognosis and outcome. An elevated chemo-
therapy toxicity has been noted in cachectic patients, 
resulting in reduced dosing, therapy delay or complete 
abandonment [10]. Furthermore, low body weight is 
known to dampen success rates after cancer surgery, 
increasing complications and risk of mortality [13, 14].

Despite an ever-increasing research base and sup-
port from the pharmaceutical industry, cancer cachexia 
largely remains an untreatable and unnoticed entity. With 
20–30% of cancer deaths resulting from cachexia alone 

[15], the necessity to develop treatments, but also suit-
able methods for early detection are vital when looking 
ahead.

Cancer cachexia as a multi‑organ syndrome
In recent years, research focused on understanding the 
etiology of cancer cachexia has begun to shift from a 
muscle-focused field to a multi-organ view, as increas-
ing evidence reveals a complex network of organ partici-
pation [16, 17]. Figure  1 provides a schematic overview 
of the tissues and organs affected by cancer cachexia, 
beyond skeletal muscle changes, including the liver, adi-
pose tissue depots, the brain, the myocardium and the 
gut.

First, systemic inflammation drives the communi-
cation in this network through inflammatory factors 
derived from both the tumor as well as other organs in 
the network itself. The liver plays a key role in the sys-
temic inflammatory state of cachexia via the acute phase 
response (APR) [18, 19]. Beyond inflammation, the 
induced hepatic APR may also contribute to energy dis-
sipation with additional futile cycles such as the conver-
sion of tumor-derived lactate into glucose via hepatic 
gluconeogenesis. These processes can be fueled by amino 
acids derived from muscle protein degradation [20]. Fur-
thermore, hepatic triglyceride handling is impaired in 
cachectic models [21], which may further aggravate insu-
lin resistance and muscle wasting [22].

Second, the composition and distribution of adipose 
tissue is altered in cancer cachexia. On the one hand, 
induced lipolysis contributes to the loss of white adipose 
tissue (WAT), which can precede muscle wasting [23]. 
Fat mass was a significant predictor of survival in these 
patients [23], emphasizing the importance of lipid stores 
in WAT as markers for health and energy status during 
cancer cachexia. Brown adipose tissue (BAT), known 
for its thermogenic potential, has more recently gained 
attention, as different studies have found evidence for 
increased uncoupling protein 1 (UCP1; a main driver of 
thermogenesis in adipose tissue and energy dissipation) 
expression in the WAT of cachectic mice and patients 
[24, 25]. However, this observation is not consistent in 
all models of cancer cachexia [26], and to which extent 
UCP-1-dependent thermogenesis or other cycles such 
as lipolysis and re-esterification cycling of fatty acids 
[16, 20] contribute to energy wasting in cancer cachexia, 
remains to be determined.

Third, the brain conduces pathogenically increased 
energy expenditure. While inflammation of the hypo-
thalamus (a common topic in obesity research) may 
blunt food intake via a decreased appetite [27], the 
brain also has the capacity to stimulate lipolysis, WAT 
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browning and to drive thermogenesis via sympathetic 
innervation of the adipose tissue [28].

Fourth, there is a convincing amount of evidence 
linking gut homeostasis to cancer cachexia. These links 
range from gut barrier dysfunction—due to epithelial 
layer breakdown and consequent systemic inflamma-
tion through invading pathogens—to an altered gut 
microbiome [16, 17].

Finally, cancer cachexia affects cardiac muscle tissue, 
leading to cardiac tissue atrophy and dysfunction [29–
31]. Indeed, cardiac dysfunction is one of the underly-
ing causes of death in cancer patients [32].

To summarize, cancer cachexia is a complex systemic 
disease comprised of an intricate network of signals 
from multiple organs. Currently, body weight remains 
the standard diagnostic tool in clinics for cachexia 
detection, yet if detection timescales are to improve, 
newer, more sensitive methods are required.

Imaging in cancer cachexia
Since cancer cachexia constitutes a multi-organ syn-
drome that alters body composition and tissue quality 
over time, and given that many noninvasive imaging 
modalities can simultaneously assess these longitudinal 
changes, medical imaging holds the greatest potential 
in improving the phenotyping of cachexia develop-
ing cancer patients. Expanding the role of noninvasive 
imaging-based phenotyping could improve the efficacy 
of diagnosing cancer cachexia, anticipating high-risk 
individuals, systematically assessing the multi-organ 
effects of therapeutic interventions and enhancing our 
understanding of cancer cachexia pathophysiology. 
We provide below a short overview of the main tech-
nical characteristics of imaging modalities available for 
assessing tissue changes in cancer cachexia:

Fig. 1 Schematic highlighting cancer cachexia as a multi-organ syndrome: Cancer cachexia is regulated by signals that are released from the 
primary tumor, but also by mechanisms initiated by the host response. These pathways involve a wide range of organs, of which the main ones are 
indicated here. While the classical cachexia organs such as skeletal muscle and the fat depots have been in focus for quite some time, other major 
tissues such as the liver, the heart, the gut, and the brain are now known to be impacted or involved (as listed by the bullet points) in this syndrome, 
and are making their way into the spotlight
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Dual‑energy X‑ray absorptiometry (DXA)
Dual-energy X-ray absorptiometry (DXA) is a widely 
available, fast and inexpensive two-dimensional (2D) pro-
jection technique suitable to assess body composition by 
estimating body fat, lean tissue mass and bone mineral 
density [44]. In the context of cancer cachexia, DXA has 
been used to measure whole-body and regional distribu-
tion of skeletal muscle and WAT.

Computed tomography (CT)
Computed tomography (CT) is a cross-sectional radio-
logical imaging technique that is routinely practiced 
as part of the clinical staging of cancer patients. It is 
therefore the most commonly used imaging modality 
to assess body composition changes in cancer patients 
[64]. The discrimination of lean tissue from adipose tis-
sue and their mixtures is performed with CT using the 
differences in attenuation coefficients of X-rays of these 
tissues. CT attenuation or radiodensity, expressed in 
Hounsfield units (HU), helps to determine the tissue lipid 
concentration and has been related to risk of disease pro-
gression and recurrence [103]. Specifically in the context 
of cancer cachexia, CT is suitable for quantifying whole 
body, regional and individual volume change of skeletal 
muscle and WAT. It can also determine the regional and 
individual distribution of fat depots. CT can further be 
applied to assess myosteatosis, the fatty infiltration of 

skeletal muscle, by measuring the mean muscle tissue 
radiodensity, known to be linearly dependent on skeletal 
muscle fat fraction.

Magnetic resonance imaging (MRI)
Magnetic resonance imaging (MRI) is a cross-sectional 
radiological imaging technique, which, although widely 
adopted in the diagnostic setting, is not part of routine 
clinical staging in oncology. However, MRI is gaining 
significant attention for noninvasively assessing patients 
with metabolic dysfunction. MRI provides volumetric 
images without the burden of ionizing radiation and is 
therefore very attractive for longitudinally assessing tis-
sues changes in patients with metabolic diseases under-
going lifestyle interventions [33, 34]. The richness of MR 
contrast mechanisms allows for qualitative and quan-
titative assessment of adipose tissue and muscle. Mod-
ern body composition MRI techniques rely on the use 
of chemical shift encoding-based water-fat separation 
methods. Water-fat MRI can quantify tissue lipid con-
centration in a standardized manner by calculating the 
proton density fat fraction (PDFF). It enables the simul-
taneous assessment of skeletal muscle volume and fat 
infiltration, of WAT volume, lipid content and of ectopic 
(liver, pancreas) lipid concentration (Fig.  2). In cancer 
cachexia cohorts, MRI has been primarily employed 

Fig. 2 Schematic showing the possible MRI biomarkers extracted from an abdominal chemical shift encoding-based water-fat separation MR 
imaging acquisition, including the determination SAT/VAT volume, ectopic lipid content in the liver and pancreas, paraspinal muscle volume and 
intramuscular fat content and adipose tissue lipid content
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to assess changes in skeletal muscle volume and fat 
infiltration.

Positron emission tomography (PET)
Positron emission tomography (PET) is a Nuclear Medi-
cine imaging modality which applies radioactive trac-
ers to measure tissue changes in metabolism and other 
physiological activities. (18F) fluoro-2-deoxy-d-glucose 
(18FDG) PET is being clinically routinely used to detect 
lesions and to measure the metabolic activity of tumors 
by quantifying the standardized uptake value (SUV). 
In cancer cachexia, 18FDG-PET enables imaging the 
metabolic activity of both the primary tumor and other 
affected tissues. By mapping the metabolic activity of pri-
mary tumors, researchers could relate this to cachexia 
progression. In addition, 18FDG-PET has been used to 
map white and BAT metabolic activity in cancer patients.

Literature search
An electronic search in PubMed (http:// www. ncbi. nlm. 
nih. gov/ pubmed) was performed without a starting date 
up to May 2021 using as search terms “cancer cachexia” 
and one of the following terms: “Computed Tomogra-
phy” “Magnetic Resonance Imaging”, “Positron Emis-
sion Tomography”, “Dual-energy X-ray absorptiometry”, 
“Imaging”. The search resulted in 488 entries, which 
included investigations in both animals and humans. The 
reference lists of relevant articles were also screened. The 
present review focuses on imaging modalities for diag-
nosis and monitoring of cancer cachexia used primarily 
in human studies. We have structured the review below 
based on the use of the imaging modalities for assessing 
changes in different tissue types, including imaging the 
primary tumor, imaging the skeletal muscle, imaging the 
WAT, and imaging the BAT.

Imaging the primary tumor
The metabolic activity of the primary tumor and its 
metastases has been investigated with 18FDG-PET. 
Although the primary tumors are often small in size, 
their energy metabolism is upregulated, as tumor cells 
have been shown to switch to a less efficient metabolism 
in order to proliferate, exhibiting high rates of glycolysis 
[35, 36]. It has been postulated however that the glucose 
uptake measured in 18FDG-PET imaging is mainly driven 
by uptake into so-called cancer-associated fibroblasts, 
not into the tumor cells themselves [37, 38].

In a preclinical study in mice, 18FDG-PET analysis 
revealed an increased 18FDG uptake in cachexia-inducing 
tumors compared to non-cachectic tumors [39], confirm-
ing the primary tumor’s role in the development of the 
deranged energy metabolism in cancer. In a small human 
study in patients with esophageal cancer, Mitamura et al. 

found significant positive correlations between glucose 
uptake on 18FDG-PET and energy expenditure meas-
ured via indirect calorimetry [40], again pointing to the 
involvement of tumor metabolism in the energy imbal-
ance in cancer patients. Furthermore, a study in gastric 
cancer patients found a positive correlation between 
metabolic tumor volume (i.e. the volume of the tumor 
with glucose uptake above a defined threshold) and the 
degree of weight loss the patients experienced [41].

Recent studies have gone beyond the simple analy-
sis of mean 18FDG-PET uptake in tumors for predicting 
cachexia risk. A study in patients with advanced non-
small-cell lung carcinoma found that a PET/CT-based 
radiomics analysis with focus on the primary tumor and 
skeletal muscle had the potential to predict the prob-
ability of developing cachexia before therapy begin [42]. 
In addition, in a previous clinical study in patients with 
lung cancer, Dolan et al. found elevated tumor metabolic 
activity, as measured by 18FDG-PET/CT imaging, to be 
associated with a greater risk of malnutrition, aside from 
a more advanced tumor stage, systemic inflammatory 
response and poorer survival. However, no correlation to 
body composition measured by CT was found [43].

In order to translate preclinical findings and findings 
from smaller clinical studies into the human metabolic 
environment, Friesen et al. modeled the energy demand 
of a tumor in  vivo and found that tumor mass and the 
percentage of anaerobic metabolism in the tumor con-
tribute to the energy burden caused by the tumor, which 
may lead to negative energy balance and increased mus-
cle wasting [44]. However, as the processes involved in 
the development of cachexia are complex and the afore-
mentioned clinical studies consist of mostly small sam-
ple sizes, further larger studies are needed to confirm 
the observations and help better understand to which 
extent the tumor’s energy consumption could contribute 
to metabolic imbalance and subsequent development of 
cachexia.

Imaging the skeletal muscle
MRI and CT are currently considered the gold standard 
imaging modalities to assess muscle mass [45]. However, 
earlier cancer cachexia studies have also employed DXA 
techniques for assessing body composition in cancer 
patients. Since skeletal muscle has been the tissue stud-
ied most extensively using these imaging modalities, we 
review below how DXA, CT and MRI each have been 
utilized to assess skeletal muscle alterations in cancer 
cachexia.

DXA of skeletal muscle in cancer cachexia
Total body lean mass as an estimation of whole-
body muscle mass and appendicular lean mass as an 

http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/pubmed
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estimation of skeletal muscle mass within the limbs are 
suitable measurements of body composition in cancer 
patients [46]. Therefore, DXA remains among the most 
commonly used methods to assess body composition in 
studies observing cachectic cancer patients [47]. DXA-
derived measurements of appendicular lean tissue mass 
have been shown to highly correlate to both MRI and CT 
measures of skeletal muscle mass [48, 49]. However, it 
has been reported that DXA overestimates whole-body 
lean mass compared to MRI muscle mass measurements, 
which could lead to an underestimation of muscle loss 
[49, 50]. Such errors could be related to the employed 
assumptions on the DXA attenuation coefficients for the 
different tissue components (lean, fat and bone tissues).

A loss of muscle mass and body fat is a frequent obser-
vation when using DXA techniques in patients with 
advanced cancer [51, 52]. One study reported that 67% of 
cancer patients in palliative care had a low appendicular 
lean soft tissue index when assessed with DXA [53]. An 
accelerated depletion in body fat compared to lean tissue 
was reported [54]. Moreover, an uneven distribution of 
lean tissue mass reduction was found in the body: while 
lean tissue in the arm was lost, a gain in relative weight 
of lean tissue in trunk and legs was observed (p < 0.01). In 
this study, DXA-based lean tissue loss did not appear to 
be a significant predictor of survival.

Similar studies using DXA showed that appendicular 
lean mass can predict functional muscle performance in 
cancer patients [53, 55]. As other studies were unable to 
associate increased lean body mass (LBM) directly with 
increased physical function in cancer patients suffering 
from cachexia, the exact correlation when using DXA 
techniques is yet to be understood [56].

A sexual dimorphism regarding muscle mass and 
muscle depletion in cachectic cancer patients is known 
[57–59]. In a longitudinal study, it was found that loss 
of muscle mass progressed more rapidly in men than 
in women [51]. Also, the prevalence of skeletal muscle 
mass depletion was reported to be higher in men than in 
women.

CT of skeletal muscle in cancer cachexia
Body composition analysis in cancer patients using CT is 
considered superior over DXA [60], as it provides tomo-
graphic data compared to only a 2D projection through 
the body. Skeletal muscle volume is generally evaluated 
with a cross-sectional CT analysis and single-slice meas-
urements of paraspinal muscles have been shown to cor-
relate with whole-body muscle mass [60, 61].

Sarcopenia, the loss of skeletal muscle mass, is fre-
quent among cancer patients, is commonly associated 
with cachexia and leads to a decline in physical and 
strength performance [62]. Sarcopenia is associated 

with higher rates of mortality and morbidity in cancer 
patients [63–66]. Low skeletal muscle indices derived 
with CT correlated with higher levels of biomarkers of 
systemic inflammation such as CRP, Neutrophile Lym-
phocyte Ratio or albumin [67].

While functional performance and muscle mass were 
diminished in cancer patients suffering from cachexia, 
radiodensity was not reduced [55]. It has also been 
shown that protein content of skeletal muscle in can-
cer patients cannot be precisely estimated using muscle 
radiodensity measurements via CT [68]. In fact, it was 
observed that muscle radiodensity and muscle mass do 
not correlate significantly [64]. Others found that mus-
cle radiodensity was a prognostic factor for survival. 
For example, a high radiodensity was associated with 
longer periods of survival in patients with non-small 
cell lung cancer [69]. Furthermore, muscle radiation 
attenuation, which is inversely related to muscle fat 
content, was an independent prognostic parameter for 
survival in cachexia of patients with epithelial ovarian 
cancer and low muscle attenuation was associated with 
a worsened nutritional and inflammatory status [70]. 
The predictive role of baseline skeletal muscle indi-
ces and muscle radiation attenuation in patients with 
gynecological malignancies remains an area of intense 
research, although the respective changes during the 
disease trajectory were found to correlate with survival 
[71].

The drastically diminished time period of survival 
among cachectic cancer patients suffering from muscle 
depletion and low muscle attenuation was found to be 
independent of individual BMI [72]. Low muscle attenu-
ation, acquired as mean cross-sectional attenuation of 
the paraspinal muscles, was found to predict unsatisfac-
tory therapy response in patients with metastatic renal 
cell carcinoma [73]. For various cancer types, low skel-
etal muscle indices were strongly associated with the 
prevalence of dose-limiting chemotherapy-related toxic-
ity in patients undergoing chemotherapy [74–78]. It was 
observed that during chemotherapy, patients lost more 
muscle tissue whereas the intramuscular fat content 
increased [79]. These changes in body composition were 
adequately monitored by CT imaging, however were 
not representable when compared to changes in BMI or 
weight. Similarly, CT-derived measurements of muscle 
and adipose tissue demonstrated a stronger correlation 
to survival than BMI in breast cancer patients [80]. The 
loss of skeletal muscle in patients with advanced esopha-
geal cancer undergoing neoadjuvant chemotherapy was 
predictive of postoperative mortality [81]. An increased 
risk of perioperative complications and worse long-term 
prognosis for sarcopenic lung cancer patients undergoing 
surgery was also observed [82].
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There is strong evidence that CT and MRI measure-
ments are equally suitable to assess biomarkers of skel-
etal muscle quality and quantity [83]. Myosteatosis, 
the fat infiltration of skeletal muscle, can be measured 
using either mean radiodensity (Hounsfield units) in 
CT or proton density fat fraction (PDFF, %) in MRI. A 
recent systematic review and meta-analysis described 
a shorter survival in cancer patients presenting with 
myosteatosis measured via CT [84]. Myosteatosis was 
directly associated with systemic inflammation in colo-
rectal cancer patients [85]. Patients with higher levels of 
myosteatosis also had longer hospitalization times [86]. 
Finally, myosteatosis was associated with reduced sur-
vival in patients with pancreatic cancer and distal chol-
angiocarcinoma [87]. These studies indicate a negative 
association of myosteatosis with disease progression and 
survival. Notably though, the presence of myosteatosis 
without systemic inflammation has been correlated with 
longer progression-free survival and overall survival in 
patients with advanced esophageal cancer [88].

MRI of skeletal muscle in cancer cachexia
Using MRI, the muscle tissue can be further investigated 
and contractile tissue volume and muscle fat volume 
can be obtained. MRI also enables the discrimination of 
intra- and intermuscular fat depots. However, as MRI is 
not typically part of the clinical staging routine of most 
cancer patients, it is not routinely used to assess body 
composition and cachexia in cancer patients. Therefore, 
little is in general known about MRI-derived measure-
ments of cachexia-induced changes in body composition.

A loss of skeletal muscle volume and decrease in mus-
cle quality has been observed with MRI in cachectic 
cancer patients [89–91] (Fig. 3). The thigh muscle cross-
sectional area was found to be reduced in patients with 
malignant glioma after surgery [92]. It was demonstrated 
that loss of muscle volume did not lead to a loss of mus-
cle functionality in patients with gastrointestinal cancer 
[89]. In cachectic men suffering from gastrointestinal 
cancer, a greater decline in lower limb muscle mass, qual-
ity and function was found than in women with the same 
condition [91].

MRI-derived muscle signal intensity as a semi-quanti-
tative measure of myosteatosis in periampullary cancer 
patients was found to correlate with muscle attenuation 
assessed with CT [93]. In women with upper gastroin-
testinal malignancies, increased fat infiltration of the 
quadriceps muscle was observed [90]. The same study 
also reported a less homogenous muscle composition in 
tumor-bearing women than in a healthy control group.

Single-slice analysis of the fat-free muscle area in 
patients undergoing radioembolization of colorectal can-
cer liver metastasis revealed a prognostic value on overall 

survival [94]. Thereby, low fat-free muscle area was asso-
ciated with shortened overall survival. The same was 
reported for patients with hepatocellular carcinoma who 
underwent radioembolization [95]. Temporal muscle 
thickness, that can be readily assessed on clinical routine 
MR images, was found to be a predictor of survival in 
non-small cell lung cancer or breast cancer patients with 
recently identified brain metastasis [96]. In breast can-
cer patients, a correlation between psoas muscle area on 
CT scans and pectoralis major muscle area on MRI was 
observed [97]. These findings underline the usefulness of 
the pectoralis muscle area as a surrogate marker to esti-
mate whole-body muscle mass and patient outcome and 
survival.

Imaging the white adipose tissue
To date, research on imaging WAT in cancer-associated 
cachexia remains limited. The loss of WAT, which can 
be further subclassified into visceral- (VAT) or subcu-
taneous adipose tissue (SAT), is considered to predate 
skeletal muscle loss in cancer cachexia. When compared 
to weight-stable cancer patients, individuals with can-
cer cachexia exhibit a reduced adipose tissue mass [98] 
(Fig.  4). WAT loss also predicts poorer prognosis in 
advanced cancer patients and is accelerated in the final 
months before death [99, 100]. It is therefore pertinent 
to monitor WAT alterations in cancer patients to detect 
cachexia earlier and facilitate intervention and manage-
ment in palliative care. This is of particular relevance as 
cachexia affects most terminal cancer patients: particu-
larly patients with lung, pancreatic, liver and gastrointes-
tinal carcinoma where some studies reported a cachexia 
incidence of up to 50%. [101, 102]

Whole-body and regional distribution of WAT has 
been assessed with DXA in cancer patients. A longitu-
dinal observational study on palliative cancer patients 
predominantly with gastrointestinal tumors reported 
increasing WAT loss in all body compartments with dis-
ease progression, even with maintenance or increase of 
caloric intake [23]. These body fat losses preceded pref-
erentially in the trunk before other appendicular regions. 
Interestingly, while WAT reduced in these patients, lean 
tissue was maintained or even increased over the fol-
low-up period. Furthermore, WAT changes were more 
pronounced and predictive of survival than lean tissue 
mass. Other work on patients with locally advanced or 
metastatic non-small cell lung or colorectal cancer found 
regional DXA-analysis of fat mass at the 3rd lumbar ver-
tebra (L3) standardized to a 1-cm-thick slice equivalent 
to strongly correlate with total fat mass. A close cor-
relation of fat mass at L3 in DXA to CT measurements 
was observed. These findings support the application of 
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single-imaging as a reliable and accurate representator of 
whole-body fat [60].

CT-based assessment of WAT changes has also shed 
light on cancer cachexia. In a retrospective review of 
patients with head and neck squamous cell carcinoma 
(HNSCC), CT attenuation yielded substantially higher 
HU values for VAT than SAT. This was most prevalent in 
patients with T3 or T4 [103] classified tumors. Higher CT 
attenuation may reflect an enhanced inflammatory and 
fibrotic response of the adipose tissue. The combination 
of high VAT HU and low VAT volume lead to worse clini-
cal outcomes and survival [104]. Similarly, high SAT and 
VAT attenuation was strongly predictive of poor survival 

in patients with adenocarcinoma and squamous cell car-
cinoma of the esophagus [105, 106]. Area-based quanti-
fication of VAT and SAT at the lumbar region L2-L5 is 
a common procedure in CT imaging and is used to esti-
mate VAT-SAT-ratio. In pancreatic and lung cancer, high 
visceral-to-subcutaneous fat ratio was a prognostic factor 
of poor overall survival [79, 107].

While tumors often exhibit an elevated glucose metab-
olism, marked variations are detectable in WAT. 18FDG-
PET/CT has been used to calculate volume and evaluate 
the metabolic activity within a single fat compartment 
by measuring FDG uptake. SUV values can be calculated 
for both WAT types in PET images through referencing 

Fig. 3 Skeletal paraspinal muscle changes in a patient with cancer cachexia: axial abdominal MRI scan of a 74 year-old patient with squamous cell 
carcinoma of the esophagus at baseline (left image) and follow-up after 335 days (right image). Relative muscle volume change was − 19.9% for 
the erector spinae and − 26.3% for the psoas muscle. Relative change of contractile tissue volume was − 19.4% in erector spinae muscle and 25.3% 
in psoas muscle. Relative change in fat volume was − 21.2% in erector spinae muscle and 27.7% in psoas muscle. Absolute PDFF (%) difference 
was 0.5 in erector spinae muscle and 1.3 in the psoas muscle. BMI decreased from 24.1 to 21.1 kg/m2. BMI body mass index, PDFF proton density fat 
fraction
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corresponding region of interests in CT images, typically 
at the level of the lumbar spine [108]. Simultaneously, CT 
attenuation is measured. Attenuation is positively corre-
lated with SUVs for both SAT and VAT [106]. It is known 
that VAT is more active than SAT and exhibits greater 
FDG uptake in humans. This is thought to be caused 
by an increased lipogenesis in glucose metabolism and 
inflammatory reaction in the adipocytes [104]. Greater 
FDG uptake in VAT has been related to worse outcomes 
in patients with HNSCC or pancreatic adenocarcinoma 
[104, 106]. In a study of pancreatic cancer patients, those 
with advanced primary tumor status (T-stage) malig-
nancy had higher CT attenuations and SUVs of VAT and 
SAT with worse survival. Another study on advanced-
stage pancreatic carcinoma patients found conversely 
that SAT FDG uptake was diminished and relatively 
decreased when compared to visceral adipose tissue, 
pertaining to a reduction in lipogenesis due to decreased 
fat cell size. This was accompanied by a strong negative 
correlation to primary tumor metabolism [109]. VAT vol-
ume and FDG uptake of SAT and VAT in non-small cell 
lung cancer patients presented no strengthened associa-
tion in predicting prognosis. However, a significant nega-
tive correlation between SAT volume and FDG uptake of 
tumor was found and high SAT volume was associated 
with better progression-free survival [110]. Thus, further 
studies are necessary to elucidate the incongruencies in 
FDG uptake of WAT to determine its impacts on onco-
logic patients.

To the best of our knowledge, there is no study on 
the use of MR or MR-spectroscopy (MRS) imaging of 
WAT in patients with cancer-associated cachexia. Non-
human trials, however, have been reported. MRI meth-
ods measured total body adipose tissue and lean mass 
in transgenic model mice with hepatocellular carcinoma 
(HCC)-associated cachexia [111]. In  vivo microcom-
puted tomography (μCT) imaging in these murine mod-
els quantified the hypo-intense fat compartments [111]. 
Analogous to the HCC mouse models, CT analysis in 
human HCC patients showed a reduction in visceral adi-
pose tissue [111]. In  vivo MRI techniques allowed the 
monitoring of WAT mass changes in tumor-induced 
weight loss. Mice were injected with Lewis lung carci-
noma or B16 melanoma cells and a control group was 
compared to genetically modified groups with adipose 
triglyceride lipase (ATGL) or hormone-sensitive lipase 
(HSL) deficiency. By quantifying the WAT using MRI, 
they confirmed the amelioration of certain aspects of 
cancer cachexia through lipase deficiency and its protec-
tive effect on the loss of WAT [112].

Imaging the brown adipose tissue
BAT is found primarily in the supraclavicular region in 
human adults. Heat is generated there in the mitochon-
drial membrane by glycolysis and beta-oxidation, which 
is triggered by sympathetic nerval innervation. This 
happens as a response to cold exposure or post-prandi-
ally [113, 114]. In the context of cancer cachexia, where 

Fig. 4 Adipose tissue changes in a patients with cancer cachexia: axial abdominal MRI images of a 54 year-old male subject with esophageal cancer 
at baseline (A) and follow-up after 8 months (B). A1, B1 Color-coded are VAT (green), SAT (blue) and non-adipose tissue (red). A2, B2 Corresponding 
PDFF maps showed a decrease in VAT from 83 to 72% and SAT from 87 to 76%. The BMI decreased from 30.2 to 24.1 kg/m2. BMI body mass index, 
PDFF proton density fat fraction, VAT visceral adipose tissue, SAT subcutaneous adipose tissue
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energy expenditure surmounts energy intake, it was 
believed that thermogenesis contributed to energy wast-
ing. Increased energy expenditure via brown fat thermo-
genesis was observed even in absence of cold in cancer 
mice models [24]. Both Parathyroid hormone-related 
protein (PTHrP) [25] and IL6 [115] has been reported 
to induce browning of white fat in certain cancer types 
and neutralization of both hormones preserved fat mass 
[17, 115, 116]. Browning of WAT in adipose tissues 
depots outside the typical BAT storage depots have been 
reported in cancer-cachexia mouse models, as well as in 
cancer patients, by immunohistochemical staining [24]. 
This tissue is then oftentimes referred to as beige or brite 
adipose tissue. The increase in UCP1-expression in WAT, 
of regions such as intestinal fat, was explained by the 
increase of inflammation markers and IL6 [24].

18FDG-PET detects regions in the body with active 
glycolysis and is widely used for cancer diagnosis and 
for staging of tumors. In this context, active brown fat 
was perceived as nuisance signal and prevention of its 
activation during 18FDG-PET imaging was strived for 
[117]. Only after the discovery of brown fat in a signifi-
cant number of human adults, targeted imaging was 
conducted to examine BAT mostly in healthy subjects. 
To confirm the hypothesis of hypermetabolic brown fat 
in cancer patients, several retrospective studies using 
combined 18FDG-PET/CT data in certain cancer types 
had been conducted. Some suggest a positive correlation 
between cancer and BAT activity [118–121], while others 
could not confirm the relationship [122]. A more recently 
published retrospective study included a larger patient 
number and various cancer types but could not replicate 
the results either [123]. BAT activation level was graded 
by radiologists. However, the causal inference analysis 
yielded only a link between outside temperature and BAT 
activation status, but no relation of BAT activation with 
cancer progression. A limitation of the aforementioned 
study is that BAT activation was not induced, and the 
limitation of retrospective studies in the context of BAT 
is that BAT activation was not controlled and very differ-
ent baseline conditions such as season and outside tem-
perature would bias comparability of data.

18FDG-PET/CT can only visualize active glycolysis 
in BAT and is therefore unable to detect currently non-
active BAT or thermogenesis via beta oxidation. In other 
words, if glycolysis is not triggered in BAT during the 
examination, 18FDG-PET is little sensitive in detecting 
BAT. Various MRI contrast mechanisms have been used 
to detect brown fat presence and activation in rodents 
and humans [124]. However, due to many remaining 
challenges of traditional water-fat imaging and the lim-
ited accessibility of pioneering work such as Xenon-
based MRI, these studies are still limited to mice and 

healthy human cohorts [124]. One work relating cachexia 
in murine pancreatic ductal adenocarcinoma has sug-
gested using  T2* contrast and fat fraction images for eval-
uating BAT activation status and the change in brown fat 
volume, respectively [125].

In summary, in  vivo BAT quantification studies using 
18FDG-PET are challenging and have found contradictive 
results in cancer cachexia because retrospective studies 
could not account for confounding factors for BAT acti-
vation and because 18FDG-PET only detects glycolytic 
activity of BAT. Future studies should control confound-
ing factors [122, 126] and use standardized scan and BAT 
activation protocols. The statistical analysis should be 
adjusted for age, sex, BMI, physical exercise habits, hor-
monal status and caffeine consumption, among others. 
Environmental factors that influence BAT activity include 
the season and the current outdoor temperature. There-
fore, images should be acquired during similar baseline 
conditions. Finally, the investigated patient cohort should 
consist of homogeneous cancer patient cohorts as disease 
progression and cachexia development highly depends 
on the type of cancer.

Imaging other organs
While available studies primarily focused on the classical 
cachexia-related tissue compartments, we briefly review 
here the use of imaging for studying other organs beyond 
the primary tumor, the skeletal muscle, and the adipose 
tissue.

Recent work has uncovered a link between liver 
uptake of 18FDG and survival in cancer patients (Naka-
moto et  al.) [127], highlighting the potential of PET 
analysis as a tool for nuclear medicine physicians to 
infer cachexia risk. An extremely limited 18FDG uptake 
(SUVmean ≤ 1.78) of the liver substantially increases 
the risk of developing cachexia, leading to worse overall 
survival [127]. An even greater risk poses the presence 
of viable and/or recurrent malignant lesions on 18FDG-
PET. These patients commonly presented with anemia, 
impaired liver function, systemic inflammation and poor 
nutritional status, characteristics which also predominate 
the cancer cachexia population.

Changes in visceral organ size have been monitored 
using quantitative CT image analysis in patients with 
advanced colorectal cancer. An exponential increase 
in liver volume, hepatic metastases, and an increase in 
spleen volume concurrent to muscle and fat loss were 
recorded in patients until death [128]. The percentage of 
estimated fat-free mass occupied by the liver increased in 
this group from 4.5 to 7.0%. The extensive organomegaly 
in these patients likely contributes to increased catabo-
lism and energy expenditure (a cumulative increase 
of 17,700  kcal in the liver in the final 3  months of the 



Page 11 of 18Han et al. EJNMMI Research           (2021) 11:94  

simulation) when compared to healthy references, lead-
ing to rapid weight loss and suggests why an increased 
dietary energy intake as a compensatory treatment 
method often proves ineffective.

Analyses of 1H MRS of brains of cachectic pancreatic 
tumor-bearing mice have identified a unique "cachexia 
brain metabolic signature" characterized by changes to 
the levels of metabolites, specifically an increase in cho-
lines and a decrease in glutamine and formate [129]. 
These alterations may disrupt existing neurotransmit-
ter pathways, compromising normal brain function and 
increasing morbidity in cachexia-inducing pancreatic 
cancers. Therefore, brain spectroscopy may propose a 
useful noninvasive marker for predicting cachexia and 
should be further investigated in human patients.

Comparison of imaging modalities in cancer 
cachexia
CT and MRI are accepted as gold standard methods to 
determine body composition (Table  1). They enable the 
discrimination between changes in fat depots, specific 
muscles, and organs [60, 100]. MRI is safer for one deci-
sive reason: there is no ionizing radiation exposition. 
Since repeated measurements are essential for tracking 
cancer progression, no further health risks are associated 
with frequent image acquisition using MRI, making it a 
highly plausible alternative for monitoring cachectic can-
cer patients [130]. With water-fat MRI, lean soft tissue, 
adipose tissue and diffuse fatty infiltration of organs can 
be precisely defined. The measurement error for MRI-
based cross-sectional area of appendicular skeletal mus-
cle and -SAT is reported to be at 2%, making it a reliable 
approach for estimating appendicular tissue distribution 
in  vivo [130]. However, MRI is not as widely accessible 
as CT. It is time-demanding and is subject to greater 
financial costs [131]. Cross-sectional CT analysis of skel-
etal muscle area at lumbar landmarks, specifically L3, are 
strongly related with whole-body fat and fat-free com-
partments in cancer patients [60]. As such, regional CT-
based evaluation is applicable for estimating whole-body 
changes in patients [60].

Many clinicians are limited to using only single-slice 
2D analysis due to the time-consuming nature of man-
ual segmentation and correction of tissue boundaries. 
However, single 2D slices are prone to greater vari-
ability in volume calculation than a series of images. 
Recent advancements in artificial intelligence (AI) have 
allowed for the conversion of CT and MRI images into 
mineable data that can be accessed for quantitative fea-
tures analyses. This process called radiomics offers an 
automated three-dimensional (3D) approach of whole-
body tissue assessment. The transition from manual 2D 
segmentation to automated 3D volumetric assessment 

using AI-based methods can thus improve the accuracy 
in determining body composition and more importantly 
allow for a better individualization of treatment plan for 
cancer patients [131].

DXA is overall a fast technique for assessing body com-
position but lacks the precision of the aforementioned 
imaging modalities (Table 1). It is also not readily avail-
able or implemented in cancer settings. CT imaging 
outweighs DXA in this regard as it is already routinely 
acquired during the staging and follow-up assessments of 
cancer patients [60]. DXA is a projection technique and 
cannot assess changes in individual muscle groups such 
as myosteatosis, described as abnormal skeletal muscle 
fat infiltration and considered a marker for muscle qual-
ity [132, 133]. It is however simple, highly reproducible 
and therefore practical for repeated control measure-
ments. It requires lower radiation doses than CT and can 
differentiate easily between lean body mass, adipose tis-
sue and bone mineral content. For determining lean body 
mass in follow-up measurements of patients with wors-
ening disease progression, as is often the case in cachexia 
cancer, whole-body DXA may not be reasonable. This is 
because it does not take into account for small changes in 
fluid distribution in the tissues [23]. Changes in the fluid 
status such as dehydration or edema cannot be differenti-
ated from lean soft tissue with DXA and therefore hinder 
exact estimation of lean soft tissue mass and composition 
[134, 135]. Also, tumor mass and lean tissue mass cannot 
be discriminated with certainty, and a decreased preci-
sion in obese patients is known [136]. A further limita-
tion of DXA is the inability to segregate VAT from SAT. 
When evaluating cachectic cancer patients, VAT imag-
ing delivers useful prognostic information that should 
be considered in addition to clinical changes in physical 
appearance or fatigue and weight loss. To this accord, CT 
and MRI are able to determine the adipose tissue changes 
and body composition in  vivo with extreme precision 
[60].

Nevertheless, DXA is relevant for cancer intervention 
because the relative proportions of LBM and adipose tis-
sue impact the degree of chemotherapy-induced toxicity. 
Previous work has demonstrated the impacts of chemo-
therapy on body composition: although generally fat 
mass and fat-free mass were shown to decrease after neo-
adjuvant chemotherapy, a relative increment in patients 
with sarcopenic obesity was observed, and sarcopenic 
obesity was an important independent predictor of sur-
vival in patients with respiratory and gastrointestinal 
tract tumors [65, 137]. Given the low sensitivity of BMI 
in detecting finer changes in body composition, clinicians 
are more likely to overlook these kinds of anomalies, 
so studying body composition could be advantageous. 
Low LBM is dominant in cachectic cancer patients—a 



Page 12 of 18Han et al. EJNMMI Research           (2021) 11:94 

Table 1 Summary of the uses of imaging modalities in diagnosis, monitoring and prognosis and findings in cancer cachexia for 
different cancer types

Imaging modality Findings Cancer type References

Dual-energy
X-ray absorptiometry (DXA)

Muscle mass and body fat loss observed in 
advanced cancer patients
Progression of muscle mass loss was greater in men 
compared to women

[51, 52]

67% of palliative cancer patients had a low appen-
dicular lean soft tissue index

[53]

Accelerated depletion of body fat was found 
compared to lean tissue, with lean tissue loss in the 
arms but a relative weight gain in the trunk

[54]

WAT loss increased with disease progression, 
preferentially in the trunk before appendicular 
regions, despite the maintenance or increase of 
caloric intake

Gastrointestinal cancer [23]

Computed Tomography (CT) Sarcopenia associated with higher mortality and 
morbidity rates in cancer patients

[63–66]

High muscle radiodensity was a prognostic factor 
for longer survival

Non-small cell lung cancer [69]

Low muscle attenuation of cross-sectional paraspi-
nal muscles predictive of unsatisfactory therapy 
response

Renal cell cancer [73]

Low skeletal muscle indices strongly associated 
with prevalence of dose limiting chemotherapy 
related toxicity

[74–78]

Skeletal muscle loss during neoadjuvant chemo-
therapy predictive of increased postoperative 
mortality

Esophageal cancer [81]

Myosteatosis related to shorter survival and sys-
temic inflammation
Higher myosteatosis levels related to longer hospi-
talization times

Colorectal cancer, Pancreatic cancer, Distal cholan-
giocarcinoma

[85–87]

Higher VAT CT attenuation than SAT may indicate 
inflammation and fibrotic response
High VAT HU and low VAT volume lead to worse 
clinical outcomes and survival

Head and neck squamous cell carcinoma [104]

Higher VAT and SAT CT attenuation lead to poor 
survival

Esophageal adenocarcinoma and
squamous cell carcinoma

[105, 106]

High VAT/SAT ratio prognostic of poor overall 
survival

Pancreatic cancer, Lung cancer [79, 107]

Decrease in fat mass and fat-free mass post neo-
adjuvant chemotherapy but relative increase in 
sarcopenic obesity prevalence

Respiratory and gastrointestinal tract cancer [65, 137]

Exponential increase in liver volume, hepatic metas-
tases and increase in spleen volume was observed 
concurrent to muscle and fat loss

Advanced colorectal cancer [128]
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depletion of LBM leads to a lower volume of distribu-
tion for hydrophilic drugs—and is linked to greater 
chemotoxicity [138, 139]. Low LBM percentage can even 
lead to a decrease in serum creatinine blood levels, an 

overestimation of renal filtration and consequent mis-
dosage of chemotherapeutic medication, eliciting severe 
toxicity [140]. Identification of abnormal changes to 
body composition distinctive to cancer-cachexia patients 

Table 1 (continued)

Imaging modality Findings Cancer type References

Magnetic resonance Imaging
(MRI)

T2* contrast and fat fraction imaging a possible 
method to evaluate BAT activation status and 
brown fat volume change

Murine pancreatic ductal adenocarcinoma [125]

Loss of skeletal muscle volume und muscle quality 
observed in cachectic cancer patients

[89–91]

Reduction in cross-sectional area after surgery Malignant glioma [92]

Greater decline in lower limb muscle mass, quality 
and function in men than women

Gastrointestinal cancer [91]

Increased fatty infiltration of quadriceps muscle
Lower homogeneity in muscle composition

Upper gastrointestinal cancer [90]

Low fat-free muscle area associated with shorter 
overall survival

Colorectal cancer,
Hepatocellular carcinoma

[94, 95]

Temporal muscle thickness predictor of survival in 
patients with brain metastasis

Non-small cell lung cancer,
Breast cancer

[96]

Amelioration of aspects of cancer cachexia through 
lipase deficiency with protective effects on WAT loss

Lewis lung carcinoma, B16 melanoma [112]

Increase in cholines and decrease in glutamine and 
formate in 1H MRS analyses of brains of cachectic 
mice

Pancreatic cancer [129]

18FDG-PET Increased 18FDG uptake in cachexia-inducing 
tumors compared to non-cachectic tumors in mice

[39]

Metabolic tumor volume positively correlated with 
the degree of weight loss

Gastric cancer [41]

PET/CT based radiomics analysis of primary tumor 
and skeletal muscle could predict probability of 
cachexia onset before therapy

Advanced non-small-cell lung carcinoma [42]

Elevated tumor activity associated with greater risk 
of malnutrition however no correlation with CT-
measured body composition

Lung cancer [43]

Tumor mass and percentage of anaerobic metabo-
lism contribute to greater energy burden, with 
consequent increase in muscle wasting and nega-
tive energy balance

[44]

Elevated 18FDG uptake in VAT related to worse 
outcomes

Head and neck squamous cell carcinoma, Pancre-
atic adenocarcinoma

[104, 106]

High SUV of VAT and SAT lead to worse survival
SAT 18FDG uptake was reduced and relatively 
decreased compared to VAT and correlated nega-
tively correlated with primary tumor metabolism

Pancreatic cancer [109]

SAT volume negatively correlated with 18FDG 
uptake of tumor
High SAT volume associated with better progres-
sion-free survival

Non-small cell lung cancer [110]

No relation of BAT activation with cancer progres-
sion

[123]

Reduced liver 18FDG uptake increased the risk of 
cachexia and worse overall survival

[127]

VAT Visceral adipose tissue, HU Hounsfield units, SAT Subcutaneous adipose tissue, BAT Brown adipose tissue, WAT  White adipose tissue, SUV Standardized uptake 
value
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would therefore help prevent such ramifications during 
treatment.

18FDG-PET describes the metabolic activity of adi-
pose tissue compartments [141]. 18FDG-PET/CT not 
only provides anatomical but important functional infor-
mation on body tissues. 8FDG -uptake of AT could be a 
valuable qualitative imaging biomarker for fat analysis. 
However, there is currently no standard method for SUV 
of WAT. This could explain some of the contradictive 
results presented by studies on cancer patients where 
measurements were based either on a single-slice region 
of interest or whole tissue assessments using multiple 
slices [106]. An agreement on a conform approach in the 
future is needed.

Outlook
There is an urgent need of impetus to find better treat-
ment options for cachexia patients. Progress is certainly 
being made in this domain, however much work remains, 
particularly in advancing from an ad hoc treatment 
approach toward identifying methods of early detection 
and prevention. As reviewed in this piece, an array of 
imaging methodologies is capable of delineating aspects 
of the disease, however often fall short as comprehensive 
standalone diagnostic tools.

Biomarkers obtainable from circulation are often of 
high diagnostic value, while keeping invasiveness low. 
Blood-borne biomarkers can be subdivided into 4 groups; 
Cachexia-inducing, inflammation related, skeletal muscle 
and adipose tissue wasting markers or cachexia-related 
micro-RNAs and have been reviewed in detail elsewhere 
[142]. These biomarkers may originate either from the 
primary tumor itself, or from the host in response to the 
tumor and metabolic alterations. Unfortunately, there is 
an immense degree of variability to the applicability of 
each biomarker, as many blood biomarkers are adequate 
only for a few or only a single type of cancer and vary 
significantly depending on muscle loss and gender [143, 
144]. This poses the question as to whether or not com-
bined biomarker screens may be advantageous. Reassur-
ingly, a current study has shown that a panel of cachexia 
biomarkers did indeed accurately reflect cachexia preva-
lence and weight loss across 12 different cancer types 
[145]. It is unclear though, whether these biomarkers 
simply reflect a diseased state, or could also indicate dis-
ease progression and degree.

Many of the current cachexia blood-borne biomark-
ers are simultaneously potential therapeutic targets. 
Unfortunately, if a biomarker is targeted in a therapeutic 
manner, this diminishes its value as a marker of disease 
progression/state, which would be necessary to measure 
therapeutic success. The imaging biomarkers described 
in this review on the other hand, remain unperturbed by 

therapeutic intervention in the short term and so reveal 
themselves as powerful tools in the clinical setting of can-
cer cachexia. Future clinical studies may employ suitable 
imaging techniques to measure the outcome of cachexia 
therapies, providing valuable insight into body composi-
tion and skeletal muscle and adipose tissue architecture.

Therefore, although blood-borne biomarkers are an 
important piece of the cachexia puzzle, it is clear that 
alternative methods of detection are necessary. Combin-
ing blood-borne biomarkers with the described innova-
tive imaging biomarkers may yield promising therapeutic 
strategies. To further reveal this potential, future clinical 
studies with a focus on imaging biomarkers are desper-
ately needed in the context of cancer cachexia.

Noninvasive imaging enables the multi-organ assess-
ment of cachexia effects in cancer patients. However, 
despite the recent successes, imaging currently only helps 
in part in pathophysiology understanding and has not 
provided a clear widely used biomarker for cachexia risk 
assessment. CT techniques will remain most probably 
the most popular approach for assessing cachexia given 
the wide use of CT in the staging of many oncological 
entities. However, as many oncological centers use more 
MRI exams, the use of MRI for assessing body composi-
tion and organ-specific changes is expected to increase in 
cancer cachexia. When MRI or CT is already performed 
in the clinical work-up of the patient, an imaging analysis 
of the cachectic phenotype could be combined with the 
main diagnostic reporting, especially when facilitated by 
the use of automated analysis tools. However, more clini-
cal studies using modern imaging methods in answering 
cachexia development-driven questions based on large-
scale prospective and homogeneous cohorts are needed 
toward establishing quantitative CT and MR imaging 
biomarkers for cachexia early prediction.

Conclusion
Cancer remains a leading cause of death in all coun-
tries and its stable increase in incidence and mortality 
is concerning. Although imaging of body composition 
change in cancer is well documented, few studies have 
informed us on the niche of cachectic cancer patients. 
This owes partially to the wide variations in clini-
cal presentation and the absence of a validated inter-
national consensus for the diagnostic criteria of 
cancer-associated cachexia. While cancer cachexia is 
principally characterized by involuntary weight loss, it 
can also manifest with a constellation of other medical 
conditions such as malnutrition, anorexia or systemic 
inflammation [146]. It occurs at different disease states 
and varies with cancer type and stage [3]. Indeed, many 
definitions have been proposed but do not well accom-
modate the complexity of this syndrome in a manner 
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for it be integrated into practice with enough certainty. 
Depending on the definition used, the prevalence of 
cachexia in a population of cancer patients can vary 
from 12 to 85% [53] which jeopardizes the comparabil-
ity of studies. This inconsistency impedes oncologists to 
systematically diagnose and monitor cancer-cachexia.

Overwhelming evidence suffices the competencies of 
imaging tools to measure body composition and delin-
eate tissue compartments. CT and MRI stand here as 
favorable approaches that produce high spatial and 
contrast resolution images [130]. We need imaging to 
investigate different body types and accumulate a com-
prehensive understanding of the processes involved in 
patients with cancer-cachexia, with attention to factors 
such as cancer type, stage, and current therapy. This 
comes with the caveat that further studies should be 
conducted based on a holistic definition and classifica-
tion system of cancer cachexia. Only then can we solid-
ify how cachexia imaging can be best implemented into 
clinical routine.
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