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Abstract 

Background: The prevalence of obesity and its related chronic diseases have been increasing especially in Asian 
countries. Obesity‑related genetic variants have been identified, but these explain little of the variation in BMI. Recent 
studies reported associations between DNA methylation and obesity, mostly in non‑Asian populations.

Methods: We performed an epigenome‑wide association study (EWAS) on general adiposity (body mass index, 
BMI) and abdominal adiposity (waist circumference, WC) in 409 multi‑ethnic Asian individuals and replicated BMI and 
waist‑associated DNA methylation CpGs identified in other populations. The cross‑lagged panel model and Men‑
delian randomization were used to assess the temporal relationship between methylation and BMI. The temporal 
relationship between the identified CpGs and inflammation and metabolic markers was also examined.

Results: EWAS identified 116 DNA methylation CpGs independently associated with BMI and eight independently 
associated with WC at false discovery rate PFDR < 0.05 in 409 Asian samples. We replicated 110 BMI‑associated CpGs 
previously reported in Europeans and identified six novel BMI‑associated CpGs and two novel WC‑associated CpGs. 
We observed high consistency in association direction of effect compared to studies in other populations. Causal 
relationship analyses indicated that BMI was more likely to be the cause of DNA methylation alteration, rather than 
the consequence. The causal analyses using BMI‑associated methylation risk score also suggested that higher levels of 
the inflammation marker IL‑6 were likely the consequence of methylation change.
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Introduction
In the past two decades, the prevalence of obesity has 
been on the rise in Asian countries in parallel with rapid 
economic growth [1, 2]. Obesity is a well-established 
risk factor for many common diseases such as diabetes 
[3, 4], hypertension [5], and cardiovascular diseases [6]. 
Body mass index (BMI) is a common and easily measured 
indicator for general obesity. Compared to Europeans, 
Asians have lower average BMI but more total and vis-
ceral fat and are more likely to develop type 2 diabetes 
(T2D) at a lower BMI [7]. Waist circumference (WC) as 
a measure of abdominal obesity has also been associated 
with a higher T2D risk [8–10]. Both general and abdomi-
nal obesity are influenced by genetic and lifestyle factors 
such as intakes of energy-dense food and lack of physical 
activity [11–14].

Genome-wide association studies (GWAS) have identi-
fied over 900 genetic loci associated with BMI [15–17], 
which explained only ~ 6% of the variation and ~ 25% 
of the SNP-heritability of BMI. This has led to evolving 
interest in epigenetics to explain some of the missing 
heritability. Epigenetic mechanisms include DNA meth-
ylation, chromosome histone modification, and noncod-
ing RNA regulation. DNA methylation is one of the most 
well-studied epigenetic mechanisms that blocks tran-
scription factors from binding to promoters by adding 
a methyl group to the carbon C5 of cytosine nucleotides 
and subsequently alter gene expression [18]. Using com-
mercial arrays to profile epigenome-wide DNA methyla-
tion, more than 5,000 DNA methylation sites have been 
identified to be associated with obesity-related traits [19]. 
For example, cg00574958 located in CPT1A on chromo-
some 11 was consistently hypomethylated with increased 
BMI in multiple studies [20–22].

Due to the plasticity of DNA methylation in response 
to environmental changes, it is possible that DNA meth-
ylation changes can be a consequence of BMI [23]. The 
temporal relationship between BMI and DNA methyla-
tion has been assessed using Mendelian randomization 
and structural equation modeling in European, South 
Asian, and African-American populations [22, 24, 25]. 
While most of the evidence supports the hypothesis that 
methylation changes are a consequence of obesity, there 
is also evidence of CpGs having a causal effect on BMI 
changes [22, 24]. In addition, gene set analyses on genes 

nearest to the identified BMI-associated methylation 
markers showed enrichment in a diverse range of bio-
logical processes including lipid metabolism, amino 
acids transport, neuronal function, and inflammatory 
pathways [22, 24, 26]. For example, DNA methylation 
at CETP and LPL was associated with gene expression 
and lipoproteins levels in people with obesity [27]. In 
addition, hypermethylation at IL-6 was found in Korean 
women with obesity [28]. Consistent with this find-
ing, the activity of DNA methyltransferase isoforms and 
global DNA hypomethylation were decreased in interleu-
kin 6 (IL-6)-induced insulin resistant human endothelial 
cells [29]. These observations indicate that DNA meth-
ylation can influence biological pathways involved in the 
development of obesity-related diseases.

Previous epigenome-wide association studies (EWAS) 
on obesity were conducted in populations of predomi-
nantly European ancestry, and it remains unclear if these 
findings may be transferable to Asian populations who 
have a different propensity to develop metabolic diseases 
for the same BMI. Therefore, to identify BMI-associated 
CpGs and to understand the link between BMI and DNA 
methylation in Asians, we conducted a cross-sectional 
analysis of the epigenome-wide associations of BMI and 
WC among 409 multi-ethnic Asian individuals (228 
Chinese, 84 Malay, 97 Indian). We identified 116 BMI-
associated CpGs (including six novel sites) and eight 
WC-associated CpGs (including two novel sites) that 
reached epigenome-wide significance (false discovery 
rate PFDR < 0.05). Our results suggest that BMI is likely 
to be a cause rather than a consequence of DNA meth-
ylation change at the identified loci in a longitudinal set-
ting in Chinese individuals. Finally, to assess the clinical 
relevance of methylation involved in the obesity-related 
inflammatory and metabolic alteration, we tested adipos-
ity-associated methylation markers for association with 
inflammation markers IL-6 and metabolic biomarkers 
such as lipoproteins.

Results
Study samples characteristics
Summary of analyses, study samples, methods, and 
results in this study are shown in Fig.  1. All sam-
ples included in this study were selected from the 

Conclusion: Our study provides evidence of an association between obesity and DNA methylation in multi‑ethnic 
Asians and suggests that obesity can drive methylation change. The results also suggested possible causal influence 
that obesity‑related methylation changes might have on inflammation and lipoprotein levels.

Keywords: DNA methylation, Epigenome‑wide association study, Obesity, Body mass index, Waist circumference, 
Inflammation, Metabolites
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Multi-Ethnic Cohort (MEC) [30], including 286 par-
ticipants (102 Chinese, 86 Malay, 98 Indian) at their 
first follow-up from the Singapore Integrative Omics 
Study (iOmics) [31], and 140 Chinese individuals from 
MEC with both baseline and first follow-up measure-
ments, hereafter referred to as ‘MEC Chinese sample’ 
set. Summary characteristics of 264 MEC Chinese and 
281 iOmics participants after quality control (QC) are 
summarized in Additional file  1: Table  S1. There was 
a significant difference in BMI across ethnic groups in 
the iOmics study (PANOVA = 1.31 ×  10–16), whereas no 
difference was observed between the MEC Chinese and 
iOmics Chinese (Pt-test = 0.83).

EWAS of adiposity and meta‑analysis
To identify central (BMI) and abdominal (WC) adiposity-
associated DNA methylation, we performed EWAS in 
281 iOmics (100 Chinese, 84 Malays, and 97 Indians) and 
128 MEC Chinese samples (Additional file  1: Table  S2). 
We performed association analysis between BMI and 
CpGs in the two sets of samples separately by ethnic-
ity and combined them with fixed-effect meta-analysis. 
We first meta-analyzed Chinese samples and identified 
29 CpGs significantly associated with BMI (PFDR < 0.05) 
(Additional file 1: Table S3). We then meta-analyzed the 
combined Chinese results with the iOmics Malay and 
Indian association results. A total of 123 CpGs at 116 loci 
were significantly associated with BMI (PFDR < 0.05) after 

Fig. 1 Summary of analyses, study samples, methods, and results in this study. MEC, Multi‑Ethnic Cohort; iOmics, Singapore Integrative Omics 
Study; LOLIPOP, The London Life Sciences Prospective Population Study; KORA, Cooperative Health Research in the Region of Augsburg; 450 K, 
Illumina Infinium HumanMethylation450 BeadChip array; EPIC, Illumina Infinium HumanMethylation EPIC array; BMI, body mass index; WC, waist 
circumference; IL‑6, interleukin 6
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meta-analysis (Additional file  1: Table  S3). Conditional 
analysis of seven loci containing two BMI-associated 
CpGs did not identify secondary signals. Of the 29 CpGs 
identified in Chinese meta-analysis, 21 remained sig-
nificant in the trans-ethnic meta-analysis. We observed 
heterogeneity across ethnicity (Phet < 0.05) at 3 CpGs 
(cg17544521 in CACNA1S, cg06190406 in OBSCN, and 
cg20585768 in LCLAT1), where the association was 
mainly driven by Chinese. Among the 116 independent 
BMI-associated CpGs, 110 CpGs have been previously 
associated with BMI in other populations as reported in 
two EWAS catalogues, Atlas and MRC-IEU. We identified 
six novel BMI-associated CpGs, namely cg15103625 near 
THADA, cg07421368 on the body of ETAA1, cg08010984 
on the body of TNIK, cg15103625 within 1,500 bp from 
the transcript start site (TSS1500) of RSRC1, cg16309866 
near LINC01449, and cg19120513 on the 5’ untranslated 
regions (5’UTR) of BIRC3 (Fig. 2, Table 1). The strongest 
signal in our meta-analysis was cg10919522 in C14orf43 
(Pmeta = 4.07 ×  10–10), which was also reported in EWAS 
of Europeans populations [24, 25]. Twenty-four CpGs 
were at/near obesity-related genes including three of 
the six novel BMI-associated CpGs, namely cg02871985 
near THADA, cg08010984 in TNIK, and cg15103625 in 
RSRC1. cg08010984 in TNIK was inversely associated 
with BMI (P-value = 4.26 ×  10–6) and the association 
was predominantly driven by Chinese (βChinese = − 27.24, 
βMalay = −  19.62, βIndian = −  18.96, PChinese = 2.14 ×  10–7, 
PMalay = 0.23, PIndian = 0.16). cg15103625 in RSRC1 was 

directly associated with BMI (Pmeta = 1.12 ×  10–6), and 
consistent across ethnicities (Phet = 0.70). We identified 
eight CpGs significantly associated with WC (Additional 
file 1: Table S3), of which two, cg15103625 in RSRC1 and 
cg07421368 in ETAA1, were novel for both BMI and WC. 
Seven of the WC-associated CpGs overlapped with BMI-
associated CpGs.

To compare previously reported BMI-EWAS associa-
tions with our data, we first performed lookups of 254 
BMI-associated CpGs from Wahl et  al. [24] in Europe-
ans/South Asians and 349 BMI-associated CpGs from 
Sun et  al. [25] in Europeans/African Americans in our 
meta-analysis (Additional file 1: Table S4). In the first set 
of 254 BMI-associated CpGs, 242 CpGs passed QC in 
our data and 224 CpGs (92.56%) showed consistency in 
direction of effects (binomial test P-value < 2.2 ×  10–16), 
and 13 CpGs were associated with BMI in our meta-anal-
ysis at Bonferroni-corrected P-value (0.0002 = 0.05/242). 
Similarly, in the second set of 349 BMI-associated 
CpGs, 321 CpGs passed QC, and 296 CpGs (92.21%) 
showed consistent direction of effects (binomial test 
P-value < 2.2 ×  10–16) with ten CpGs associated with BMI 
in our meta-analysis at Bonferroni-corrected P-value 
(0.00016 = 0.05/321). Six CpGs overlapped and passed 
Bonferroni-corrected P-value in both datasets. When 
we looked up the 116 BMI-associated CpGs and eight 
WC-associated CpGs identified in our meta-analysis in 
The London Life Sciences Prospective Population Study 
(LOLIPOP), Cooperative Health Research in the Region 

Fig. 2 Genome‑wide mirror Manhattan plot of association statistics from epigenome‑wide association analysis in multi‑ethnic Asians with BMI 
association results on the upper panel and WC association results on the lower panel. At an epigenome‑wide significance of PFDR < 0.05, we 
identified 116 BMI‑associated and 8 WC‑associated CpGs. Novel associations were labeled with the nearest candidate gene and colored by trait. 
Novel CpGs near THADA, TNIK, LINCO1449, and BIRC3 were associated with BMI only, while CpGs near ETAA1 and RSRC1 were associated with both 
BMI and WC
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of Augsburg from the first follow-up of the S3 survey 
(KORA F3), and the first and second follow-ups of the 
S4 survey (KORA F4, KORA FF4), 114 were presented 
in KORA FF4 while only 51 were present in LOLIPOP 
and KORA F3 and F4 due to difference in array cover-
age (Additional file 1: Table S5). Out of the overlapping 
CpGs, 33 CpGs (64.71%) in LOLIPOP South Asian, 32 
CpGs (62.75%) in KORA F3, 40 CpGs (78.43%) in KORA 
F4, and 91 CpGs (79.82%) in KORA FF4 showed con-
sistent direction of effect (binomial test P-value = 0.049, 
0.09, 5.7 ×  10–6 and 9.3 ×  10–11, respectively). We also 
looked up eight WC-associated in KORA FF4 and found 
6 CpGs (75%) with consistent direction of effect (bino-
mial test P-value = 0.29).

Association of DNA methylation and gene expression
To determine whether the identified BMI-associated 
CpGs may influence gene expression in blood, we exam-
ined the association between the identified 116 BMI-
associated CpGs and 4,162 transcripts located within 
1  Mb of the corresponding CpGs in a subset of iOmics 
samples with expression data available (total n = 208: 
78 Chinese, 53 Malay, 77 Indian). No cis-transcripts 
were significantly associated with methylation level at 
PFDR < 0.05. For the six novel BMI-associated CpGs iden-
tified, cg02871985 was positively nominally associated 
with the expression level of THADA (P-value = 0.046). 
cg08010984 annotated near TNIK and cg19120513 near 
BIRC3 were negatively nominally associated with the 
expression level of RNU6-348P (P-value = 0.045) and 
MMP8 (P-value = 0.006).

Temporal relationship analysis of BMI and DNA 
methylation
Cross‑lagged panel model
To further explore the link between BMI and DNA meth-
ylation, we examined the temporal association between 
BMI and the identified 116 CpGs using the cross-lagged 
panel model (CPLM) in 124 MEC Chinese samples with 
multiple timepoints. Among the 116 CpGs that showed 
significant association with BMI in meta-analysis, the 
path coefficients from baseline BMI to follow-up DNA 
methylation were nominally significant at 92 CpGs (79% 
of 116; PFDR < 0.05). In contrast, no CpG showed signifi-
cant path coefficient from baseline DNA methylation to 
follow-up BMI (Additional file  1: Table  S6), suggesting 
that BMI has a causal effect on methylation change.

Bidirectional Mendelian randomization (MR)
Forward and backward MR were performed in a sub-
set of 208 iOmic samples with genotype available (78 
Chinese, 53 Malay, 77 Indian) by using genetic variants 
as instrumental variables (IV) to study the temporal 

relationship between methylation and BMI. In the for-
ward MR, we identified 94 cis-SNPs associated with 
116 BMI-associated CpGs, where the effect sizes on 
BMI were obtained from GWAS summary statistics 
in over 170,000 Japanese from Biobank Japan [16]. By 
calculating the predicted effect between CpG and BMI, 
we found no CpG indicative of causal effect of meth-
ylation on BMI (Bonferroni-adjusted P-value threshold 
of 5 ×  10–4, min P-value = 1.1 ×  10–3, Additional file  1: 
Table  S7). In the backward MR, the reverse causality 
was investigated using polygenic risk score (PRS) as IV. 
The PRS was calculated using 85 previously reported 
BMI-associated SNPs in Biobank Japan (Additional 
file 1: Table S8). No CpG supported a causal link from 
BMI to methylation (min P-value = 0.027). The corre-
lation between predicted and observed effects in for-
ward MR was −  0.01 (P-value = 0.90) for methylation 
as cause, and 0.43 (P-value = 1.46 ×  10–6) in backward 
MR for BMI as cause.

Temporal relationship analysis of methylation 
with inflammation markers and metabolomics biomarkers
We assessed the temporal relationship between BMI-
associated methylation with inflammation markers 
(interleukin 6,  IL-6 and Tumor necrosis factor alpha, 
TNF-alpha) and 155 metabolites using CLPM to deter-
mine if the BMI-associated methylation   may influence 
inflammation or metabolism. Within the 116 BMI-asso-
ciated CpGs identified, nine CpGs showed significant 
path coefficient (P-value < 0.05) from baseline methyla-
tion to follow-up IL-6, while six CpGs showed significant 
path coefficient (P-value < 0.05) from baseline IL-6 to 
follow-up methylation. No CpGs showed significant path 
coefficient with PFDR < 0.05 significance. We further gen-
erated a methylation risk score (MRS) which reflected the 
combined effect of the 116 identified BMI, and examined 
the causal relationship between MRS and IL-6 (Fig.  3). 
The path coefficient from baseline MRS to follow-up IL-6 
was significant (P-value = 0.023). There was no significant 
causal direction indicated in the analysis of TNF-alpha.

In the analyses of the 155 metabolomic biomarkers, no 
significant pathway direction was suggested by the CLPM 
under PFDR < 0.05. At a significant level of P-value < 0.05, 
we found four lipoproteins with causal pathways from 
baseline MRS to follow-up metabolites: large high-den-
sity lipoproteins (HDL) carrying total lipids, large HDL 
carrying free cholesterol, extreme small very-low-density 
lipoprotein (VLDL) carrying cholesteryl esters, and inter-
mediate-density lipoproteins (ILD) carrying cholesteryl 
esters (Additional file 1: Table S9).
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Discussion
Using EWAS analysis in 409 multi-ethnic Asian par-
ticipants, we identified 116 BMI-associated CpGs and 
8 WC-associated CpGs at epigenome-wide significance, 
of which six BMI-associated CpGs and two WC-asso-
ciated CpGs are novel. We replicated some of the well-
established CpGs associated with BMI consistently 
across different Asian populations. Seven out of eight 
identified WC-associated CpGs were also associated 
with BMI at PFDR < 0.05, and two CpGs cg15103625 in 
RSRC1 and cg07421368 in ETAA1 were found novel 
in both WC and BMI associations, indicating com-
mon methylation sites influenced by both general and 
abdominal obesity. Out of the 116 BMI-associated 
CpGs reported in this study, we also identified six 
novel CpGs while 110 have been previously reported 
in other populations. Over 90% of the significant CpGs 
reported by Wahl et al. [24] and Sun et al. [25] showed 
consistency in direction of effect, indicating shared 
CpG associations across populations. We also observed 
moderate consistency when comparing our findings in 
other populations. This may indicate possible unique 
signals in Asian population, or by chance due to the 
limited samples size.

To determine if the changes in methylation might 
influence gene expression in blood, we performed cis-
expression association analysis on the 116 identified 
CpGs. However, no CpGs were found to be significantly 
associated with gene expression after Bonferroni cor-
rection. Although some BMI-associated CpGs iden-
tified in Europeans were reported to influence gene 
expression in blood [22, 24], such association may not 
be detectable given our modest sample size. Another 
possible reason could be that we used microarray to 

profile expression, which could only profile predefined 
genes through hybridization.

Some of the CpGs identified in this study were in loci 
known to be involved in adiposity. cg02871985 located in 
the CpG island near THADA was negatively associated 
with BMI in our EWAS (P-value = 4.75 ×  10–6). Although 
the association might be influenced by a common SNP 
rs33979934 at 109 bp away from the CpG, the SNP-CpG 
association was not significant as reported by a current 
mQTL study in iOmic samples [32]. THADA is a regu-
lator of energy consumption and energy storage and has 
been associated with cold adaption [33]. Numerous SNPs 
in THADA have been reported to be associated with adi-
posity and T2D in multi-ethnic GWAS studies [34–36]. 
Studies in Drosophila have shown that THADA triggers 
thermogenesis by uncoupling ATP hydrolysis from cal-
cium transport into the endoplasmic reticulum [33]. Our 
study suggested the methylation level at THADA might 
be downstream of BMI, highlighting the effect of meth-
ylation in the mechanism of obesity and T2D. However, 
lack of expression association results limits our ability to 
make a definitive causal inference, and more studies are 
needed to explore the biological mechanism of meth-
ylation in THADA. In addition to the novel associations, 
we also replicated previously reported BMI-associated 
CpGs. For example, cg05511958 in CHCHD5 shows sig-
nificant association with BMI (P-value = 4.29 ×  10–7) in 
our results. Recently, CHCHD5 has been reported to be 
associated with hypertension and obesity in a  Chinese 
population [37].

In our EWAS, there are also some CpGs identified 
in loci not previously linked to adiposity. Three of the 
novel adiposity-associated CpGs cg15103625 in RSRC1, 
cg07421368 in ETAA1, and cg08010984 in TNIK are in 
genes involved in serine metabolism. RSRC1 encodes 
arginine- and serine-rich proteins that plays an impor-
tant role in multiple cellular functions by altering RNA 
splicing, while ETAA1 and TNIK are involved in protein 
serine/threonine kinase activator activity. TNIK encoded 
a serine/threonine kinase that functions as an activator of 
the Wnt signaling pathway [38]. In our study, cg15103625 
in RSRC1 and cg07421368 in ETAA1 were significantly 
associated with both BMI and WC. GWAS in Europe-
ans identified adiposity-associated genetic variants in all 
three loci [39–41]. However, the association between adi-
posity and serine metabolism remains unclear.

Of these six novel CpGs, cg15103625 and cg08010984 
were not presented in the 450  k array, which could 
explain why they were not identified in previous stud-
ies. The Illumina Infinium HumanMethylation EPIC 
array provides more coverage as compared to the 450 k 
array [42], thus allowing for the identification of poten-
tially novel BMI-associated CpG sites. Due to lack of 

Fig. 3 Cross‑lagged panel analysis (CLPM) of BMI‑associated 
methylation risk score (MRS) and IL‑6. Pathway coefficients and 
corresponding P‑values are provided. Unidirectional arrows indicate 
regression, and bidirectional arrows indicate correlation. Arrows with 
red numbers indicate significant pathway coefficients (P‑value < 0.05), 
and arrows with black numbers indicate nonsignificant pathway 
coefficients. The pathways coefficient from baseline MRS to follow‑up 
IL‑6 is significant (P‑value = 0.027)
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expression association evidence, we do not have sufficient 
evidence to confirm the effect of the identified adiposity-
associated CpGs on the nearby candidate genes, and we 
would suggest cautious interpretation of our results.

DNA methylation can be jointly influenced by genetic 
and environmental exposures. One of the most well-
established modifiable factors that influence DNA meth-
ylation is cigarette smoking. Many EWAS have identified 
and replicated smoking-associated CpGs across eth-
nicities [43, 44], where most of the identified signals 
showed hypomethylation in smokers than nonsmokers. 
In our study, all MEC Chinese samples were nonsmok-
ers whereas smoking prevalence ranged from 22 to 39% 
in the iOmics participants. To reduce the confounding 
by differences in smoking status, we included smoking as 
one of the covariates in the regression model in all analy-
ses of iOmics samples, including EWAS, expression asso-
ciation analysis, and MR.

Obesity as a chronic disease is also affected by envi-
ronmental factors such as diet and physical activity. 
Thus, the causal relationship between DNA methylation 
and BMI has been an area of research interest in recent 
years [22, 24, 25]. In this study we examined the temporal 
relationship between BMI and methylation using CLPM 
and bidirectional MR. By applying CLPM in 124 Chi-
nese individuals, we found 92 CpGs with significant path 
coefficients from baseline BMI to follow-up DNA meth-
ylation compared to none in the reverse direction. This 
result suggests that BMI may be the cause, rather than 
consequence of DNA methylation. While our MR analy-
ses did not identify CpGs supporting causality in either 
direction, possibly due to the small sample size, the cor-
relation between predicted and observed BMI-CpG asso-
ciation was stronger in the backward MR, indicating a 
higher possibility of BMI being the causal factor. The evi-
dence from our CLPM is consistent with previous studies 
using MR across populations [22, 24].

Chronic low-grade inflammation and an activation of 
the immune system are commonly reported to be asso-
ciated with the pathogenesis of obesity-related insulin 
resistance and T2D [45, 46]. The inflammatory distur-
bances in the obese adipocyte are reflected by elevated 
pro-inflammatory cytokines such as IL-6 [47] and TNF-
alpha [48, 49]. Our longitudinal analysis supports the 
association between methylation and IL-6 by providing 
inferred causation from obesity-associated methylation 
to IL-6. Our findings help to strengthen the hypothesis 
that methylation may be involved in the mechanism of 
obesity-related inflammatory perturbation; however, fur-
ther causal inference analyses will be needed to validate 
the evidence.

Our study is an Asian-focused EWAS study that 
included both cross-sectional and longitudinal analyses. 

The primary analysis was performed using data from 
cross-sectional design, and the causal relationship was 
analyzed using the longitudinal design. There are also 
some notable limitations to our study. First, we recog-
nize that our sample size is limited for EWAS. However, 
we found good consistency in our results compared with 
previous EWAS studies. Second, DNA methylation was 
measured using DNA extracted from whole blood rather 
than adipose tissue. DNA methylation in blood samples 
can directly capture the methylation changes in immune 
system such as memory lymphocytes or leukocytes, 
which are involved in inflammation or immune response 
pathways [50]. Moreover, EWAS of age has shown highly 
concordant associations in different tissues and blood 
samples [51], and that multiple BMI-associated CpGs 
have been replicated in both leukocyte and adipose tis-
sues [26].

Conclusion
Our study identified and replicated common adiposity-
associated CpGs reported in other populations. We also 
identified six novel CpGs associated with BMI and two 
with WC that reached epigenome-wide significance in 
Asian populations. We further reported evidence of the 
causal effect of BMI on the identified methylation sites 
using a longitudinal setting in a Chinese population. In 
addition, the causal analyses also indicate that BMI-
associated methylation might play a role in inflammatory 
and lipoprotein-related biological pathways. Our find-
ings help to prioritize relevant methylation site for future 
functional studies and provide a foundation for further 
research to study the mechanism of obesity-related dis-
eases through the influence of BMI on DNA methylation.

Methods
Study population
All samples included in this study were selected from 
the MEC [30]. The first set of samples were from iOmics 
which included 286 MEC participants (102 Chinese, 86 
Malay, 98 Indian) at their first follow-up that were ran-
domly selected through age-stratified and gender-strat-
ified sampling [31]. All samples have epigenome-wide 
methylation measured on the Illumina Infinium Human-
Methylation EPIC array. A subset of 258 participants (95 
Chinese, 79 Malay, 84 Indian) has genome-wide geno-
type data (Illumina 2.5  M microarray genotyping) and 
208 (78 Chinese, 53 Malay, 77 Indian) samples have gene 
expression data (Affymetrix Human Gene 1.0 ST arrays). 
The second set of samples were 140 Chinese randomly 
selected healthy participants in MEC with epigenome-
wide methylation profiled on the same EPIC array at 
both their baseline and first follow-up, hereafter referred 
to as ‘MEC Chinese sample’ set. Mean follow-up time 



Page 9 of 13Chen et al. Clin Epigenet          (2021) 13:195  

for all participants was 6.8 years (SD = 1.39). Samples at 
first follow-up were used in epigenome-wide association 
analyses of obesity measures, whereas baseline samples 
were only used in causal relationship analysis (Additional 
file  1: Table  S1). All participants completed a detailed 
interview, physical examination, and provided blood 
samples at each visit. Anthropometric measures such as 
height, weight, and waist and hip circumference were 
measured during the physical examination. Age, gender, 
smoking and alcohol drinking patterns, medication his-
tory, and other covariates were collected through detailed 
interviews. An overview of the samples and omics meas-
urements is provided in Fig. 1. All participants provided 
written formed consent, and all protocols associated with 
the study were approved by the National University of 
Singapore Institutional Review Board.

DNA methylation quantification and quality control
DNA methylation was quantified in bisulfite-converted 
genomic DNA using Illumina Infinium HumanMethyla-
tion EPIC array from buffy coats in two separate labora-
tories for the iOmics and MEC Chinese samples. Quality 
control was performed separately for each set of sam-
ples using the same protocol. Raw signal intensities were 
retrieved using R package minfi. To remove background 
noise from the dyes, we performed background correc-
tion using bgcorrect.illumina function in minfi. For each 
probe, detection P-value was computed as the probabil-
ity of the total signal (methylation + unmethylated) being 
detected above the background signal level, as estimated 
from negative-control probes. Small detection P-values 
indicate higher probability of true signal compared to 
background noise. Samples with high probe missing-
ness defined as detection P-value > 1 ×  10–16 in > 5% in 
all probes were excluded (MEC Chinese, n = 13; iOm-
ics, n = 0). We computed the median intensity of probes 
on chromosomes X and Y separately and derived gender 
information from the probes where difference of log2 
median intensity > −  2 indicates male, and difference 
of < −  2 indicates female. Samples with discordant gen-
der information compared to self-reported gender were 
excluded (MEC Chinese, n = 3; iOmics, n = 5). We then 
performed quality control at probe level for the remain-
ing samples. Probes with detection P-value > 1  x  10–16 
in > 5% of the samples (MEC Chinese, n = 42,987; iOmics, 
n = 12,503) or beadcounts < 3 in > 5% samples (MEC Chi-
nese, n = 1,884; iOmics, n = 85) were excluded. Probes 
mapping to sex chromosomes were also excluded (MEC 
Chinese, n = 17,237; iOmics, n = 18,710). We also flagged 
cross-reactive probes (MEC Chinese, n = 40,242; iOmics, 
n = 41,468) and probes with genetic marker information 
(MEC Chinese, n = 26,682; iOmics, n = 28,641). Quantile 
normalization was performed on the probes separately 

for the MEC Chinese baseline and follow-up samples, 
and by ethnicity in iOmics samples to adjust for techni-
cal variability. After quality control, there were 281 iOm-
ics samples (100 Chinese, 84 Malays, 97 Indians) with 
834,881 probes and 264 MEC Chinese (136 at baseline 
and 128 at follow-up) with 821,032 probes for subsequent 
analyses (Additional file 1: Table S2). Finally, the methyla-
tion level at each probe site was represented as a beta ( β ) 
value ranging from 0 (nonmethylated) to 1 (completely 
methylated). The beta value was defined as the ratio of 
the methylated signal (M) to the sum of methylated and 
unmethylated signal (U), β=M/(M + U + 100).

To account for batch effect and technical variability, 
we performed principal component (PC) analysis on 635 
control probes that are internal probes in Illumina Bead-
Chips that cover steps such as bisulfite conversion, nor-
malization, and hybridization. The PCs derived from the 
control probes were included as covariates in subsequent 
regression models. Blood cell composition were also esti-
mated based on the Houseman algorithm [52] separately 
for both sets of samples. The proportion of granulocytes, 
monocytes, B cells, CD4+ T cells, CD8+ T cells, and nat-
ural killer cells were subsequently included as covariates 
in regression models to reduce cell-type confounding.

Metabolomics biomarkers quantification
Metabolomics biomarkers were quantified in the 140 
MEC Chinese samples at baseline and follow-up using 
targeted metabolomics approaches in a high-through-
put proton nuclear magnetic resonance metabolomics 
platform (Nightingale Health, Helsinki, Finland) [53]. A 
total of 155 biomarkers were measured, and they can be 
broadly classified into cholesterol markers (n = 9), glyc-
erides and phospholipids (n = 9), apolipoproteins (n = 3), 
fatty acids (n = 16), amino acids (n = 8), lipoproteins 
(n = 101), glycolysis-related metabolites (n = 3), ketone 
bodies (n = 3), and markers of fluid balance (n = 2) and 
inflammation (n = 1). Values below detection limit were 
replaced by 0.9 times the minimum of the remaining 
values.

Inflammation markers measurements
Two inflammatory markers, IL-6 and TNF-alpha, were 
measured in 140 MEC Chinese plasma samples at base-
line and follow-up. IL-6 levels were measured using the 
Quantikine HS Human IL-6 Immunoassay (R&D Sys-
tems, Cat NO: HS600C). TNF-alpha levels was measured 
using TNF-alpha Ultrasensitive enzyme‐linked immuno-
sorbent assay (ALPCO, Cat No: 45-TNFHUU-E01). The 
immunoassays were performed according to the manu-
facturer’s instructions, and duplicate tests were done for 
multiple samples to ensure consistency of the results. 
Values below or beyond detection limit were imputed 
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using fitted value from the linear regression plot of the 
optical density and concentration in each plate.

Association between adiposity and DNA methylation
Epigenome-wide associations of BMI and WC with 
DNA methylation were performed separately by ethnic-
ity within the iOmics and MEC Chinese samples. Lin-
ear regression models were used with DNA methylation 
as independent variable, and BMI/WC as dependent 
variables. Untransformed BMI/WC and beta value were 
used in the regression model for ease of interpretation. 
To adjust for confounders, age, sex, smoking habit, blood 
cell type composition, and first five control probe PCs 
(sensitivity analysis indicated that the first five control 
probe PCs explained a large proportion of the variation; 
Additional file 2: Figure S1) were included as covariates 
in the model. Smoking habit was defined as a binary vari-
able (0 = never smoke, 1 = ever smoke).

The association results from each sample set and eth-
nicity were meta-analyzed using inverse-variance fixed-
effects meta-analysis implemented via meta package in 
R. CpGs with PFDR < 0.05 were considered significantly 
associated with BMI/WC. For comparison between sig-
nificant BMI-associated CpGs in our meta-analysis and 
previously reported CpGs, we queried MRC-IEU EWAS 
Catalog [54] and Atlas Catalog [55] for all BMI and WC 
associated CpGs identified in previous studies. We define 
novel CpGs as CpGs that are more than 500  kb away 
from known CpG-BMI or CpG-WC associations from 
either catalogs. Obesity-related genes were defined as 
genes that were reported in GWAS of BMI in NHGRI-
EBI GWAS Catalog [56] or Public Health Genomics and 
Precision Health Knowledge Base [57].

To compare previously reported EWAS results in 
European data with our multi-ethnic Asian data, we 
performed reciprocal lookups of (1) previously reported 
BMI and WC-associated CpGs in our meta-analysis, 
namely 10,261 European/South Asians in Wahl et  al. 
(n = 254 CpGs) [24] and 1965 Europeans/African Ameri-
cans in Sun et al. (n = 349 CpGs) [25]; (2) BMI-associated 
and WC-associated CpGs identified in our meta-analysis 
in additional samples from KORA from the first follow-
up of the S3 survey (European: KORA F3, n = 484), the 
first and second follow-ups of the S4 survey (European: 
KORA F4, n = 1,709 on 450  k array; European: KORA 
FF4, n = 1,874 on EPIC array, respectively) and LOLIPOP 
(South Asian: LOLIPOP, n = 2,680 on 450  k array) [24]. 
We evaluated the consistency in direction of associa-
tion between the studies and calculated the proportion 
of CpGs with the same direction of effect using binomial 
test of null hypothesis that the proportion is equal to 0.5.

Association between DNA methylation and gene 
expression
Expression data were available for a subset of iOm-
ics samples (n = 208: 78 Chinese, 53 Malay, 77 Indian) 
[31]. RNA was collected from whole blood samples in 
each ethnicity, with gene expression quantified using the 
Affymetrix Human Gene 1.0 ST arrays (Affymetrix Inc., 
Santa Clara, CA). Gene expression quality control and 
normalization were performed in each ethnicity sepa-
rately. These included (1) exclusion of lowly expressed 
genes, defined as genes with expression levels less than 
the mean expression level of control probes in more 
than 90% of the samples; (2) variance stabilization [58] 
and quantile normalization to standardize the distribu-
tion of expression levels across samples; (3) accounting 
for known and unknown experimental confounders by 
adjusting for sex, batch effects and five probabilistic esti-
mation of expression residuals (PEER) factors [59, 60]; 
and (4) a rank inverse normal transformation of the resid-
uals. Approximately 15,000 autosomal gene expression 
probes remained in each ethnicity (n = 15,268 in Chinese, 
n = 15,187 in Malay, n = 15,302 in Indian) and were used 
in subsequent analyses. We performed association test 
of BMI-associated CpGs with transcripts located within 
1 Mb of the corresponding CpGs in 208 iOmics samples, 
adjusting for age, blood cell composition, and control 
probe PCs. The results were analyzed separately by eth-
nicity, adjusting for age, blood cell composition, and con-
trol probe PCs. The results were combined using fixed 
effect inverse-variance meta-analysis.

Temporal relationship analysis of BMI and DNA 
methylation
To explore the temporal relationship of BMI and DNA 
methylation, we performed (1) CLPM on the MEC Chi-
nese with methylation data at two timepoints (n = 124 
each at baseline and follow-up), and (2) bidirectional 
two-sample MR in a subset of 208 iOmic samples with 
genotype available (78 Chinese, 53 Malay, 77 Indian).

Cross‑lagged panel model (CLPM)
In CLPM, both baseline and follow-up BMI were 
adjusted for age and sex by regression residual analysis 
and Z-standardized. DNA methylation was also adjusted 
and standardized with further adjustment for blood 
cell composition and five control PCs. Pearson correla-
tion and regression coefficients were estimated from the 
models, and validity of model fitting was evaluated by 
the comparative fit index [61]. Structural equations used 
in CLPM are: (1) Baseline BMI ~ Baseline DNA meth-
ylation; (2) Follow-up DNA methylation ~~ Baseline 
DNA methylation + Baseline BMI + e1; (3) Follow-up 
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DNA ~~ Baseline DNA methylation + Baseline BMI + e2, 
where ~ indicates correlation and ~~ indicates regression; 
e1 and e2 are error terms. All CLPM analyses were per-
formed using Lavaan package in R.

Bidirectional Mendelian randomization (MR)
We selected cis-SNPs associated with 116 BMI-associ-
ated CpGs as instrumental variable. We first selected 
SNPs within 1  Mb of the 116 BMI-associated CpGs 
(n = 211,727) and performed linear regression analysis 
using CpGs as dependent variable and SNPs as inde-
pendent variable, adjusting for covariates used in the 
discovery analysis. The analysis was performed for each 
ethnicity and combined using fixed-effect meta-analy-
sis. The top associated SNP (i.e., SNP with the smallest 
P-value) for each CpG was chosen as IV (n = 116). SNPs 
with nonsignificant association (P-value > 0.05, n = 1), 
SNPs within probe-binding sequence (n = 2), and SNPs 
associated with BMI after adjusting for CpGs (n = 8) were 
excluded. Out of the remaining 105 SNPs, the effect size 
of 94 SNPs on BMI could be obtained in the GWAS sum-
mary statistics in over 170,000 Japanese [16]. The pre-
dicted effect ( eff 2

CpG-BMI ) and standard error ( SECpG-BMI ) 
of CpG on BMI was calculated as below [24]:

The predicted effect was then compared with the 
observed effect from the EWAS results using correla-
tion test. To assess reverse causality, we used PRS as IV. 
PRS was calculated as the weighted sum of effect of 85 
BMI-associated SNPs identified in Japanese [16], using 
score function in Plink V1.9 [62]. We used a Bonferroni-
adjusted P-value threshold of 5 ×  10–4 to account for 
multiple testing.

Association between DNA methylation with inflammation 
markers and metabolomics biomarkers
To examine the association and causality between BMI-
associated methylation with inflammation markers and 
metabolomics biomarkers, we calculated a methyla-
tion risk score (MRS) to reflect the combined effect of 
the 116 identified BMI-associated CpGs. CLPM was 
used to study the temporal relationship between the 
BMI-associated MRS and two inflammation (IL-6 and 
TNF-alpha) and 155 metabolomics biomarkers. Lin-
ear regression model was used to study the association 
between MRS and inflammation and metabolomics 
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biomarkers. Inflammation and metabolomics biomark-
ers with significant associations with the MRS were 
selected for CLPM to study the causality. Inflammation 
and metabolomics biomarkers were regressed on age, 
sex, and batch. MRS was regressed on age, sex, blood 
cell composition, and five control PCs. Both inflamma-
tion and metabolomics biomarkers and the MRS were 
Z-standardized. The CLPM was further adjusted for 
follow-up time.

Abbreviations
BMI: Body mass index; CLPM: Cross‑lagged panel model; EWAS: Epigenome‑
wide association study; FDR: False discovery rate; GWAS: Genome‑wide 
association study; HDL: High‑density lipoproteins; IDL: Intermediate‑density 
lipoproteins; IL‑6: Interleukin 6; iOmics: The Singapore Integrative Omics Study; 
IV: Instrumental variable; KORA: Cooperative Health Research in the Region of 
Augsburg; LOLIPOP: The London Life Sciences Prospective Population Study; 
MEC: Multi‑Ethnic Cohort; MRS: Methylation risk score; PC: Principal compo‑
nent; PEER: Probabilistic estimation of expression residuals; PRS: Polygenic risk 
score; QC: Quality control; TNF‑alpha: Tumor necrosis factor alpha; T2D: Type2 
diabetes; VLDL: Very‑low‑density lipoprotein; WC: Waist circumference.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13148‑ 021‑ 01162‑x.

Additional file 1: Table S1‑S9. Table S1. Summary clinical characteris‑
tics of samples. Table S2. Quality control (QC) of DNA methylation data. 
Table S3. Epigenome‑wide association results of obesity‑associated CpGs 
 (PFDR<0.05) in Asian samples by sample set, ethnicity and meta‑analyses. 
Table S4. Summary of lookups of previously reported association results 
in our trans‑ethnic meta‑analysis. Table S5. Summary of lookups of 
association results from our trans‑ethnic meta‑analysis in KORA and 
LOLIPOP. Table S6. Pathway coefficients in cross‑lagged panel model 
(CLPM) with 116 BMI‑associated CpGs for BMI and methylation. Table S7.  
Results of forward Mendelian randomization for methylation as the cause. 
Table S8. Results of backward Mendelian randomization for BMI as the 
cause. Table S9. Pathway coefficients in cross‑lagged panel model (CLPM) 
with 116 BMI‑associated CpGs for metabolomics biomarkers and methyla‑
tion risk score.

Additional file 2: Figure S1. Sensitivity analysis of control probes 
principal components analysis. The first five principal components were 
included in regression models.

Acknowledgements
The authors would like to thank Peter Wurtz from Nightingale Health for the 
collaboration to generate metabolic biomarker data. The KORA study was initi‑
ated and financed by the Helmholtz Zentrum München – German Research 
Center for Environmental Health, which is funded by the German Federal 
Ministry of Education and Research (BMBF) and by the State of Bavaria.

Authors’ contributions
This study was conceived, designed, and interpreted by YC, ML, and XS. YC, IK, 
SHL performed statistical analyses. JK, RW, AP, and JW performed lookups in 
KORA study. JC, VC, CK, RD, YT, ML, and XS supplied samples and phenotype 
data used in the study. YC drafted the manuscript. IK, RW, RD, ML, and XS 
contributed to the manuscript writing. All authors read and approved the final 
manuscript.

Funding
This research is supported by the Singapore Ministry of Health’s National 
Medical Research Council (NMRC/OFYIRG/038/2017‑00). The iOmics study 
is supported by the Biomedical Research Council (grant 03/1/27/18/216), 

https://doi.org/10.1186/s13148-021-01162-x
https://doi.org/10.1186/s13148-021-01162-x


Page 12 of 13Chen et al. Clin Epigenet          (2021) 13:195 

National Medical Research Council (grant 0838/2004) and National 
Research Foundation (through the Bio‑medical Research Council, grants 
05/1/21/19/425 and 11/1/21/19/678), and is partly supported by funds from 
the Agency for Science, Technology and Research (A∗STAR) and the National 
University of Singapore (NUS) [Translational Laboratory in Genetic Medicine—
Integrative Omics Group (TLGM‑iOX)]. The contributions from the KORA study 
were supported by a grant (01EA1902A: Dimension) from the German Federal 
Ministry of Education and Research (BMBF) within the framework of the EU 
Joint Programming Initiative ‘A Healthy Diet for a Healthy Life’.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
The research was performed under the supervision and approval of the 
National University of Singapore Institutional Review Board. All participants 
provided written formed consent.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Saw Swee Hock School of Public Health, National University of Singapore 
and National University Health System, 12 Science Drive 2, #10‑01, Tahir Foun‑
dation Building, Singapore 117549, Singapore. 2 Life Sciences Institute, National 
University of Singapore, Singapore, Singapore. 3 Department of Microbiology 
and Immunology, Yong Loo Lin School of Medicine, National University of Sin‑
gapore, Singapore, Singapore. 4 Department of Cardiology, Ealing Hospital, 
London North West Healthcare NHS Trust, Middlesex, UK. 5 Imperial College 
Healthcare NHS Trust, Imperial College London, London, UK. 6 MRC‑PHE 
Centre for Environment and Health, Imperial College London, London, UK. 
7 National Heart and Lung Institute, Imperial College London, London, UK. 
8 Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz 
Zentrum München, German Research Center for Environmental Health, 85764, 
Neuherberg, Bavaria, Germany. 9 Institute of Epidemiology, Helmholtz Zentrum 
München, German Research Center for Environmental Health, Neuherberg, 
Germany. 10 German Center for Cardiovascular Research, Partner Site Munich 
Heart Alliance, Munich, Germany. 11 Institute of Neurogenomics, Helmholtz 
Zentrum München, Munich, Germany. 12 Institute of Human Genetics, 
Technical University of Munich, Klinikum rechts der Isar, Munich, Germany. 
13 Lehrstuhl Für Neurogenetik, Technische Universität München, Munich, Ger‑
many. 14 Munich Cluster for Systems Neurology, Munich, Germany. 15 Lee Kong 
Chian School of Medicine, Nanyang Technological University, 11 Mandalay 
Road, Level 18, Lee Kong Chian Clinical Science Building, Singapore 308232, 
Singapore. 16 Department of Epidemiology and Biostatistics, Imperial College 
London, London, UK. 17 National University Health System Infectious Diseases 
Translational Research Program, Department of Microbiology and Immu‑
nology, Yong Loo Lin School of Medicine, National University of Singapore, 
Singapore, Singapore. 18 Genome Institute of Singapore, Agency for Science, 
Technology and Research, Singapore, Singapore. 19 Singapore Eye Research 
Institute, Singapore National Eye Centre, Singapore, Singapore. 20 Depart‑
ment of Nutrition and Department of Epidemiology, Harvard T.H. Chan 
School of Public Health, Boston, MA, USA. 21 National Skin Centre, Singapore, 
Singapore. 

Received: 21 June 2021   Accepted: 29 August 2021

References
 1. Ramachandran A, Snehalatha C. Rising burden of obesity in Asia. J Obes. 

2010;2010.

 2. Jaacks LM, Vandevijvere S, Pan A, McGowan CJ, Wallace C, Imamura F, 
et al. The obesity transition: stages of the global epidemic. Lancet Diabe‑
tes Endocrinol. 2019;7(3):231–40.

 3. Polsky S, Ellis SL. Obesity, insulin resistance, and type 1 diabetes mellitus. 
Curr Opin Endocrinol Diabetes Obes. 2015;22(4):277–82.

 4. Riobo SP. Obesity and diabetes. Nutr Hosp. 2013;28(Suppl 5):138–43.
 5. Seravalle G, Grassi G. Obesity and hypertension. Pharmacol Res. 

2017;122:1–7.
 6. Lavie CJ, Milani RV, Ventura HO. Obesity and cardiovascular disease: 

risk factor, paradox, and impact of weight loss. J Am Coll Cardiol. 
2009;53(21):1925–32.

 7. Nazare JA, Smith JD, Borel AL, Haffner SM, Balkau B, Ross R, et al. Ethnic 
influences on the relations between abdominal subcutaneous and vis‑
ceral adiposity, liver fat, and cardiometabolic risk profile: the International 
Study of Prediction of Intra‑Abdominal Adiposity and Its Relationship 
With Cardiometabolic Risk/Intra‑Abdominal Adiposity. Am J Clin Nutr. 
2012;96(4):714–26.

 8. Vazquez G, Duval S, Jacobs DR Jr, Silventoinen K. Comparison of body 
mass index, waist circumference, and waist/hip ratio in predicting inci‑
dent diabetes: a meta‑analysis. Epidemiol Rev. 2007;29:115–28.

 9. Huxley R, James WP, Barzi F, Patel JV, Lear SA, Suriyawongpaisal P, et al. Eth‑
nic comparisons of the cross‑sectional relationships between measures 
of body size with diabetes and hypertension. Obes Rev. 2008;9(Suppl 
1):53–61.

 10. Sluik D, Boeing H, Montonen J, Pischon T, Kaaks R, Teucher B, et al. 
Associations between general and abdominal adiposity and mortality in 
individuals with diabetes mellitus. Am J Epidemiol. 2011;174(1):22–34.

 11. Hill JO, Peters JC. Environmental contributions to the obesity epidemic. 
Science. 1998;280(5368):1371–4.

 12. Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, et al. Genome‑wide 
association scan shows genetic variants in the FTO gene are associated 
with obesity‑related traits. PLoS Genet. 2007;3(7):e115.

 13. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren 
CM, et al. A common variant in the FTO gene is associated with body 
mass index and predisposes to childhood and adult obesity. Science. 
2007;316(5826):889–94.

 14. Organization WH. Obesity and overweight 2020 [Available from: https:// 
www. who. int/ news‑ room/ fact‑ sheets/ detail/ obesi ty‑ and‑ overw eight.

 15. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic 
studies of body mass index yield new insights for obesity biology. Nature. 
2015;518(7538):197–206.

 16. Akiyama M, Okada Y, Kanai M, Takahashi A, Momozawa Y, Ikeda M, et al. 
Genome‑wide association study identifies 112 new loci for body mass 
index in the Japanese population. Nat Genet. 2017;49(10):1458–67.

 17. Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. 
Meta‑analysis of genome‑wide association studies for height and body 
mass index in approximately 700000 individuals of European ancestry. 
Hum Mol Genet. 2018;27(20):3641–9.

 18. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies 
and beyond. Nat Rev Genet. 2012;13(7):484–92.

 19. Dragic D, Ennour‑Idrissi K, Michaud A, Chang SL, Durocher F, Diorio C. 
Association Between BMI and DNA Methylation in Blood or Normal Adult 
Breast Tissue: A Systematic Review. Anticancer Res. 2020;40(4):1797–808.

 20. Aslibekyan S, Demerath EW, Mendelson M, Zhi D, Guan W, Liang L, et al. 
Epigenome‑wide study identifies novel methylation loci associated 
with body mass index and waist circumference. Obesity (Silver Spring). 
2015;23(7):1493–501.

 21. Al Muftah WA, Al‑Shafai M, Zaghlool SB, Visconti A, Tsai PC, Kumar P, et al. 
Epigenetic associations of type 2 diabetes and BMI in an Arab population. 
Clin Epigenetics. 2016;8:13.

 22. Mendelson MM, Marioni RE, Joehanes R, Liu C, Hedman AK, Aslibekyan 
S, et al. Association of Body Mass Index with DNA Methylation and Gene 
Expression in Blood Cells and Relations to Cardiometabolic Disease: A 
Mendelian Randomization Approach. PLoS Med. 2017;14(1):e1002215.

 23. Martin DI, Cropley JE, Suter CM. Epigenetics in disease: leader or follower? 
Epigenetics. 2011;6(7):843–8.

 24. Wahl S, Drong A, Lehne B, Loh M, Scott WR, Kunze S, et al. Epigenome‑
wide association study of body mass index, and the adverse outcomes of 
adiposity. Nature. 2017;541(7635):81–6.

https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight


Page 13 of 13Chen et al. Clin Epigenet          (2021) 13:195  

 25. Sun D, Zhang T, Su S, Hao G, Chen T, Li QZ, et al. Body Mass Index 
Drives Changes in DNA Methylation: A Longitudinal Study. Circ Res. 
2019;125(9):824–33.

 26. Demerath EW, Guan W, Grove ML, Aslibekyan S, Mendelson M, Zhou 
YH, et al. Epigenome‑wide association study (EWAS) of BMI, BMI change 
and waist circumference in African American adults identifies multiple 
replicated loci. Hum Mol Genet. 2015;24(15):4464–79.

 27. Guay SP, Brisson D, Lamarche B, Marceau P, Vohl MC, Gaudet D, et al. DNA 
methylation variations at CETP and LPL gene promoter loci: new molecu‑
lar biomarkers associated with blood lipid profile variability. Atherosclero‑
sis. 2013;228(2):413–20.

 28. Na YK, Hong HS, Lee WK, Kim YH, Kim DS. Increased methylation of 
interleukin 6 gene is associated with obesity in Korean women. Mol Cells. 
2015;38(5):452–6.

 29. Balakrishnan A, Guruprasad KP, Satyamoorthy K, Joshi MB. Interleukin‑6 
determines protein stabilization of DNA methyltransferases and alters 
DNA promoter methylation of genes associated with insulin signaling 
and angiogenesis. Lab Invest. 2018;98(9):1143–58.

 30. Tan KHX, Tan LWL, Sim X, Tai ES, Lee JJ, Chia KS, et al. Cohort Profile: 
The Singapore Multi‑Ethnic Cohort (MEC) study. Int J Epidemiol. 
2018;47(3):699‑j.

 31. Saw WY, Tantoso E, Begum H, Zhou L, Zou R, He C, et al. Establishing 
multiple omics baselines for three Southeast Asian populations in the 
Singapore Integrative Omics Study. Nat Commun. 2017;8(1):653.

 32. Kassam I, Tan S, Gan FF, Saw WY, Tan LW, Moong DKN, et al. Genome‑
wide identification of cis DNA methylation quantitative trait loci in three 
Southeast Asian Populations. Hum Mol Genet. 2021;30(7):603–18.

 33. Moraru A, Cakan‑Akdogan G, Strassburger K, Males M, Mueller S, Jabs M, 
et al. THADA Regulates the Organismal Balance between Energy Storage 
and Heat Production. Dev Cell. 2017;41(1):72–81 e6.

 34. Zhao W, Rasheed A, Tikkanen E, Lee JJ, Butterworth AS, Howson JMM, 
et al. Identification of new susceptibility loci for type 2 diabetes and 
shared etiological pathways with coronary heart disease. Nat Genet. 
2017;49(10):1450–7.

 35. Vujkovic M, Keaton JM, Lynch JA, Miller DR, Zhou J, Tcheandjieu C, et al. 
Discovery of 318 new risk loci for type 2 diabetes and related vascular 
outcomes among 1.4 million participants in a multi‑ancestry meta‑analy‑
sis. Nat Genet. 2020;52(7):680–91.

 36. Lotta LA, Wittemans LBL, Zuber V, Stewart ID, Sharp SJ, Luan J, et al. Asso‑
ciation of Genetic Variants Related to Gluteofemoral vs Abdominal Fat 
Distribution With Type 2 Diabetes, Coronary Disease, and Cardiovascular 
Risk Factors. JAMA. 2018;320(24):2553–63.

 37. Wu L, Gao L, Zhao X, Zhang M, Wu J, Mi J. A new risk locus in CHCHD5 for 
hypertension and obesity in a Chinese child population: a cohort study. 
BMJ Open. 2017;7(9):e016241.

 38. Masuda M, Uno Y, Ohbayashi N, Ohata H, Mimata A, Kukimoto‑Niino M, 
et al. TNIK inhibition abrogates colorectal cancer stemness. Nat Commun. 
2016;7:12586.

 39. Pulit SL, Stoneman C, Morris AP, Wood AR, Glastonbury CA, Tyrrell J, 
et al. Meta‑analysis of genome‑wide association studies for body fat 
distribution in 694 649 individuals of European ancestry. Hum Mol Genet. 
2019;28(1):166–74.

 40. Kichaev G, Bhatia G, Loh PR, Gazal S, Burch K, Freund MK, et al. Leveraging 
Polygenic Functional Enrichment to Improve GWAS Power. Am J Hum 
Genet. 2019;104(1):65–75.

 41. Zhu Z, Guo Y, Shi H, Liu CL, Panganiban RA, Chung W, et al. Shared 
genetic and experimental links between obesity‑related traits 
and asthma subtypes in UK Biobank. J Allergy Clin Immunol. 
2020;145(2):537–49.

 42. Pidsley R, Zotenko E, Peters TJ, Lawrence MG, Risbridger GP, Molloy 
P, et al. Critical evaluation of the Illumina MethylationEPIC BeadChip 
microarray for whole‑genome DNA methylation profiling. Genome Biol. 
2016;17(1):208.

 43. Christiansen C, Castillo‑Fernandez JE, Domingo‑Relloso A, Zhao W, 
El‑Sayed Moustafa JS, Tsai PC, et al. Novel DNA methylation signa‑
tures of tobacco smoking with trans‑ethnic effects. Clin Epigenetics. 
2021;13(1):36.

 44. Joehanes R, Just AC, Marioni RE, Pilling LC, Reynolds LM, Mandaviya PR, 
et al. Epigenetic Signatures of Cigarette Smoking. Circ Cardiovasc Genet. 
2016;9(5):436–47.

 45. Zeyda M, Stulnig TM. Obesity, inflammation, and insulin resistance–a 
mini‑review. Gerontology. 2009;55(4):379–86.

 46. Esser N, Legrand‑Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a 
link between obesity, metabolic syndrome and type 2 diabetes. Diabetes 
Res Clin Pract. 2014;105(2):141–50.

 47. Eder K, Baffy N, Falus A, Fulop AK. The major inflammatory mediator 
interleukin‑6 and obesity. Inflamm Res. 2009;58(11):727–36.

 48. Hotamisligil GS, Spiegelman BM. Tumor necrosis factor alpha: a key com‑
ponent of the obesity‑diabetes link. Diabetes. 1994;43(11):1271–8.

 49. Tzanavari T, Giannogonas P, Karalis KP. TNF‑alpha and obesity. Curr Dir 
Autoimmun. 2010;11:145–56.

 50. Bauer M. Cell‑type‑specific disturbance of DNA methylation pattern: a 
chance to get more benefit from and to minimize cohorts for epige‑
nome‑wide association studies. Int J Epidemiol. 2018;47(3):917–27.

 51. Horvath S. DNA methylation age of human tissues and cell types. 
Genome Biol. 2013;14(10):R115.

 52. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, 
Nelson HH, et al. DNA methylation arrays as surrogate measures of cell 
mixture distribution. BMC Bioinformatics. 2012;13:86.

 53. Soininen P, Kangas AJ, Wurtz P, Suna T, Ala‑Korpela M. Quantitative serum 
nuclear magnetic resonance metabolomics in cardiovascular epidemiol‑
ogy and genetics. Circ Cardiovasc Genet. 2015;8(1):192–206.

 54. Bristol Uo. MRC‑IEU EWAS Catalog 2020 [Available from: http:// www. 
ewasc atalog. org.

 55. Li M, Zou D, Li Z, Gao R, Sang J, Zhang Y, et al. EWAS Atlas: a curated 
knowledgebase of epigenome‑wide association studies. Nucleic Acids 
Res. 2019;47(D1):D983–8.

 56. Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone 
C, et al. The NHGRI‑EBI GWAS Catalog of published genome‑wide associa‑
tion studies, targeted arrays and summary statistics 2019. Nucleic Acids 
Res. 2019;47(D1):D1005–12.

 57. Yu W, Gwinn M, Dotson WD, Green RF, Clyne M, Wulf A, et al. A knowledge 
base for tracking the impact of genomics on population health. Genet 
Med. 2016;18(12):1312–4.

 58. Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M. Variance 
stabilization applied to microarray data calibration and to the quantifica‑
tion of differential expression. Bioinformatics. 2002;18(Suppl 1):S96‑104.

 59. Parts L, Stegle O, Winn J, Durbin R. Joint genetic analysis of gene 
expression data with inferred cellular phenotypes. PLoS Genet. 
2011;7(1):e1001276.

 60. Stegle O, Parts L, Durbin R, Winn J. A Bayesian framework to account for 
complex non‑genetic factors in gene expression levels greatly increases 
power in eQTL studies. PLoS Comput Biol. 2010;6(5):e1000770.

 61. Joreskog KG. Modeling development: using covariance structure models 
in longitudinal research. Eur Child Adolesc Psychiatry. 1996;5(Suppl 
1):8–10.

 62. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second‑
generation PLINK: rising to the challenge of larger and richer datasets. 
Gigascience. 2015;4:7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

http://www.ewascatalog.org
http://www.ewascatalog.org

	Impact of BMI and waist circumference on epigenome-wide DNA methylation and identification of epigenetic biomarkers in blood: an EWAS in multi-ethnic Asian individuals
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Introduction
	Results
	Study samples characteristics
	EWAS of adiposity and meta-analysis
	Association of DNA methylation and gene expression
	Temporal relationship analysis of BMI and DNA methylation
	Cross-lagged panel model
	Bidirectional Mendelian randomization (MR)

	Temporal relationship analysis of methylation with inflammation markers and metabolomics biomarkers

	Discussion
	Conclusion
	Methods
	Study population
	DNA methylation quantification and quality control
	Metabolomics biomarkers quantification
	Inflammation markers measurements
	Association between adiposity and DNA methylation
	Association between DNA methylation and gene expression
	Temporal relationship analysis of BMI and DNA methylation
	Cross-lagged panel model (CLPM)
	Bidirectional Mendelian randomization (MR)

	Association between DNA methylation with inflammation markers and metabolomics biomarkers

	Acknowledgements
	References


