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Abstract

Recent years have seen a revolution in single-cell RNA-sequencing (scRNA-seq)
technologies, datasets, and analysis methods. Since 2016, the scRNA-tools database
has cataloged software tools for analyzing scRNA-seq data. With the number of tools
in the database passing 1000, we provide an update on the state of the project and
the field. This data shows the evolution of the field and a change of focus from
ordering cells on continuous trajectories to integrating multiple samples and making
use of reference datasets. We also find that open science practices reward
developers with increased recognition and help accelerate the field.

Introduction
Developments in single-cell technologies over the last decade have drastically changed

the way we study biology. From measuring genome-wide gene expression in a few cells

in 2009 [1], researchers are now able to investigate multiple modalities in thousands to

millions of cells across tissues, individuals, species, time, and conditions [2, 3]. The

commercialisation of these techniques has improved their robustness and made them

available to a greater number of biological researchers. Although single-cell technolo-

gies have now extended to other modalities including chromatin accessibility [4, 5],

DNA methylation [6, 7], protein abundance [8], and spatial location [9, 10], much of

the focus of the single-cell revolution has been on single-cell RNA sequencing

(scRNA-seq). Single-cell gene expression measurements are cell type-specific (unlike

DNA), more easily interpretable (compared to epigenetic modalities), and scalable to

thousands of features (unlike antibody-based protein measurements) and thousands of

cells. These features mean that scRNA-seq can be used as an anchor, often measured

in parallel and used to link other modalities.

While single-cell assays of all kinds are now more readily available, the ability to ex-

tract meaning from them ultimately depends on the quality of computational and stat-

istical analysis. With the rise of new technologies, we have seen a corresponding boom

in the development of analytic methods. After years of rapid growth, the sheer number

of possible analysis options now available can be bewildering to researchers faced with

an scRNA-seq dataset for the first time. Efforts have also been made to benchmark
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common tasks such as clustering of similar cells [11, 12], differential expression be-

tween cells [13, 14] or integration of multiple samples [15, 16] in an attempt to estab-

lish which approaches are consistently good performers and in which situations they

fail. Building on these benchmarks, the community has now produced tutorials [17],

workshops, and best practices recommendations for approaching a standard analysis

[18, 19].

Several projects exist which attempt to chart the progression of scRNA-seq technolo-

gies, datasets, and analysis tools. For example, the single-cell studies database tracks the

availability and size of scRNA-seq datasets and has been used to show trends in tech-

nologies and analysis [20]. The Awesome Single Cell repository is a community-

curated list of software packages, resources, researchers, and publications for various

single-cell technologies [21] and Albert Villela’s SingleCell Omics spreadsheet [22]

tracks a range of information including technologies, companies, and software tools.

While these are all very useful resources, they either have different focuses or are less

structured and detailed than the scRNA-tools database.

The scRNA-tools database focuses specifically on the cataloging and manual curation

of software tools for analyzing scRNA-seq data [23]. When tools become available (usu-

ally through a bioRxiv preprint), we classify them according to the analysis tasks they

can be used for and record information such as associated preprints and publications,

software licenses, code location, software repositories, and a short description. Most

tools are added to the database within 30 days of the first preprint or publication (Add-

itional file 1: Figure S1). All the recorded information is publicly available in an inter-

active format at https://www.scrna-tools.org/ [24]. As the number of tools in the

database has moved past 1000, we have taken this opportunity to provide an update on

the current state of the database and explore trends in scRNA-seq analysis across the

past 5 years. We find that the focus of tool developers has moved on from continuous

ordering of cells to methods for integrating samples and classifying cells. The database

also shows us that more new tools are built using Python while the relative usage of R

is declining. We also examine the role of open science in the development of the field

and find that open source practices lead to increased citations. While the scRNA-tools

database does not record every scRNA-seq analysis tool, the large proportion it does in-

clude over the history of what is still a young field make these analyses possible and a

reasonable estimate of trends across all tools.

Results
The current state of scRNA-seq analysis tools

We first started cataloging software tools for analyzing scRNA-seq data in 2016 and the

scRNA-tools database currently contains 1059 tools as of September 26, 2021 (Fig. 1A).

This represents a more than tripling of the number of available tools since the database

was first published in June 2018. The continued growth of the number of available tools

reflects the growth in the availability of and interest in single-cell technologies. It also

demonstrates the continued need for new methods to extract meaning from them. This

trend has continued for more than 5 years, and if it continues at the current rate, we

can expect to see around 1500 tools by the end of 2022 and more than 3000 by the end

of 2025 (Additional file 1: Figure S2).
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Publication status

The scRNA-tools database records preprints and publications associated with each tool,

currently including more than 1500 references. Over two thirds of tools have at least

one peer-reviewed publication while around another quarter have been described in a

preprint but are not yet peer-reviewed (Fig. 1B). The remaining less than 10% currently

have no associated references and have come to our attention through other means

such as Twitter, software and code repositories or submissions via the scRNA-tools

website. The overall number of tools with peer-reviewed publications has increased

over time, which is to be expected as tools make their way through the publication

process. For more discussion of the delay in publication and the effect of preprints, see

the open science section.

Software platforms, licenses, and repositories

Tool developers must make a choice of which platform to use, and this is also recorded

in the scRNA-tools database. In most cases, the platform is a programming language

but a minority of tools is built around an existing framework including workflow man-

agers such as Snakemake [25, 26] and Nextflow [27]. R [28] and Python [29] continue

to be the dominant platforms for scRNA-seq analysis, just as they are for more general

data science applications (Fig. 1C). C++ continues to play a role, particularly for includ-

ing compiled code in R packages to improve computational efficiency. Although it is a

Fig. 1 Overview of the scRNA-tools database. A Line plot of the number of tools in the scRNA-tools
database over time. The development of tools for analyzing scRNA-seq data has continued to accelerate
with more than 1000 tools currently recorded. B Publication status of tools in the scRNA-tools database.
Around 70% of tools have at least one peer-reviewed publication while more than 20% have an associated
preprint. C Bar charts showing the distribution of platforms, software licenses, and software repositories for
tools in the scRNA-tools database. Colors indicate proportions of tools using R or Python. D Bar chart
showing the proportion of tools in the database assigned to each analysis category. Categories are
grouped by broad phases of a standard scRNA-seq analysis workflow
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minority (less than 7%), there is a consistent community of developers focussed on

MATLAB. The popularity of interpreted languages (R, Python, MATLAB) with com-

monly used interactive interfaces rather than compiled languages (C++) is consistent

with relatively few tools being developed for low-level, computationally intensive tasks

such as alignment and quantification where compiled languages are more commonly

seen (Additional file 1: Figure S3)

Around two thirds of tools are not available from a standard centralized software re-

pository (CRAN, Bioconductor or PyPI) and are mostly available only from GitHub.

While this makes it harder for other members of the community to install and use

these tools, it is perhaps unsurprising given the large amount of time and effort re-

quired to maintain a software package. Many of these tools may also be primarily

intended as example implementations of a method rather than a tool designed for reuse

by the community. A higher proportion of Python-based tools are available from PyPI

(the primary Python package repository) when compared to those built using R. This

may reflect the lower submission requirements of PyPI which do not enforce checks

for documentation or testing, unlike R repositories. Of R packages available from cen-

tral repositories, the majority of developers have chosen to submit their tools to the

biology-focussed Bioconductor [30] repository rather than the more general CRAN.

The Bioconductor community is well-established and provides centralized infrastruc-

ture (such as the commonly used SingleCellExperiment class) designed to allow small,

specialized packages to work together.

Most tools are covered by a standard open-source software license, although there re-

mains a consistent minority of tools (around 20%) for which no clear software license

is available. The lack of a license can severely restrict how tools can be used and the

ability of the community to learn from and extend existing code. We strongly encour-

age authors to clearly license their code and for reviewers and journal editors to include

checks for a software license into the peer-review process to avoid this problem.

Among those tools that do have a license, variants of the copy-left GNU Public License

(GPL) are most common (particularly among R-based tools). The MIT license is also

used by many R tools but is more common for Python tools, as are BSD-like and Apa-

che licenses. These licenses all allow the reuse of code but may impose some conditions

such as retaining the original copyright notice [31]. GPL licenses also require that any

derivatives of the original work are also covered by a GPL license.

Analysis categories

A unique feature of the scRNA-tools database is the classification of tools according to

which analysis tasks they can be used for. These categories have been designed to cap-

ture steps in a standard scRNA-seq workflow, and as new tasks emerge, additional cat-

egories can be created. While they have limitations, these categories should provide

some guidance to analysts looking to complete a particular task and can be used to fil-

ter tools on the scRNA-tools website. Categories that are applicable to many stages of

analysis (visualization, dimensionality reduction) are among the most common, as is

clustering which has been the focus of much tool development but is also required as

an input to many other tasks (Fig. 1D). Other stages of a standard analysis form the

next most common categories including integration of multiple samples, batches or
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modalities, ordering of cells into a lineage or pseudotime trajectory, quality control of

cells, normalization, classification of cell types or states, and differential expression test-

ing. Tools that either construct or make use of gene networks are also common. Some

tools such as Seurat [32] and Scanpy [33] are general analysis toolboxes that can

complete many tasks, while others are more specialized and focus on one problem.

While the number of categories per tool is variable there is no clear trend in tools be-

coming more general or specialized over time (Additional file 1: Figure S4).

Other categories in the scRNA-tools database capture some of the long tail of pos-

sible scRNA-seq analyses. For example, analysis of alternative splicing or allele-specific

expression, stem cells, rare cell types, and immune receptors may not be relevant for all

experiments, but when they are having methods for those specific tasks can be invalu-

able. As biologists use scRNA-seq to investigate more phenomena, developers will cre-

ate methods and tools for more specific tasks. We plan to update the categories in the

scRNA-tools database to reflect this and have recently added a category for tools de-

signed to work with perturbed data such as drug screens or gene editing experiments

including MELD [34], scTenifoldKnK [35], and scGen [36].

Trends in scRNA-seq analysis tools

Over 5 years of data in the scRNA-tools database on new tools and their associated

publications allows us to track some of the trends in scRNA-seq analysis over that time.

Here, we focus on trends in analysis tasks as well as the choice of development

platform.

An increasing proportion of tools use Python

Figure 2A shows how the proportion of tools using the most common programming

languages has changed over time as more tools are added to the database. The clear

trend here is the increasing popularity of Python and the corresponding decrease in the

proportion of tools built using R. There are several possible explanations for this trend.

As the size and complexity of scRNA-seq datasets have increased, the potential mem-

ory and computational efficiency of Python has become more relevant. Another pos-

sible catalyst is the development of Python-based infrastructure for the community to

build around such as the AnnData and Scanpy packages [33] which play a similar cen-

tral role in the Python environment as the SingleCellExperiment and Seurat packages

do in the R environment (Additional file 1: Figure S5). These standard representations

improve interoperability between packages and allow developers to focus on analysis

methods rather than how to store their data which may have previously been a barrier

for Python developers.

While bulk transcriptomics typically focused on the statistical analysis of a designed

experiment, scRNA-seq analysis is often more exploratory and employs more machine

learning techniques such as unsupervised clustering and more recently various neural-

network architectures. This shift in analysis focus may have triggered a corresponding

shift in demographics with more researchers from a computer science background

turning their attention to developing scRNA-seq analysis methods and bringing with

them a preference for Python over R. If this trend continues at the current rate, we can

expect Python to overtake R as the most common platform for scRNA-seq analysis

Zappia and Theis Genome Biology          (2021) 22:301 Page 5 of 18



tools by mid-2025; however, R will continue to be an important platform for the com-

munity. It is also important to note that this trend represents the preferences of devel-

opers and may not reflect how commonly these platforms are used by analysts.

Greater focus on integration and classification

Trends also exist in the tasks that new tools perform. In Fig. 2B, we can see the overall

proportion of tools in the database assigned to each category against the trend in pro-

portion over time. Two categories stand out as increasing in focus over time: integra-

tion and classification. Both of these trends reflect the growing scale, complexity and

availability of scRNA-seq datasets. While early scRNA-seq experiments usually con-

sisted of a single sample or a few samples from a single lab, it is now common to see

experiments with multiple replicates, conditions and sources. For example, studies have

benchmarked single-cell protocol across multiple centers [37], measured hundreds of

cell lines at multiple time points [38], and compared immune cells between cancer

types [39]. Handling batch effects between samples is vital to producing meaningful

Fig. 2 Trends in scRNA-seq analysis tools. A Line plot of platform usage of tools in the scRNA-tools
database over time. Python usage has increased over time while R usage has decreased. Darker dashed
lines show linear fits with coefficients given in the legend. B Scatter plot of trends in scRNA-tools analysis
categories over time. The current proportion of tools in the database is shown on the x-axis, and the trend
in proportion change is shown on the y-axis. C Line plot of trend in word use in scRNA-seq analysis tool
publication abstracts over time. Publication date is shown on the x-axis and change in the proportion of
abstracts containing a word on the y-axis. Some important and highly variable terms are highlighted. D
Word clouds of abstract terms by year. Word size indicates the proportion of abstracts that included the
term in that year. The color of words shows the change in proportion compared to the previous year with
pink indicating an increase and green indicating decreases. The 20 words with the greatest change in
proportion are shown for each year
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results but can be extremely challenging due to the balance of removing technical ef-

fects while preserving biological variation. The importance of this task is demonstrated

by the more than 140 tools that perform some kind of integration and is particularly

relevant for global atlas building projects like the Human Cell Atlas [40] which attempt

to bring together researchers and samples from around the world to map cell types in

whole tissues or organisms. Recent technological advances have made it more feasible

to measure biological signals other than gene expression in individual cells. Some tools

tackle this more challenging task, either using one modality to inform analysis of an-

other or by bringing modalities together for a fully integrated analysis. Combining mul-

tiple data types can provide additional insight by confirming a signal that is unclear in

one modality (for example protein expression confirming gene expression) or revealing

another aspect of a biological process (chromatin accessibility used to show how genes

are regulated).

The increased interest in classification can also be seen as an attempt to tackle

the increasing scale of scRNA-seq data. Rather than performing the computation-

ally and labor-intensive task of merging datasets and jointly analyzing them to get

consistent labels, classifier tools make use of public references to directly label cells

with cell types or states. This approach is a shortcut for analysts which allows

them to skip many early analysis steps but is limited by the completeness and reli-

ability of the reference. For this reason, integration and classification are intimately

linked, with effective integration required to produce high-quality references for

classification. Some tools address both sides of this problem, integrating datasets to

produce a reference and providing methods to classify new query datasets while

considering batch effects in the query.

Decrease in ordering and common tasks

The category with the biggest decreasing trend over time is the ordering category,

which refers to tools that determine a continuous order for cells, usually related to a

developmental process or another perturbation such as the onset of disease or the ef-

fect of a drug treatment. This category represents perhaps the biggest promise of the

single-cell revolution, the ability to interrogate continuous biological processes at the

level of individual cells. Some of the earliest scRNA-seq analysis tools addressed this

task but the proportion of new tools containing ordering methods has significantly de-

creased since. It is unclear why this is the case. It may simply be that high-performing

methods have been established [41] and adopted by the community, reducing the need

for further development. Alternatively, it could be that the initial excitement was over-

come by limitations revealed when these techniques were applied to real datasets [42].

A subset of the ordering category is RNA velocity methods [43, 44] which offer an al-

ternative approach to analyzing continuous processes but have resulted in the develop-

ment of relatively few new tools.

Many of the other categories show some trend toward decreasing proportions with

normalization and visualization having the biggest reductions. A plausible explanation

for these changes is the consolidation of common tasks into analysis toolboxes with

each of the major software repositories having standard workflows based around a few

core tools. With these available and accessible through the use of standard data
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structures, developers no longer need to implement each stage of an analysis workflow

and can focus on particular tasks.

Trends in publication abstracts

Similar trends can be seen in the text of publications associated with analysis tools. Fig-

ure 2C shows how the proportion of abstracts associated with scRNA-seq tools con-

taining keywords has changed since 2017. Highly variable words are highlighted as well

as some related to trends discussed above. Both “batch” and “integration” have become

more common, mirroring the increase in tools performing integration, as have related

terms like “scale” and “multiple.” Machine learning terms “deep” and “learning” have

also become more common, consistent with the increased use of Python which is the

primary language for deep learning. In contrast “lineage”, “pseudotime,” and “differenti-

ation” have all decreased consistently with the reduction of tools in the ordering cat-

egory. The “velocity” term has seen a small increase in use over the last 2 years, but as

these abstracts only come from publications associated with tools (and not publications

that focus on the analysis of scRNA-seq data), it is difficult to say anything about the

take-up of these methods in the community and whether they have replaced the earlier

generation of ordering techniques.

Figure 2D shows this the same data as a series of word clouds by year. The twenty

words with the biggest change in proportion compared to the previous year are shown

with color indicating the change and size indicating the proportion in that year. These

terms are less specific than those found by looking at the whole timespan of the data-

base but still show changes in important terms like clustering and deep learning.

Open science accelerates scRNA-seq tool development

Researchers must make a conscious choice about when and how to share their work

and for developers of software tools—there are several options. A tool could be made

available during development, when there is a stable version ready for users, accom-

panying a preprint or only after a peer-reviewed publication. Here, we touch on the de-

cision around open science practices and the effect they have on scRNA-seq analysis

tools.

GitHub is the primary home for scRNA-seq analysis tools

The vast majority of tools in the scRNA-tools database (over 90%) have a presence on

the social coding website GitHub. Like GitLab, BitBucket, and other similar services,

GitHub provides an all-in-one service for open-source software development which has

been embraced by the scRNA-seq community. Being available on GitHub allows the

community to ask questions, raise issues, suggest enhancements, and contribute fea-

tures. Across the scRNA-tools database, there are 991 associated GitHub repositories

from 734 owners (Fig. 3A). To these repositories, over 1800 contributors have made

more than 165,000 commits and opened over 29,000 issues. If each of these commits

and issues represents just 10 min of work on average, this corresponds to more than

32,000 person-hours of work or three and a half person-years. This is a tremendous

amount of effort from the community but is likely still a large underestimate as this

does not capture many of the tasks involved in software development and maintenance.
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Preprints allow the rapid development of scRNA-seq methods

Around 60% of the 773 publications associated with tools in the scRNA-tools database

were preceded by a preprint (Fig. 3B). Figure 3C shows the number of days between

preprints and the publication of the final peer-reviewed article. The average delay in

publication is around 250 days, but the biggest gap is around six times that long at al-

most 1500 days. The willingness of the scRNA-seq community to share their work in

preprints and make code implementing it on GitHub is a big contributor to the rapid

development of the field. Without early sharing of ideas, we would still be waiting for

tools that were released a year ago and that delay would likely be much longer if we

consider the compounding effect of early access over time.

Open science practices lead to increased citations

To quantify the effect of open science practices such as posting preprints and sharing

code, we modeled citations using a method based on that suggested by Fu and Hughey

Fig. 3 Open science in scRNA-seq tools development. A GitHub summary statistics for scRNA-seq tool
repositories. B Stacked bar plot showing the proportion of publications with and without an associated
preprint. C Scatter plot showing preprint date against the number of days until publication, colors indicate
the number of citations (log scale). Box plot and density on the right show the distribution of time delay in
publication. D Coefficients for log-linear models predicting citations and Altmetric Attention Score (AAS) for
publications. Years since publication are modeled as a cubic spline with three degrees of freedom. Error
bars show a 95% confidence interval. The inlaid bar chart shows the adjusted R2for each model. E
Coefficients for log-linear models predicting total citations, total AAS, and GitHub stars for tools. Error bars
show a 95% confidence interval. The inlaid bar chart shows the adjusted R2for each model
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[45]. We acknowledge that citations are a flawed and limited metric for assessing soft-

ware tools, for example, they only indirectly measure the effectiveness and usability of a

tool. Despite these flaws, citations are still the metric most commonly used to judge re-

searchers and their work so it is important to see how they are affected by open science

practices. The same model is also used to predict Altmetric Attention Score (AAS) [46]

and GitHub stars (for tools).

Figure 3D shows coefficients for a log-linear model predicting metrics for publica-

tions. Unsurprisingly, the biggest predictor of the number of citations is years since

publication (included in the model as a spline with three degrees of freedom) (Add-

itional file 1: Table S1). Whether or not a publication has an associated preprint was

also a significant positive predictor (coefficient = 0.82, 95% CI = (0.58, 1.1), p value =

4.2e−11). As we modeled metrics on a log2 scale, a coefficient close to one indicates a

two-fold increase in citations for publications with a preprint. The number of authors

and number of references were also significant in this model but with smaller effect

sizes. This same effect was observed by Fu and Hughey more generally across fields

and as well as in other similar studies [47]. That preprints both help the community

and result in more citations should encourage more researchers to share their work in

this way and outweigh the fear of being “scooped.”

Results for AAS are broadly similar to those seen for citations, but it is important to

note that the model fit for AAS is significantly worse than for citations. While the two

metrics are correlated (ρ = 0.55) (Additional file 1: Figure S6), AAS captures a much

wider range of sources, and many of which could be more highly associated with pre-

prints than publications.

Coefficients for a similar model for predicting metrics at the tool level are shown in

Fig. 3E. In this model, we replaced having a preprint with whether or not the tool is

available from one of the major software repositories (CRAN, Bioconductor, PyPI).

Similarly, the number of GitHub contributors has replaced the number of authors. We

also included the tool platform, the number of publications, the number of preprints,

and the presence of a software license as possible predictors. As well as total citations

and total AAS for tools, we also model the number of GitHub stars which has been

used by other studies of GitHub repositories and found to be closely related to more

complex measures of GitHub popularity [48]. Similar to publication metrics, these

values are also weakly correlated but are not entirely predictive of each other (Add-

itional file 1: Figure S6). After accounting for the age of GitHub repositories, the num-

ber of publications had the largest effect on total citations (Additional file 1: Table S2).

Interestingly, the number of preprints was a bigger predictor of total AAS suggesting

that preprints attract attention and are responsible for the initial interest in a tool. The

usage of Python was a significant predictor for the number of GitHub stars, and the

presence of a software license predicted GitHub stars and AAS while the availability of

tools from a software repository was only significant for AAS.

The other significant predictor for all three metrics was the number of GitHub con-

tributors. While this is similar to the number of authors of a publication, an important

distinction is that members of the community can contribute code over time (unlike

publications where the number of authors is fixed). This makes it difficult to establish

the direction of the relationship to the metrics modeled here, i.e., do more contributors

lead to better tools that get more citations and stars or do tools that are already highly
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used attract more contributors? While including GitHub contributors result in models

with better fits, it is possible that it also masks the smaller effects of other predictors

such as the availability of tools from a software repository.

Conclusions
Interest in single-cell RNA-sequencing and other technologies continues to increase

with more datasets being produced with more complex designs, greater numbers of

cells, and multiple modalities. To keep pace with the increase in datasets, there has

been a corresponding increase in the development of computational methods and soft-

ware tools to help make sense of them. We have cataloged this development in the

scRNA-tools database which now records more than 1000 tools. While we try to record

every new scRNA-seq analysis tool, the database is likely incomplete. We warmly wel-

come contributions to the database and encourage the community to submit new tools

or updates via the scRNA-tools website. This includes suggestions for new categories

to capture aspects of analysis that are not currently represented.

Despite the incompleteness of the database, it is a large sample of the scRNA-seq

analysis landscape, and using it, we can observe trends in the field. We see that there

has been a decrease in the development of methods for ordering cells into continuous

trajectories and an increased focus on methods for integrating multiple datasets and

using public reference datasets to directly classify cells. Once more comprehensive ref-

erences atlases are available; these reference-based workflows will likely replace the

current unsupervised clustering approach for many analyses. The classification of tools

by analysis task is an important feature of the scRNA-tools database, and we plan to ex-

pand these categories to cover more aspects of scRNA-seq analysis. We also examined

trends in development platforms and found that more new tools are being built using

Python than R. While it is exciting to see the field develop, the continued increase in

the number of tools presents some concerns. There is still a need for new tools, but if

growth continues at this rate, it is a risk that the community will start repeating work

and approaches that are already available. By providing a catalog of tools in a publicly

available website, the scRNA-tools database makes it easier to find current tools and

we encourage developers to contribute to existing projects where that is a good fit.

Equally important are continued, high-quality benchmarking studies to rigorously

evaluate the performance of methods and we hope to include this information in future

versions of the database. This would include published benchmarks but also results

from continuous benchmarking efforts such as those proposed by the Open Problems

in Single-Cell Analysis project [49].

The scRNA-seq community has largely embraced open science practices, and we

sought to quantify their effect on the field. We found an average delay of 250 days be-

tween preprints and peer-reviewed publications with some examples being much lon-

ger. The willingness of researchers to share early versions of their work has likely been

a major contributor to the rapid development of the field. We also found that open sci-

ence did not conflict with recognition of work with open science practices being a posi-

tive predictor of citations and AAS.

We hope that the scRNA-tools database is a valuable resource for the community,

both for helping analysts find tools for a particular task and tracking the development

of the field over time.

Zappia and Theis Genome Biology          (2021) 22:301 Page 11 of 18



Methods
Curation of the scRNA-tools database

The main sources of tools and updates for the scRNA-tools database are Google

Scholar and bioRxiv alerts for scRNA-seq specific terms (Table 1). Other sources in-

clude social media, additions to similar projects like the Awesome Single Cell page [21]

and submissions via the scRNA-tools website. Once a potential new tool is found, it is

checked if it fulfills the criteria for inclusion in the database, namely that it can be used

to analyze scRNA-seq data and that the tool is available to users to install and run lo-

cally (this excludes tools and resources that are only available online). Most of the in-

formation for new tools (description, license, categories) comes from code repositories

(GitHub) and package documentation.

We believe that the categorization of tools according to the tasks they perform is an

important feature of the scRNA-tools database. The current categories have been de-

signed to cover the main stages of a standard scRNA-seq analysis workflow but may

not fully represent alternative or new analysis approaches. When the need for a new

category becomes apparent, it can be added to the database as we have done for pertur-

bations. Other categories under consideration include cell-cell interactions, infrastruc-

ture, time series, and cancer. The major bottleneck to adding new categories is the

time required to re-categorize tools already in the database, and we welcome support

from the community for this task.

A command-line application written in R (v4.0.5) [28] and included in the main

scRNA-tools repository is used to make changes to the database. Using this interface

rather than editing files allows input to be checked and some information to be auto-

matically retrieved from Crossref (using the rcrossref package (v1.1.0) [50]), arXiv (using

the aRxiv package (v0.5.19) [51]) and GitHub (using the gh package (v1.2.0) [52]). This

application also contains functionality for performing various consistency checks in-

cluding identifying new or deprecated software packages and code repositories, updated

licenses and new publications linked to preprints. Identification of new software pack-

age repositories is done by fuzzy matching of the tool name using the stringdist package

(v0.9.6.3) [53]. Linking of preprints uses an R implementation of the algorithm by

Cabanac, Oikonomidi and Boutron [54] available in the doilinker package (v0.1.0) [55].

Software licenses are standardized using the SPDX License List [56]. Data files and vi-

sualizations shown on the scRNA-tools website are also produced by the command line

application using ggplot2 (v3.3.3) [57] and plotly (v4.9.2.2) [58]. Dependencies for the

application are managed using the renv package (v0.13.0) [59] and more details on its

use and functionality can be found at https://github.com/scRNA-tools/scRNA-tools/

wiki.

Table 1 Alert terms for Google Scholar and bioRxiv

Google Scholar bioRxiv

“scRNAseq” OR “scRNA-seq” OR “sc-RNA-seq” OR “(sc)RNA-seq” scRNA-seq scRNAseq

“single-cell gene expression” single-cell RNA-sequencing

“single-cell transcriptomics” OR “single-cell transcriptome”

“single-cell RNA sequencing”

“single-cell rna-seq”
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Contributing to scRNA tools

Contributions to the scRNA-tools database from the community are welcomed and en-

couraged. The easiest way to contribute is by submitting a new tool or update using

the form on the scRNA-tools website (https://www.scrna-tools.org/submit). For those

comfortable using Git and GitHub changes can be made directly to the database and

submitted as a pull request. Suggestions for changes or enhancements to the website

can be made by opening issues on the scRNA-tools GitHub repository (https://github.

com/scRNA-tools/scRNA-tools) or using the contact form on the website (https://

www.scrna-tools.org/contact).

Data acquisition and analysis

The main source of data for the analysis presented here is the scRNA-tools database as

of September 26, 2021. This was read into R directly from the GitHub repository using

the readr package (v1.4.0) [60] and manipulated using other tidyverse (v1.3.1) packages

[61], particularly dplyr (v1.0.6) [62], tidyr (v1.1.3) [63], forcats (v0.5.1) [64], and purrr

(v0.3.4) [65]. Additional information about references was obtained from the Crossref

and Altmetric.com APIs using the rcrossref (v1.1.0.99) [50] and rAltmetric (v0.7.0) [66]

packages. Dates for publications can vary depending on what information journals have

submitted to Crossref. We used the online publication date where available, followed

by the print publication date and the issued date. When a date was incomplete, it was

expanded to an exact date by setting missing days to the first of the month and missing

months to January, so that an incomplete date of 2021-08 would become 2021-08-01

and 2021 would become 2021-01-01. Dependencies for CRAN packages were obtained

using the base R package_dependencies() function and for Bioconductor packages using

the BiocPkgTools package (v1.10.1) [67]. Python package dependencies were found

using the Wheelodex API [68] and the johnnydep package (v1.8) [69]. All of the data

acquisition and analysis was organized using a targets (v0.4.2) [70] pipeline with de-

pendencies managed using renv (v0.13.2) [59].

Modeling trends

The trend in platform usage over time was simply modeled by calculating the propor-

tion of tools using each of the main platforms on each day since the creation of the

database. This proportion was then plotted over time to display the trend.

A more complex approach was taken to modeling the trend in categories. Time since

the start of the database was divided into calendar quarters (3-month periods), and for

each category, the proportion of tools added during each quarter was calculated. These

quarter proportions were used as the input to a linear model (base R lm() function),

and the calculated slope taken as the trend for each category. These trends were then

plotted against the overall proportion in the database to show the relationship between

this and the trend over time.

Modeling of publication term usage over time started with abstracts obtained from

Crossref. Abstracts were available for 1055 references. Each abstract was converted to a

bag of words using the tidytext package (v0.3.1) [71] and URLs, and numbers and com-

mon stop words were removed. We also excluded a shortlist of uninformative common

scRNA-seq terms and those that appeared in less than 10 abstracts. For each word, we
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calculated the cumulative proportion of abstracts that continued that word for each

day since the first publication. The proportion as of the start of 2017 was taken as a

baseline, and the change since then was plotted. A set of top words to display was

chosen based on their variability over time, high absolute change in proportion and a

few relevant to other parts of the analysis.

Word clouds were created by calculating the proportion of abstracts published in

each year that contained each word. The change in proportion compared to the previ-

ous year was then calculated, and the 20 words with the greatest change were selected

for plotting using the ggwordcloud package (v0.5.0) [72].

Modeling the effect of open science

To model the effect of a previous preprint on citations and Altmetric Attention Score

for a publication, we used a simplified version of the log-linear model proposed by Fu

and Hughey [45]:

log2 Metricþ 1ð Þ∼ log2 Num:referencesþ 1ð Þ þ log2 Num:authorsð Þ þ Preprint
þ spline Years; df ¼ 3ð Þ

Here, Metric is either citations or AAS, and Preprint is a Boolean indicator variable

showing whether or not the publication has an associated preprint and spline(Years,

df = 3) is a natural cubic spline fit to years since publication with three degrees of free-

dom. We excluded additional author terms from the original model including whether

an author had a US affiliation, whether an author had a Nature Index affiliation and

the publication age of the last author. Information for these terms is difficult to collect,

and in the original publication, they were shown to have a small effect compared to the

presence of a preprint. We also fit all publications together rather than for each journal

individually.

We then adapted this model to consider tools rather than individual publications:

log2 Metricþ 1ð Þ∼Platform þ Repository þ License þ Publications þ Preprints
þ log2 Contributorsþ 1ð Þ þ spline Years; df ¼ 3ð Þ

Here, Metric is either total citations for all publications and preprints associated with

a tool, total AAS for all publications and preprints or the number of GitHub stars. The

Platform variable is an indicator showing whether the tool uses R, Python, both or

some other platform (baseline). Repository is a Boolean indicator showing whether the

tool is available from any of the major software package repositories (CRAN, Biocon-

ductor or PyPI). License is a Boolean indicator variable showing whether the tool has

an associated software license. Publications and Preprints are the numbers of publica-

tions and preprints associated with a tool, and Contributors is the number of GitHub

contributors.

These variables were selected after assessing the fit of a range of models predicting

total citations. Although other values obtained from GitHub such as the number of is-

sues or forks are also good predictors, we choose to exclude them because while they

are correlated we do not consider them to have a causal relationship. It is unlikely that
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a tool is cited because it has many GitHub issues, rather that whatever causes a tool to

be used will result in both more citations and more GitHub issues.

Models were fit using the base R lm() function and summary statistics including con-

fidence intervals, and p values were extracted using the ggstatsplot package (v0.8.0)

[73]. Spearman’s correlation coefficient was calculated for each pair of metrics using

the base R cor() function.

Visualization

Plots and other figures were produced in R using the ggplot2 package (v3.3.5) [57].

Various extension packages were also used including ggtext (v0.1.1) [74] for complex

formatting of text and ggrepel (v0.9.1) [75] for labeling points and lines. Labels for bar

charts and other plots were constructed using the glue package (v1.4.2) [76]. The final

figures were assembled using the cowplot (v1.1.1) [77] and patchwork (v1.1.1) [78]

packages.
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