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Abstract: We have generated high resolution images of RF-Contrast in small animals using near-
field thermoacoustic system. This enables us to see some anatomical features of a mouse such as 
the heart, the spine and the boundary. 
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1. Introduction 

RF induced thermoacoustics is the generation of ultrasound waves using ultrashort pulses of radio waves or 
microwaves, because of the higher penetration depth of radio waves in comparison to the visible and infrared light, 
thermoacoustics is more suitable for clinical applications than optoacoustics is. The use of the thermoacoustic effect 
for biomedical imaging was first proposed by Theodor Bowen in 1981[1]. Although the methodology was proposed 
in the paper of Bowen in 1981, no imaging experiments were performed until 1999, because the necessary 
technology including ultrasonic transducers, efficient RF/microwave generators, and suitable acquisition systems 
were not widely available at that time. In 1999 Kruger et. al. designed a system for imaging breast cancer using this 
phenomenon at 434MHz[2, 3], then in the same year Lihong Wang managed to generate thermoacoustic images of 
biologically mimicking phantoms and biological samples at 3GHz using the same phenomenon[4-6]. Pulse 
modulated RF/microwave generators at 434MHz and 3GHz were used respectively at pulse widths as long as 0.5µs, 
this long pulse acted as a low pass filter on the generated ultrasound frequencies, thus limiting the resolution[7], in 
both cases a resolution of 1mm was achieved [2, 6]. 

To overcome this problem Razansky et. al. proposed in 2010 the use of broadband high energy RF-pulses[8], in 
his work Razansky used an impulse generator to generate short broadband RF pulses, later on Kellnberger et. al. 
used this method to image small animals ex-vivo[9]. In 2012 Omar et. al. developed the 2nd generationg of this 
system, the impulse generator was redesigned in such a way that the energy generated is decoupled from the length 
of the pulse by using transmission lines instead of normal capacitors [10, 11]. In this proceeding first the theory of 
thermoacoustic generation and the generation of RF-broadband pulses is explained, then the experimental setup is 
described, finally the results are shown and discussed at the end. 

2.  Theory 

The generation of the thermoacoustic signals is based upon the thermoacoustic effect where an ultrasonic wave is 
generated inside a material due to the absorption of electromagnetic energy. The generated pressure is governed by 
the thermoacoustic wave equation[10]: 
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Where C is a constant, and Ploss,D is the amount of the electromagnetic energy absorbed inside the material, in the 

case of stress and thermal confinement and a homogeneous field distribution time and space variables in Ploss,D  
could be separated[12]. Moreover in the frequency range below 100MHz the energy absorbed is mostly dependent 
on the strength of the electric field and on the conductivity of the imaged material, such that the losses could be 
described as[10]: 
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Different tissues has different conductivities[13], for example muscle has a much higher conductivity than fat 
does, tumor tissues also have a high conductivity in comparison to normal tissues, based on this different tissues 
dissipate RF energy in a different quantities, which generates the contrast in a thermoacoustic image. 

The resolution of the generated image is dependent on the width of the excitation pulse[7], and the amplitude of 
the generated pressure signals is dependent on the amount of the energy coupled to the medium, when using an 
ordinary high voltage capacitor both of them are coupled together, thus to make the pulse shorter the amount of the 
energy coupled is less. On the other hand when using a transmission line as a medium for storing the energy the 
amount of the energy stored is decoupled from the width of the pulse. In this case the width of the pulse is given by: 
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where linel  is the physical length of the transmission line, c is the propagation velocity of the electromagnetic 
wave inside the transmission line. In this case the amount of the energy is dependent on the capacitance of the 
transmission line: 
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This energy could be increased either by increasing the charging voltage, or by increasing the number of 

transmission lines that are connected in parallel without compromising the width of the pulse! 
Finally because the object is in the near field of the antenna, most of the energy is coupled to the object rather 

than radiated outside, hence the name near-field radio-frequency thermoacoustic tomography[8]. 

3.  Experimental Setup 

The experimental setup that was employed in the studies was made of the impulse generator, a helix antenna for 
coupling the energy to the object, a rotation stage for acquiring measurements in a tomographic setup, a cylindrically 
focused ultrasound transducer for measuring the generated thermoacoustic signals and a data acquisition system. 
 

 
Fig. 1: Measurement setup, the basic parts such as the impulse generator, the antenna, the ultrasonic transducer and the data 
acquisition system appear here. 
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