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Prediction of resistant disease at initial diagnosis of acute myeloid leukemia (AML) can

be achieved with high accuracy using cytogenetic data and 29 gene expression markers

(Predictive Score 29 Medical Research Council; PS29MRC). Our aim was to establish

PS29MRC as a clinically usable assay by using the widely implemented NanoString

platform and further validate the classifier in a more recently treated patient cohort.

Analyses were performed on 351 patients with newly diagnosed AML intensively treated

within the German AML Cooperative Group registry. As a continuous variable, PS29MRC

performed best in predicting induction failure in comparison with previously published

risk models. The classifier was strongly associated with overall survival. We were able to

establish a previously defined cutoff that allows classifier dichotomization (PS29MRCdic).

PS29MRCdic significantly identified induction failure with 59% sensitivity, 77%

specificity, and 72% overall accuracy (odds ratio, 4.81; P 5 4.15 3 10210). PS29MRCdic

was able to improve the European Leukemia Network 2017 (ELN-2017) risk classification

within every category. The median overall survival with high PS29MRCdic was 1.8 years

compared with 4.3 years for low-risk patients. In multivariate analysis including ELN-

2017 and clinical and genetic markers, only age and PS29MRCdic were independent pre-

dictors of refractory disease. In patients aged $60 years, only PS29MRCdic remained as a

significant variable. In summary, we confirmed PS29MRC as a valuable classifier to iden-

tify high-risk patients with AML. Risk classification can still be refined beyond ELN-2017,

and predictive classifiers might facilitate clinical trials focusing on these high-risk

patients with AML.
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Key Points

� Prediction of
induction failure in
AML is possible
using cytogenetic
data and a gene
expression–based
classifier.

� Integration of
PS29MRC in the
clinical routine or
trials may be
facilitated by gene
expression analysis
with the NanoString
platform.
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Introduction

Despite recent advances and the introduction of novel drugs,
most patients with acute myeloid leukemia (AML) who are treated
with curative intent receive physically demanding intensive che-
motherapy consisting of cytarabine and anthracyclines.1 The
majority of these patients achieve complete remission (CR), but
20% to 40% of younger patients and 40% to 60% of older
patients do not respond to the initial treatment.1,2 About half of
patients with primary refractory disease (RD) die within 6
months.3 Because patient outcomes remain poor, even with sal-
vage therapy followed by allogeneic stem cell transplantation,
treatment of patients with RD is extremely challenging.4 The abil-
ity to predict primary RD would prevent patients with AML from
undergoing ineffective intensive treatment.

Several prognostic markers for patients with AML that provide infor-
mation about the overall outcome and help to guide treatment deci-
sions are routinely used in the clinic. The 2017 European Leukemia
Network (ELN-2017) guidelines classify patients into “favorable,”
“intermediate,” and “adverse” risk groups.1 With regard to the effect
of a therapeutic intervention, some predictive classifiers are primarily
geared toward forecasting RD. The model published by Walter et al
integrates clinical information, laboratory data, and molecular genetic
analysis of patients at initial diagnosis.5 Age, cytogenetics according
to the Medical Research Council (MRC), and NPM1/FLT3-ITD sta-
tus were the most significant predictive covariates.5,6 Another pre-
dictive model by Ng et al is derived from the prognostic 17-gene
leukemia stem cells score (LSC17).7 Gene expression analysis of 6
retrained response LSC17 genes was performed using the Nano-
String platform.7 The retrained response LSC17 signature proved
to be of predictive value.5,7 However, these existing predictors are
not refined or specific enough to be sufficient for clinical use. There-
fore, more precise classifiers are necessary to guide treatment deci-
sions and facilitate clinical trials aimed at this high-risk population of
AML patients.

We recently published a predictive classifier based on the anal-
ysis of cytogenetic data and 29 gene expression markers (Pre-
dictive Score 29 Medical Research Council; PS29MRC).8

Prediction of RD at initial diagnosis of AML can be achieved
with high accuracy using PS29MRC (77%). The classifier was
developed using cohorts analyzed by gene expression microar-
rays (n 5 856) and validated in a cohort measured by RNA
sequencing (n 5 250). Because prompt and reproducible gene
expression analysis is vital for PS29MRC to be incorporated
into trials or the clinical routine, we identified the 29 gene
expression markers in this study using the fast and automated
NanoString platform, which is already used for the risk calcula-
tion of recurrence in breast cancer.9 The NanoString method is
based on direct digital detection of messenger RNA (mRNA)
molecules of interest using target-specific color-coded probe
pairs.10 Even mRNA samples with less-than-ideal quality can be
measured precisely and in a short period of time.10 We set out
to transfer PS29MRC to a clinically applicable platform and vali-
date its predictive performance and prognostic value in an inde-
pendent multicenter cohort of patients who recently underwent
intensive treatment.

Patients and methods

Patients and inclusion criteria

This study included 384 intensively treated patients who were
enrolled in the multicenter German AML Cooperative Group
(AMLCG) Registry (DRKS00020816) between 2009 and 2019.
Only adult patients ($18 years) with newly diagnosed AML (de
novo or secondary to myelodysplastic syndromes or therapy-related)
and material available for analysis were included. The diagnosis of
AML was made according to the World Health Organization
(WHO) 2008 criteria.11 Patients with acute promyelocytic leukemia
or extramedullary disease without systemic involvement were
excluded. All patients were treated with intensive front-line induction
therapy: sequential high-dose cytarabine and mitoxantrone (n 5

226, 59%), cytarabine and anthracyclines (713; n 5 121, 31%),
and other intensive regimens such as thioguanine, cytarabine, and
daunorubicin and/or cytarabine and mitoxantrone [TAD-HAM,
HAM(-HAM); n 5 37, 10%].12 Second induction or salvage treat-
ment following AMLCG recommendations was given whenever pos-
sible in case of RD after the first induction cycle. Cytogenetic and
genetic analyses and measurement of the FLT3-ITD allelic ratio
were performed centrally, as recently reported.12 Following its
approval, 15 patients received the FLT3 inhibitor midostaurin during
induction treatment.13 The AMLCG Registry was approved by the
ethics committee of Technische Universit€at Dresden (EK
98032010) and is registered in the German Clinical Trials Register
(DRKS00020816). Written informed consent was obtained from all
participants. Ethic committees of the participating institutions
approved all protocols, and patients were treated according to the
Declaration of Helsinki.

Sample collection, RNA purification, and

measurement of gene expression

Pretreatment leukemic marrow samples (n 5 320; 83%) or blood
samples (n 5 64, 17%) were processed using a Ficoll-Paque gradi-
ent and stored at 280�C at the Laboratory for Leukemia Diagnos-
tics, University Hospital of Munich. The median percentage of
marrow and blood blasts was 68.5% (range, 9-97%) and 11.5%
(range, 0-98%), respectively. Samples with detectable blasts in mar-
row or blood were processed further. RNA was isolated using a
QIAcube robotic workstation, according to the RNeasy protocol
(QIAGEN, Hilden, Germany). The quality and concentration of total
RNA were assessed using a NanoDrop ND-1000 spectrophotome-
ter (Thermo Fisher Scientific, Wilmington, DE). Samples with a con-
centration . 20 ng/mL and purity with an A260/A280 ratio of 1.5 to
2.3 were used for further analysis (n 5 373).

For NanoString gene expression profiling, a customized set of bar-
coded probes containing the 29 genes of interest was used for
analysis (CodeSet). Six positive controls, spiked-in at fixed propor-
tional concentrations, and 8 negative controls, used to assess back-
ground and nonspecific binding, were included as recommended
by the manufacturer (NanoString Technologies, Seattle, WA). The 4
housekeeping genes (ABL, GAPDH, PGK1, RPS27) were also
part of the CodeSet (for details see supplemental Table 1).

The analyses were performed on an nCounter FLEX Analysis Sys-
tem, which is approved for clinical diagnostics applications, such as
the US Food and Drug Administration–approved Prosigna test.9

Hybridization between target mRNA and reporter-capture probe

23 NOVEMBER 2021 • VOLUME 5, NUMBER 22 PREDICTION OF RESISTANT DISEASE IN AML 4753

D
ow

nloaded from
 http://ashpublications.org/bloodadvances/article-pdf/5/22/4752/1845177/advancesadv2021004814.pdf by guest on 01 D

ecem
ber 2021



pairs was performed according to the NanoString protocol. The
hybridized samples were then processed by a fully automated
nCounter Prep station robot.10 After placing the cartridge in the
nCounter Digital Analyzer, data were collected by taking magnified
images of the immobilized fluorescent reporters with a CCD
camera.10

Results from digital data acquisition were processed using nSolver
4.0 Analysis Software (NanoString Technologies). Raw data were
evaluated using several quality control metrics to measure imaging
quality, oversaturation, and overall signal/noise ratio. Gene expres-
sions of all samples meeting quality control metrics (n 5 368) were
log transformed and normalized using the default settings.

In a pilot study, we performed gene expression analysis using Nano-
String on a cohort of 48 pretreatment leukemic samples from our
previous study, allowing us to compare gene expression values

measured by Affymetrix microarrays with those analyzed by the novel
platform on the same data set (supplemental Figure 1).8 To transfer
the previously defined optimal cutoff value onto the score calculated
using NanoString expression values, we created dichotomous
scores for NanoString data using different cutoff values and com-
pared their classification concordance with the original score. The
optimal cutoff was chosen as the one maximizing the concordance
between the 2 scores (new cutoff 5 0.4). Of note, the outcome of
patients was not used for recalculating the score; only gene expres-
sion data measured by the 2 platforms on the same patient cohort
were compared.

Statistical analyses

For the terms “prognostic” and “predictive” we used the definitions
proposed by Clark et al.14 Primary outcome was treatment failure:
RD, partial remission, death in aplasia, or death due to indeterminate

AMLCG-Registry
patients with available

material
N=651

Patients with newly
diagnosed AML

N=547

Patients treated with
intensive chemotherapy

N=384

Patients with PS29MRC and
induction outcome evaluation

N=351

Patients <60 years
N=184

Patients ≥60 years
N=167

Excluded for:

 • <18 years of age
 • Initial diagnosis of APL, MDS, MPS
 • Prior treatment for AML

N=104

Excluded for:

 • Receipt of supportive care only
 • Treatment other than intensive chemotherapy
 • Treatment regimen unknown

N=163

Excluded for:

 • Insufficient material (N=16)
 • No available MRC classification (N=9)
 • Missing evaluation of outcome (N=8)

N=33

Figure 1. Consort diagram. APL, acute promyelocytic leukemia; MDS, myelodysplastic syndrome; MPS, myeloproliferative syndrome.
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cause. Response criteria were defined according to ELN-2017 (for
a more detailed discussion of end point definition see supplemental
Appendix).1 Patients without cytogenetic data (n 5 9) or evaluation
of induction response (n 5 8) were excluded. Overall survival (OS)
was defined as the time from AML diagnosis to death from any
cause and was censored at the time of the last follow-up.

PS29MRC was calculated as the weighted linear sum of 29 gene
expression values and cytogenetic classification, according to the
MRC.6,8 The formula for PS29MRC is given in the supplemental
Appendix.

The x2 test was used to compare categorical variables, whereas
the Mann-Whitney U test was applied for continuous variables.
Adjustment for multiple hypothesis testing was performed using the
Benjamini-Hochberg procedure.15 Time to event variables were ana-
lyzed with the Kaplan-Meier method and Cox proportional hazards
regression model. Logistic regression was applied to analyze the
association of variables with the treatment outcome. All statistical

analyses were performed with statistical software R (version 4.0.3;
R Foundation for Statistical Computing, Vienna, Austria).

Results

Patient characteristics

A flowchart of the study is given in Figure 1. Treatment outcome
and the predictive score were available for 351 patients, with 249
(71%) responses (197 CRs, 52 CRs with incomplete hematologic
recovery) and 102 patients (29%) showing evidence of therapy fail-
ure (68 RDs, 11 partial remissions, 10 deaths in aplasia, 13 deaths
due to indeterminate cause). Most patients (292, 83%) were diag-
nosed with de novo AML, according to WHO criteria.16 The cohort
was evenly distributed between younger patients (,60 years; 184,
52%) and older patients ($60 years; 167, 48%). The median age
was 58 years (range, 18-87). Induction failure was observed more
frequently in older patients (n 5 67, 40%) than in younger patients
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Retrained response LSC17, AUC=0.56
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Figure 2. Comparison of different predictive classifiers of induction failure in AML. Receiver operating curves (A) and precision-recall curves (B) comparing the

prediction of induction failure of PS29MRC, the clinical score of Walter et al, and the retrained response LSC17 score.

Table 1. Diagnostic validity contingency table and parameter estimates of PS29MRC

PS29MRCdic Induction failure Induction response Total Measure (95% CI)

High 60 57 117 PPV: 0.51 (95% CI, 0.42-0.61)

Low 42 192 234 NPV: 0.82 (95% CI, 0.77-0.87)

Total 102 249 351

SEN: 0.59 (95% CI, 0.49-0.68) SPE: 0.77 (95% CI, 0.71-0.82) DOR: 4.81 (95% CI, 2.94-7.88)

Point estimates 95% CI

Apparent prevalence 0.33 0.28-0.39

True prevalence 0.29 0.24-0.34

Positive likelihood ratio 2.57 1.94-3.40

Negative likelihood ratio 0.53 0.42-0.68

CI, confidence interval; DOR, diagnostic OR; NPV, negative predictive value; PPV, positive predictive value; SEN, sensitivity; SPE, specificity.

23 NOVEMBER 2021 • VOLUME 5, NUMBER 22 PREDICTION OF RESISTANT DISEASE IN AML 4755

D
ow

nloaded from
 http://ashpublications.org/bloodadvances/article-pdf/5/22/4752/1845177/advancesadv2021004814.pdf by guest on 01 D

ecem
ber 2021



Total cohort

Age � 60 years

Overall survival in years

Overall survival in years

A D

B
E

1.00

0.75

0.50

0.25

0.00

0.75

ELN adv

ELN fav/int

ELN adv

ELN fav/int

Complex KT

No Complex KT

No Complex KT

Elderly

Younger

Elderly

Younger

TP53mut

TP53mut

TP53wt

TP53wt

Complex KT

0.50

0.25

0.00

1.00

PS29MRCdic

low-risk
high-risk

234
117

122
43

49
18

19
9

4
0

1
0

PS29MRCdic
low-risk
high-risk

140
44

84
19

35
8

9
5

1
0

1
0

TP53wt/Score high
TP53mut

20
14

10
6

7
3

3
1

1
1

0
0

0 2 4 6 8 10

0 2 4 6 8 10

Overall survival in years

1.00

0.75

0.50

0.25

0.00

0 1 2 3 4 5

HR = 1.73
p = 0.00051

HR = 1.51
p = 0.11

HR = 1.06
p = 0.89

PS29MRCdic
low-risk
high-risk

PS29MRCdic
low-risk
high-risk

PS29MRCdic
low-risk

high-risk

TP53wt/Score high

TP53mut
Su

rv
iva

l p
ro

ba
bil

ity
Su

rv
iva

l p
ro

ba
bil

ity

Age � 60 years

Overall survival in years
% of refractory patients

C

0.75

0.50

0.25

0.00

1.00

PS29MRCdic
low-risk
high-risk

94
73

38
24

14
10

10
4

3
0

0
0

0 2 4 6 8 10
0.0 0.2 0.4 0.6

HR = 1.59
p = 0.025

PS29MRCdic
low-risk

high-risk

Su
rv

iva
l p

ro
ba

bil
ity

Figure 3. PS29MRCdic identifies patients with AML with inferior prognosis. Kaplan-Meier curve showing outcomes of patients according to the PS29MRC risk

groups. (A) Outcomes of all patients. (B) Outcomes of patients younger than 60 years. (C) Outcomes of patients $60 years of age. (D) Comparison of patients with TP53

mutations and patients without a TP53 mutation, but with high PS29MRC values (top 10%). (E) Proportions of RD in groups defined by 4 risk factors (ELN-2017, complex

karyotype, age, TP53 ), and the PS29MRCdic high-risk group within each risk category. The striped bar represents the high-risk category for each risk factor. adv, adverse

risk; fav, favorable risk; int, intermediate risk; KT, karyotype; mut, mutated, wt, wild-type.
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(n 5 35, 19%). Several studies did not show any significant differ-
ences in outcome between the treatment regimens included in this
analysis.17,18 However, an analysis of patients receiving different
treatment regimens is provided in the results section of the supple-
mental Appendix. The median follow up was 3.3 years. The patients’
baseline characteristics are presented in supplemental Table 2.

Predictive value of the continuous score in the total

cohort and risk subgroups

The continuous score (PS29MRCcont) was predictive of treatment
failure with an odds ratio (OR) of 2.37 (95% confidence interval
[CI], 1.82-3.18; P 5 1.20 3 1029) and an area under the receiver
operating characteristic curve (AUC) of 0.75 (Figure 2). Because
the score includes the MRC classification of AML, we wanted to
test the independent predictive value of its gene expression compo-
nents by evaluating the score within different MRC groups.6 MRC
classification was available for 351 patients (favorable: n 5 33,
10%; intermediate: n 5 250, 71%; adverse: n 5 68, 19%). The
score was predictive for induction failure in the intermediate-risk
(OR, 2.75; 95% CI, 1.82-4.36; P 5 5.66 3 1026) and adverse-risk

(OR, 1.87; 95% CI, 1.15-3.38; P 5 .021) groups. It did not reach
significance in the favorable-risk group (OR, 18.13; 95% CI, 0.93-
12366.72; P 5 .22), likely because of the small number of treat-
ment failures (n 5 3). Furthermore, we tested the score in the risk
groups defined by the ELN-2017 classification.1 ELN-2017 classifi-
cation, PS29MRCcont, and outcome were available for 301
patients. The categories were more evenly distributed (favorable: n
5 129, 43%; intermediate: n 5 68, 23%; adverse: n 5 104,
35%). The score was significantly predictive of treatment failure in
the favorable-risk group (OR, 3.45; 95% CI, 1.50-9.12; P 5 6.59
3 1023) and the adverse-risk group (OR, 1.73; 95% CI, 1.18-2.71;
P 5 9.92 3 1023). It reached borderline significance in the interme-
diate subgroup (OR, 1.85; 95% CI, 1.06-4.01; P 5 .064). An over-
view of the subgroup analysis is given in supplemental Table 3.
PS29MRCcont was able to identify patients at high risk for treat-
ment failure in various risk subgroups. The score was well calibrated
for the first half of the predicted values, but it overestimated the
risk for patients with very high scores. However, the number of
patients with very high predicted risk was rather small, which
might have influenced the poor calibration for these values (supple-
mental Figure 2).

Performance of PS29MRC in comparison with other

predictive classifiers

We compared the PS29MRCcont with the clinical model of Walter
et al5 and the gene expression–based retrained response LSC17
score of Ng et al.7 To examine the predictive ability of each model,
we analyzed the AUC accordingly and compared the values with
PS29MRCcont (Figure 2). The clinical score of Walter et al and an
assessment of the induction response were available for 342 of
384 patients. The score reached an AUC of 0.53 (OR, 1.00; 95%
CI, 0.98-1.01; P 5 .66). The individual score components that sig-
nificantly predicted induction outcomes were age (OR, 1.04; 95%
CI, 1.02-1.06; P 5 1.37 3 1024), favorable cytogenetics (OR,
0.23; 95% CI, 0.05-0.66; P 5 .016), adverse cytogenetics (OR,
2.33; 95% CI, 1.35-4.01; P 5 2.22 3 1023), and NPM1 mutations
in the absence of FLT3-ITD (OR, 0.45; 95% CI, 0.23-0.83; P 5
.015). The diagnosis of secondary AML (OR, 1.70; 95% CI, 0.96-
2.94; P 5 .063) was slightly above the level of significance. The
Eastern Cooperative Oncology Group Performance Status
(ECOG), sex, white blood count, platelets, bone marrow blasts, and
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Figure 4. Individual risk prediction in patients with AML. Plot showing the

probability of induction failure with a cutoff at PS29MRCcont 5 0.4 (blue dashed

line).

Table 2. Univariate and multivariable analysis of induction failure

Variable

Multivariable analysis, n 5 227 Model selection Univariate analysis

Evaluable patients, nOR (95% CI) P OR (95% CI) P OR (95% CI) P

PS29MRCdic 3.47 (1.65-7.39) 1.09 3 1023 3.54 (1.74-7.33) .00054 4.81 (2.95-7.93) 4.15 3 10210 351

Retrained response LSC17 1.00 (1.00-1.00) .65 1.001 (1.000-1.002) .046 360

Age continuous 1.03 (1.00-1.06) .044 1.03 (1.00-1.05) .043 1.04 (1.02-1.06) 1.37 3 1024 375

Secondary AML 1.06 (0.45-2.43) .89 1.70 (0.96-2.94) .063 375

NPM1mut 0.81 (0.34-1.93) .64 0.49 (0.29-0.79) 4.80 3 10
23 372

RUNX1mut 1.27 (0.46-3.44) .64 2.58 (1.24-5.35) .011 238

TP53mut 0.67 (0.16-2.75) .58 2.62 (0.93-7.43) .065 237

ASXL1mut 0.97 (0.34-2.75) .96 2.21 (0.98-4.87) .051 237

ELN-2017fav 0.41 (0.12-1.39) .15 0.33 (0.13-0.81) .016 0.17 (0.09-0.32) 5.72 3 1028 319

ELN-2017int 0.94 (0.33-2.70) .91 0.88 (0.41-1.92) .75 0.50 (0.26-0.94) .033 319

fav, favorable risk; int, intermediate risk; mut, mutated; P-values marked in bold indicate numbers that are significant (P , .05).
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a mutated FLT3-ITD status did not reach the level of significance
(supplemental Table 4). The retrained response LSC17 score is cal-
culated as a weighted linear sum of 6 LSC17 gene expressions
(MMRN1, KIAA0125, CD34, GPR56, LAPTM4B, NYNRIN) and
was available for 360 patients.7 The score reached an AUC of 0.56
(OR, 1.001; 95% CI, 1.000-1.002; P 5 .046). When comparing
the ability to predict induction failure, PS29MRCcont was superior
to the clinical score of Walter et al and the retrained response
LSC17 score in univariate and multivariable analyses.

Predictive value of the dichotomous score in

risk subgroups

When applying the cutoff defined in our previous study,
PS29MRCdic was highly significant in the prediction of treatment
failure (OR, 4.81; 95% CI, 2.95-7.93; P 5 4.15 3 10210).
Although the specificity for RD was high (77%), the sensitivity of
PS29MRCdic was only moderate (59%), reaching an overall accu-
racy of 72% (Table 1). When excluding patients with death in apla-
sia or death due to indeterminate cause (n 5 23), the sensitivity of
the classifier improved slightly from 59% to 62% (for a more
detailed analysis see supplemental Appendix).

Of 351 patients with available induction results and MRC classifica-
tion, 117 (33%) were considered PS29MRCdic high risk. The
median OS for PS29MRCdic high-risk patients was 1.8 years,
whereas it was 4.3 years for PS29MRCdic low-risk patients. The
classifier showed an accuracy of 91%, 73%, and 59% within the
favorable-risk (n 5 33; nonresponder: n 5 0/3; responder: n 5 30/
30), intermediate-risk (n 5 250; nonresponder: n 5 33/69;
responder: n 5 149/181), and adverse-risk (n 5 68; nonresponder:
n 5 27/30; responder: n 5 13/38) MRC subgroups, respectively
(supplemental Table 5). Furthermore, we tested the dichotomized
score in the risk groups as defined by ELN-2017. ELN-2017 and
outcome variables were available for 301 patients. In the favorable-
risk (n 5 129; nonresponder: n 5 4/17, responder: n 5 106/112),
intermediate-risk (n 5 68; nonresponder: n 5 10/21, responder: n
5 39/47), and adverse-risk (n 5 104; nonresponder: n 5 37/48,
responder: n 5 24/56) ELN-2017 subgroups, PS29MRCdic
reached an accuracy of 85%, 72%, and 59%, respectively (supple-
mental Table 6). The score was predictive of treatment failure in the
favorable-risk (OR, 5.44; 95% CI, 1.26-21.72; P 5 .017),

intermediate-risk (OR, 4.43; 95% CI, 1.43-14.44; P 5 .011), and
adverse-risk (OR, 2.52; 95% CI, 1.09-6.11; P 5 .034) groups. The
dichotomous score significantly predicted induction failure in youn-
ger patients (,60 years; OR, 3.10; 95% CI, 1.41-6.80; P 5 4.57
3 1023) and older patients ($60 years; OR, 5.26; 95% CI, 2.72-
10.46; P 5 1.25 3 1026) (supplemental Table 3).

Prognostic value of PS29MRC

RD is associated with inferior survival. Since PS29MRC was predic-
tive of RD, we performed survival analysis. The continuous classifier
(hazard ratio [HR], 1.38; 95% CI, 1.21-1.58; P 5 2.62 3 1026)
and the dichotomous classifier (HR, 1.73; 95% CI, 1.27-2.37; P 5

5.12 3 1024) were significant prognostic markers. We observed
an inferior OS among PS29MRCdic high-risk patients, particularly
within the older subgroup (HR, 1.59; 95% CI, 1.06-2.39; P 5

.025) (Figure 3A-C). A prognostic analysis of relapse-free survival is
provided in supplemental Appendix.

TP53 mutations in AML are associated with a dismal outcome;
therefore, this very high–risk subgroup of patients requires special
attention.12 In our cohort, patients with mutated TP53 (n 5 14) had
a median OS of only 1.4 years. Patients who were among the 10%
with the highest PS29MRC score, but who did not have a TP53
mutation, had a survival comparable to patients with a TP53 muta-
tion (Figure 3D). Moreover, patients without a TP53 mutation, but
with a high-risk PS29MRCdic, had a higher probability for RD than
did patients with a TP53 mutation (Figure 3E). Likewise, patients
with other risk factors, such as a complex karyotype or older age,
had a similar risk for RD as did patients without the risk factor, but
with a high-risk PS29MRCdic (Figure 3E).

Individual risk prediction

To help guide decision making for physicians, as well as for
patients, we calculated the individual risk of induction failure using
PS29MRCcont (Figure 4). Each score is associated with a percent-
age of the patient’s risk of not responding to intensive chemother-
apy at the time point of their initial diagnosis. PS29MRCcont ranges
from 25.91 to 5.72 (median, 20.01). Although patients with high
PS29MRCcont scores tend to fare poorly, more favorable outcomes
are observed in patients with low PS29MRCcont scores. Patients
with a PS29MRCcont $ 4.0 have a $90% risk for RD, and

Table 3. Univariate and multivariable analysis of induction failure among older patients

Variable

Multivariable analysis, n 5 82 Univariate analysis

Evaluable patients, nOR (95% CI) P OR (95% CI) P

PS29MRCdic 4.41 (1.55-13.41) 6.62 3 1023 5.26 (2.72-10.46) 1.25 3 10
26 145

Retrained response LSC17 1.00 (1.00-1.00) .39 1.00 (1.00-1.00) .12 152

Age continuous 1.01 (0.91-1.11) .90 1.01 (0.96-1.07) .60 161

Secondary AML 0.68 (0.22-1.93) .48 1.25 (0.62-2.47) .53 161

NPM1mut 0.76 (0.22-2.76) .67 0.31 (0.15-0.60) 7.47 3 1024 159

RUNX1mut 1.50 (0.36-6.46) .58 1.91 (0.71-5.12) .19 91

TP53mut 0.58 (0.08-3.97) .58 1.44 (0.39-5.11) .57 90

ASXL1mut 2.31 (0.54-10.44) .26 2.12 (0.78-5.85) .14 90

ELN-2017fav 1.06 (0.15-7.39) .95 0.20 (0.08-0.44) 1.40 3 1024 128

ELN-2017int 2.14 (0.42-11.18) .36 0.81 (0.33-1.98) .65 128

fav, favorable risk; int, intermediate risk; mut, mutated; P-values marked in bold indicate numbers that are significant (P , .05).
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patients with a PS29MRCcont score of 21.0 or less have a proba-
bility of induction failure that is ,10%.

Multivariate analysis

Because PS29MRCcont and the dichotomous classifier were highly
significant in predicting induction failure in univariate models, we
also performed multivariable analysis with predictive variables having
a P value # .10 in univariate analysis (Table 2). In multivariate analy-
sis, only PS29MRCdic and age remained significant in the model.
Additionally, we used these variables to perform forward and back-
ward selection with the Akaike information criterion as the selection
criterion. Forward and backward selection chose the optimal model
as the one consisting of PS29MRCdic, age, and ELN-2017. In for-
ward selection, PS29MRCdic was the first variable to enter the
model. When analyzing the subgroup of older patients ($60 years),
the dichotomous score was the only variable that was significantly
associated with RD (Table 3).

Comparable results were seen with PS29MRCcont (supplemental
Table 7). A multivariable model with prognostic variables is provided
in supplemental Table 8.

Discussion

In this study, PS29MRC was successfully transferred to the Nano-
String platform and independently validated in a multicenter AML
patient cohort that was treated between 2009 and 2019. This anal-
ysis further confirms the predictive and prognostic value of
PS29MRC.

The NanoString platform is routinely used in stratifying the risk of
breast cancer recurrence and is widely available.9,19 Gene expres-
sion measurements using NanoString are highly robust, reproduc-
ible, and fast.20 Automated RNA preparation and measurement can
be conducted within 2 days. The platform allows physicians to
immediately apply PS29MRC and presents a method for the trans-
lation of the classifier into clinical trials and practice.

We also transferred and validated a previously defined threshold to
the novel platform. The threshold can be used to identify patients
with a high risk for induction failure, although larger patient cohorts
would probably be necessary to find a more optimal cutoff for the
NanoString platform. Although the sensitivity for predicting patients
with induction failure was only moderate (59%), the specificity was
high (77%). A more refined cutoff may improve sensitivity.

Furthermore, the classifier reached a fair predictive performance
with an AUC of 0.75, which is remarkable in this field, although
there is still room for improvement. Additional factors not captured
by the classifier seem to influence response to treatment. Important
risk factors, such as age or gene mutations, are not reflected in the
score. Additional omics data (eg, methylation profiling) or more
recently identified prognostic factors (eg, splicing profiles) may have
the potential to refine our models.21,22

Clinical classifiers must always be viewed in connection with the
analyzed end point. Several classifiers, such as the AML score or
PINA score, help to estimate complete remission and early death
rate in patients $60 years of age or the probabilities of OS.23,24

We decided to focus our analysis on the important end point RD
and compared our classifier with 2 of the most important and well-

known models: the clinical score of Walter et al and the retrained
response LSC17 score.

PS29MRC outperformed these clinical or gene expression–based
classifiers.5,7 The reasons for this are speculative, but some possibil-
ities are discussed below. The clinical score of Walter et al and the
retrained response LSC17 score were developed using data sets
from patients who were primarily treated in the 1990s or early
2000s. Since then, substantial improvements in supportive care
have been included in clinical management. The patients in our
cohort were treated within the last 10 years, most of them within
the last 5 years (n 5 227; 65% of patients treated between 2015
and 2019), which may account for some differences. Another factor
might be that PS29MRC combines the prognostic information of
cytogenetics with gene expression variables. Previous classifiers
relied only on gene expression analysis or a combination of cytoge-
netics, a few mutations, and clinical variables. It seems that the com-
bination of gene expression data and cytogenetics, as achieved in
PS29MRC, summarizes information from 2 worlds and results in a
more powerful predictor.

In the context of different end points only achieved after CR (eg,
relapse-free survival), PS29MRC performed far less effectively (sup-
plemental Appendix). It is tempting to speculate that the mecha-
nisms of resistance and relapse differ and are not represented
equally by the classifier designed to specifically identify RD.

In several analyses, we were able to demonstrate that PS29MRC
added predictive and prognostic information to subgroups defined
by MRC, ELN-2017, or age. Particularly, the score significantly pre-
dicted RD within older patients and was the only predictive variable
left in the multivariate model. In addition, PS29MRC identifies very
high-risk patients who have an equally dismal prognosis as those
with TP53 mutations who are not identified by current classification
approaches.

Older and very high–risk patients resemble subgroups of high clini-
cal relevance, and clinicians are familiar with discussions if a patient
benefits from intensive induction treatment. This discussion gained
further relevance as the result of the implementation of alternative
treatment regimens that showed promising results.25 As an example,
the combination of azacitidine and venetoclax proved to be effective
and might be a valuable option in older or very high–risk patients
with a low probability of achieving CR with cytarabine and
anthracycline–based induction treatment.25 PS29MRC may facilitate
clinical decision making within this subgroup of patients. Unfortu-
nately, we were not able to analyze a patient cohort of relevant size
that was treated with a combination of azacitidine and venetoclax.
Future evaluation of PS29MRC must focus on this alternative or
other recently approved regimens, such as CPX-351 or standard
7 1 3 chemotherapy with gemtuzumab-ozogamicin or FLT3
inhibitors.26,27

Of note, when analyzing the small group of patients (n 5 15) who
received the FLT3 inhibitor midostaurin after approval in the Euro-
pean Union, PS29MRCcont indicated a trend toward a possible
prediction of RD. Of 2 PS29MRCdic high-risk patients, 1 patient
experienced treatment failure. Of 13 PS29MRCdic low-risk patients,
9 patients achieved CR/CR with incomplete hematologic recovery
(P 5 .091). However, these data are too preliminary to allow any
conclusions, and analyses of larger cohorts of patients are
warranted.
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Informed consent is critical when talking to patients with cancer
about their treatment options.28 By establishing a model for individ-
ual risk prediction, PS29MRC provides additional information on the
risks and benefits of induction therapy. Communication between
patients and physicians may be facilitated.

In summary, we further confirmed PS29MRC as a valuable
classifier to identify high-risk patients with AML. The score was suc-
cessfully transferred to a platform that is widely available. Analysis
can be conducted quickly, and it may help to guide decision mak-
ing. Risk classification of patients with AML can still be refined
beyond ELN-2017, and concerted efforts are needed to improve
the prognosis of the large proportion of patients with very high-risk
AML.
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