
For Peer Review
The incretin/glucagon system as a target for 

pharmacotherapy of obesity

Journal: Obesity Reviews

Manuscript ID OBR-06-21-5187.R1

Manuscript Type: Review

Date Submitted by the 
Author: n/a

Complete List of Authors: Prato, Stefano Del; University of Pisa, Department of Clinical & 
Experimental Medicine
Gallwitz, Baptist; Eberhard Karls Universitat Tubingen, Department of 
Internal Medicine IV; University of Tübingen, 3Institute for Diabetes 
Research and Metabolic Diseases of the Helmholtz Center Munich
Holst, Jens; University of Copenhagen Faculty of Health and Medical 
Sciences, Department of Biomedical Sciences; University of Copenhagen 
Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center 
for Basic Metabolic Research
Meier,  Juris J; Katholisches Klinikum Bochum Sankt Josef-Hospital, 
Division of Diabetology

Keywords: Overweight, dual-agonist, GLP-1, glucagon

 

World Obesity Journals

Obesity Reviews



For Peer Review

1

Summary

Obesity is a chronic, multifactorial, relapsing disease. Despite multicomponent lifestyle 

interventions, which can include pharmacotherapy, maintaining bodyweight loss is 

challenging for many people. The pathophysiology of obesity is complex, and the currently 

approved pharmacotherapies only target a few of the many pathways involved; thus, single-

targeting agents have limited efficacy. Proglucagon-derived peptides, glucagon and the 

incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic 

polypeptide (GIP), represent attractive targets for managing obesity and metabolic disorders 

because they may have direct roles in multiple mechanisms including satiety, energy 

homeostasis and lipolytic activity. Unimolecular dual and triple agonists targeting glucagon 

and incretin hormone receptors have been shown to promote bodyweight loss, lower 

glucose levels and reduce food intake in animal models of obesity. Multiple dual receptor 

agonists are in clinical development for the treatment of obesity, including GLP-1/GIP and 

GLP-1/glucagon receptor agonists. The extent to which glucagon contributes to treatment 

effects remains to be understood, but it may promote bodyweight loss by reducing food 

intake, while concomitant GLP-1 receptor agonism ensures normal glucose control. Further 

research is required to fully understand the molecular mechanisms of action and metabolic 

effects of both dual and triple receptor agonists.
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1. INTRODUCTION

The overwhelming increase in the prevalence of obesity and people who are overweight in 

recent years represents one of the greatest global threats to public health. Worldwide, the 

prevalence of obesity has tripled since 1975, with over 650 million adults affected in 2016.[1] 

Obesity is now recognised as a multifactorial disease, characterised by abnormal or 

excessive fat accumulation that presents a risk to human health.[2] Obesity (a body mass 

index (BMI) ≥ 30 kg/m2) and being overweight (a BMI of 25–29.9 kg/m2)[3] are associated 

with several health conditions including diabetes, cardiovascular disease, some forms of 

cancer, musculoskeletal disorders (especially osteoarthritis), sleep apnoea, asthma, 

gallstones, depression and non-alcoholic steatohepatitis (NASH).[1, 2, 4-7] Obesity is a 

complex, chronic, relapsing disease: weight gain can be progressive, occurring over many 

years, and weight loss is difficult to achieve and even more so to maintain.[2, 8, 9] In a meta-

analysis of 29 studies, more than half (56%) of lost weight was regained within 2 years and 

79% was regained by Year 5.[9] Furthermore, some people with obesity do not consider 

themselves overweight, while others who do consider themselves overweight have no desire 

to lose weight.[10] Around one third of people with obesity would like to lose weight but have 
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not tried to do so within the last year and half have tried to lose weight without consulting a 

healthcare professional.[10]

1.1 Current treatment landscape

Current guidelines for obesity management recommend determining the degree to which an 

individual is overweight or has obesity and, depending on the severity, applying 

multicomponent interventions.[11-16] Lifestyle modifications are recommended for all 

patients who require weight loss, whereas additional pharmacotherapy is advised for 

individuals for whom lifestyle interventions have failed.[11-16] Lifestyle modifications can 

include reduced energy intake (typically to achieve an energy deficit of ≥ 500 kcal/day), 

increased aerobic physical activity levels to ≥ 150 minutes/week and behavioural change 

strategies to facilitate adherence to diet and physical activity (self-monitoring and reporting of 

dietary intake, physical activity and weight measurements).[11-15] A variety of diets 

designed to reduce energy intake may successfully result in weight loss in adults who are 

overweight or affected by obesity. Meal plans including Mediterranean-style or 

vegetarian/vegan-style diets, which are higher in plant-based foods including olive oil (rich in 

monounsaturated oleic acid) and lower in processed food and meat than typical Western 
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diets, may promote weight loss and cardiovascular benefits that are similar to those 

associated with low-fat diets (25–30% of calorie intake from fat).[11, 14] Notably, in the 

Dietary Intervention-Randomized Controlled Trial (DIRECT), a low-fat diet in people with 

type 2 diabetes (T2DM) elicited a lower mean weight loss (2.9 kg) compared with a 

Mediterranean (4.4 kg) or a low-carbohydrate (4.7 kg) diet, while improving lipid profile and 

glycaemic control to a greater extent.[17] Compared with the low-fat diet, the low-

carbohydrate diet improved lipid profiles, while the Mediterranean diet decreased fasting 

plasma glucose levels in patients with diabetes.[17] A recent randomised, controlled trial 

also showed that a 6-week low-carbohydrate diet, with high intake of protein and fat and 

energy intake adjustments to ensure weight stability, improved glycaemic control and 

reduced liver fat content in patients with diabetes.[18] These observations suggest that it is 

not necessarily fat intake that is responsible for increased fat deposition. Intermittent fasting 

has also gained interest for the treatment of obesity and diabetes, and has been 

recommended to comprise regular periods of no or very limited calorie intake (< 25% of 

calorie requirement), for example, a 16-hour daily fast or a 24-hour fast on alternate days or 

two non-consecutive days in a week.[19] On non-fasting days, calorie intake can be 

unrestricted. A systematic review of 27 trials of people who were overweight or affected by 

obesity demonstrated that intermittent fasting reduces bodyweight by 0.8–13% in the short 
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term (2–52 weeks), regardless of change in calorie intake.[19] In studies of patients with 

concurrent obesity and T2DM, improved glycaemic control was also reported with 

intermittent fasting.[19]

With dietary interventions, most patients will reach a plateau in bodyweight loss at 

approximately 6–12 months, ranging from 3–12 kg, then will slowly regain weight over 2–5 

years, with total weight loss reducing to 0 to 3–4 kg.[11, 12] This pattern is most likely due to 

the progressive reduction of energy expenditure associated with bodyweight loss and the 

reduction of lean body mass. Therefore, long-term bodyweight loss requires adjustment of 

lifestyle modifications over time. Adults who are unable to achieve or sustain bodyweight 

loss with comprehensive lifestyle modifications, who have either a BMI ≥ 30 kg/m2 or ≥ 27 

kg/m2 with one or more comorbidities, can be considered for adjunct pharmacologic 

therapy.[11-13]

US Food and Drug Administration-approved agents for the treatment of obesity 

include appetite suppressants, such as glucagon-like peptide-1 receptor (GLP-1R) agonists 

(liraglutide and semaglutide), serotonin receptor agonists and noradrenergic drugs 

(phentermine/topiramate and naltrexone/bupropion), and pancreatic lipase inhibitors 

(orlistat).[20, 21] Phentermine stimulates noradrenaline release which in turn suppresses 

appetite, augmented by topiramate, an anticonvulsant.[22] Across randomised controlled 
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trials, a mean bodyweight loss of 9.8 kg was observed with phentermine/topiramate 

treatment.[23] Naltrexone acts as an opioid antagonist and bupropion as a dopamine and 

noradrenaline reuptake inhibitor, the combination of which promotes satiety and increased 

energy expenditure leading to a mean bodyweight loss of 4.4 kg.[23, 24] Orlistat is a 

selective pancreatic lipase inhibitor that moderates intestinal absorption and digestion of fat, 

with an observed mean bodyweight loss of 3.1 kg.[22, 23] A 2-year study showed an 

additional bodyweight loss of ≥ 5% with the GLP-1R agonist liraglutide, which was 

significantly greater, by 3.0 kg (p<0.001), than weight loss with the pancreatic lipase inhibitor 

orlistat.[25] In this trial, bodyweight loss stabilised by approximately 36 weeks,[25] similar to 

that seen in trials with orlistat or the noradrenergic drug sibutramine.[26, 27] Previous 

pharmacological agents approved for the treatment of obesity, including amphetamine 

derivatives, cannabinoid receptor blockers and serotonin reuptake inhibitors, have been 

withdrawn due to their adverse event (AE) profiles (TABLE 1).[22, 28]

Bariatric surgery is an option for individuals with either a BMI ≥ 40 kg/m2 or ≥ 

35 kg/m2 and with comorbidities for whom appropriate non-surgical methods have failed.[11-

16, 31] Roux-en-Y gastric bypass, often called gastric bypass, has traditionally been 

considered the gold standard bariatric procedure for weight loss. The underlying 

mechanisms are loss of appetite resulting in reduced food intake, most likely driven by the 
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exaggerated secretion of gut hormones that occurs a few days after surgery. The increased 

secretion of these hormones, including glucagon-like peptide-1 (GLP-1) and peptide YY 

(PYY), is due to accelerated exposure and absorption of nutrients in the small intestine.[32-

34] Changes in anatomy leading to mechanical restriction of food intake and malabsorption 

of macronutrients were originally thought to be responsible for weight loss following bariatric 

surgery. However, these effects have since been found to be inappreciable,[34] except with 

less commonly used procedures such as jejunoileal bypass, biliopancreatic diversion and 

duodenal switch, which dramatically reduce intestinal resorption of nutrients. The mode of 

action of gastric sleeve operations, now the most widely used procedure to treat obesity,[35] 

is not fully elucidated, but the accelerated passage of nutrients into the small intestine, which 

also leads to exaggerated gut hormone secretion, is thought to play a role.[36] Most surgical 

procedures are, in principle, irreversible and are not without complications;[37] moreover, 

surgical intervention alone is unlikely to manage obesity in the majority of patients. 

Therefore, there is a large unmet medical need for a highly efficacious pharmacological 

agent with a favourable risk–benefit profile for the treatment of obesity, especially in 

chronically ill patients with concomitant disease (e.g. hypertension, T2DM and chronic 

obstructive pulmonary disease).
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1.2. Rationale for targeting the incretin/glucagon system in obesity

Energy balance is maintained by an intricate network of interacting feedback mechanisms 

involving the hypothalamus, the brainstem, higher brain centres and, in the periphery, the 

stomach, gut, liver, thyroid, endocrine pancreas and adipose (fat) tissue.[38] Hormones from 

peripheral tissues such as leptin, ghrelin, cholecystokinin, pancreatic polypeptide, PYY 

(PYY3-36), GLP-1 and oxyntomodulin have been shown to regulate appetite.[39-47] 

Resistance to the actions of some of these hormones appears to be associated with 

common obesity. For example, leptin is secreted by adipose tissue and is thought to be a 

key peptide in reducing food intake based on the extreme obesity that develops in the 

absence of leptin signalling.[38, 48] However, people affected by obesity have chronically 

elevated leptin levels and are resistant to its anorexigenic effects[39, 48]—this is thought to 

be caused, in part, by downregulation of a feedback loop by the high leptin levels.[49] Food 

intake is also regulated by the mesolimbic reward system and has been shown to activate 

some of the same circuits involved in drug addiction.[38, 50-52]

The pathophysiology of obesity is complex and currently approved therapies for 

obesity only target a few of the many pathways involved; thus, single-targeting agents have 

limited efficacy.[22, 53] An integrated approach to the treatment of obesity that targets 

multiple mechanisms such as feeding circuits, glucose metabolism and energy expenditure, 
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is therefore assumed to be more effective than single-targeting agents.[53] Proglucagon-

derived peptides, glucagon and the incretin hormones GLP-1 and glucose-dependent 

insulinotropic polypeptide (GIP), represent attractive targets for managing obesity and 

metabolic disorders[53-56] because they may play a direct role in multiple mechanisms 

involved in the disease, including satiety, energy homeostasis and lipolytic activity.[46, 57-

59]

Dipeptidyl peptidase-4 (DPP-4) inhibitors, approved for use in T2DM,[60] prevent 

DPP-4 from cleaving various gut peptides including GLP-1 and GIP;[22, 61] however, levels 

of GLP-1 activity achieved by DPP-4 inhibitors alone are not sufficient to stimulate a 

decrease in bodyweight.[22, 61, 62] Furthermore, DPP-4 inhibition stops the conversion of 

PYY 1-36 to PYY 3-36, the molecular form that reduces appetite and food intake,[63] and 

this may further limit the effects on bodyweight loss since what is gained with respect to the 

effects of GLP-1 (and GIP) is lost with respect to the effects of PYY.[32] 

GLP-1 has a short half-life and is cleaved by DPP-4 and neutral endopeptidase 

within 1.5–2 minutes. This has led to the development of GLP-1R agonists that have higher 

enzymatic stability towards both peptidases than endogenous GLP-1, resulting in slower 

elimination.[62] However, since the peptide is also cleared by the kidneys, prolongation 

techniques have been developed to ensure lasting agonism. For example, the GLP-1R 
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agonist liraglutide is acylated and its acyl moiety (palmitic acid) binds to albumin, whereby 

the peptide survives in the circulation.[64] This agonist has been shown to effectively cause 

bodyweight loss in humans and experimental animals, in which sufficient levels of the natural 

peptide do not remain in the circulation to account for this effect.[65-67] Investigations using 

rat models demonstrate that liraglutide may cross the blood–brain barrier via the 

circumventricular organs (the area postrema, the subfornical organ, the choroid plexus and 

the median eminence) and reach, for instance, the arcuate nucleus.[67] Here, liraglutide 

could activate neurons expressing proopiomelanocortin (POMC) and cocaine- and 

amphetamine-regulated transcript (CART), which are key appetite-regulating neurons, and 

indirectly inhibit neurotransmission in neurons expressing neuropeptide Y (NPY) and agouti-

related peptide (AgRP) via GABA-dependent signalling.[67] Other long-acting GLP-1R 

agonists that target the gastrointestinal (GI) tract and central nervous system, (CNS) 

including dulaglutide, exenatide extended-release and semaglutide, have since been 

developed that reduce bodyweight to a similar (~2–3%) or, in the case of injectable 

semaglutide, greater (~4–6%) extent as liraglutide with a similar tolerability profile in 

humans.[68]

As GLP-1, GIP and glucagon have related peptide sequences, it is possible to create 

analogues with agonist activity at more than one receptor type, for instance, combining GLP-
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1R agonist activity with the effects of glucagon and/or GIP.[61] Here, we discuss pre-clinical 

and clinical findings in obesity and other therapeutic areas of interest for glucagon, the 

endogenous incretin hormones GIP and GLP-1 and GLP-1R agonists, as well as their 

actions when combined as dual and triple agonists.

2. GLUCAGON IN OBESITY

Glucagon is a pancreatic hormone, with receptors predominantly expressed in the liver. 

There also appear to be receptors expressed in the kidneys (although the localisation is 

uncertain), while expression in the heart, adipose tissue, CNS, adrenal gland and spleen is 

variable and may be species dependent (

FIGURE 1).[66] 

Glucagon regulates amino acid metabolism and is released from alpha cells following 

amino acid stimulation as part of the liver–alpha cell axis.[69-71] In addition, glucagon has 

long been recognised to regulate glucose homeostasis, counteracting the actions of insulin 

by stimulating hepatic glucose production (glycogenolysis and gluconeogenesis).[61] 

Glucagon, at least at pharmacological doses, may regulate lipid metabolism, energy 

expenditure and food intake in multiple species.[54, 58, 72-76] In humans, hepatic fat 
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synthesis is suppressed after glucagon administration.[54] Glucagon stimulates beta-

oxidation of fatty acids and inhibits the formation of malonyl-coenzyme A, the first 

intermediate of fatty acid synthesis.[77] However, the extent to which glucagon influences 

whole-body lipid metabolism, particularly in individuals affected by obesity, remains 

controversial.[58, 77] In rodents, glucagon has been shown to stimulate lipolysis in 

adipocytes,[78-80] however glucagon receptor expression has not been successfully 

demonstrated in human adipocytes.[77] The potential lipolytic effect of glucagon in humans 

has only been shown in vitro and at concentrations much higher than physiological levels in 

plasma.[77] Glucagon may also increase energy expenditure by inducing thermogenesis in 

brown adipose tissue (BAT), as shown in humans and in animal models.[81-83] This 

thermogenic effect is thought to be mediated through activity of the sympathetic nervous 

system, given that inhibiting β-adrenergic activity impairs the ability of glucagon to increase 

energy expenditure.[84] However, the contribution of thermogenesis to overall energy 

expenditure remains unknown, and this effect may be too small to result in bodyweight 

loss.[75] In animal models, glucagon reduces food intake when administered peripherally 

and into the CNS.[56, 66, 85, 86]. Because of the extremely short half-life of glucagon in 

rodents,[87] long-acting glucagon analogues are likely to be more effective. Glucagon 

infused into the hepatic portal vein reduces spontaneous meal size in rats.[85] Conversely, 
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infusion of anti-glucagon antibodies into the hepatic portal vein increases spontaneous meal 

size in rats.[85, 88] These observations have led to the suggestion that glucagon may act in 

the liver to generate a satiety signal that is relayed to the brain via the hepatic branch of the 

vagus nerve.[85] Glucagon infusion at pharmacological doses in humans has been 

demonstrated to increase, rather than decrease, respiratory quotient and carbohydrate 

oxidation.[81] However, increases in energy expenditure have been reported at doses that 

did not activate the sympathetic nervous system.[89]

In patients with diabetes, levels of glucagon are elevated during fasting and, in 

response to carbohydrate ingestion, the normal suppression is delayed or even briefly 

reversed. These abnormalities are important for the development of diabetic 

hyperglycaemia, as indicated by the results of glucagon receptor (GCGR) antagonist 

administration, which may normalise glucose levels.[90] However, as a therapy for T2DM, 

GCGR antagonists have shown undesirable AEs including elevated liver enzymes, 

accumulation of liver triglycerides and hyperglucagonaemia, which have discouraged further 

development of GCGR antagonists in this patient population.[61] Inappropriate glucagon 

secretion and regulation has been shown in patients with obesity, as well as those with 

NASH.[71, 91-93]. The inappropriate elevation of circulating glucagon is likely the 

consequence of increased levels of plasma amino acids, representing a disruption of the 
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liver–alpha cell axis caused by hepatic fat accumulation.[71, 94] Hepatic steatosis can lead 

to glucagon resistance, wherein glucagon-induced amino acid metabolism is impaired 

causing elevated plasma levels amino acids and hence also glucagon.[71] Indeed, it may be 

that among patients with T2DM, those with non-alcoholic fatty liver disease (the vast 

majority) and hyperaminoacidemia also have hyperglucagonemia.[92] This disruption of the 

liver–alpha cell axis is mainly due to the accumulation of intrahepatic lipid and may 

contribute to the development of T2DM, rather than being a consequence of it.[71, 92]

3. GLP-1 IN OBESITY

GLP‐1, an incretin hormone secreted from the L cells in the small intestine after food intake, 

stimulates insulin secretion (in a glucose-dependent manner) and regulates energy 

intake.[46, 95-97] GLP-1 is also produced in the caudal portion of the nucleus of the solitary 

tract, a region receiving afferent input from the GI tract.[98, 99] GLP-1 acts on peripheral and 

central receptors in the gut and brain to delay gastric emptying, inhibit GI secretion and 

decrease food intake through activation of satiety pathways and efferent pathways regulating 

GI function (Figure 2).[66, 67, 95, 100, 101] GLP-1 also reduces glucagon secretion by alpha 

cells, thereby inhibiting hepatic glucose production.[102, 103] The GLP-1R agonist liraglutide 
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has been shown to reduce bodyweight in patients with prediabetes and in those with 

obesity,[104] and has been approved for weight management in adults with obesity as an 

adjunct to a reduced-calorie diet and increased physical activity.[65] In addition, results from 

the STEP 3 trial demonstrate that the GLP-1R agonist semaglutide reduces bodyweight in 

adults with obesity.[105]

4. GIP IN OBESITY

GIP, an incretin hormone secreted from K cells in the upper gut, acts in concert with GLP-1 

to exert ‘the incretin effect’, resulting in substantial physiological stimulation of insulin 

secretion after glucose administration.[62, 106-108] In contrast with GLP-1, GIP may 

stimulate glucagon secretion at lower glucose levels.[62] Although the insulinotropic activity 

of GIP has now been confirmed in human studies involving a GIP receptor (GIPR) 

antagonist,[59, 109] whether GIP contributes to the development of obesity remains a 

controversial concept.[110] Mice lacking the GIPR are protected from diet-induced obesity 

and crossing of GIPR-null mice with obese ob/ob mice reduces adiposity.[111, 112] 

However, other studies have demonstrated a reduction in calorie intake and bodyweight 

after both central and peripheral administration of GIPR agonists.[113, 114] This effect is 
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potentially mediated by GIP-recruited neuropeptides linked to regulation of food intake and 

energy balance.[115] GIP does not appear to have any acute effects on food intake in 

humans,[116] yet discussions are ongoing on the role of GIPR agonists and antagonists as 

weight loss agents.[117]

5. DUAL GLP-1R/GCGR AGONISTS

In animal models of obesity, administration of dual GLP-1R/GCGR agonists resulted in 

superior weight loss, lower glucose levels and reduced food intake compared with pure GLP-

1R agonists alone.[118-121] Weight loss with a dual GLP-1R/GCGR agonist was maintained 

over 7 days, whereas the effect of a pure GLP-1R agonist alone plateaued mid-week before 

returning to vehicle control level by Day 7.[119] In humans, dual GLP-1R/GCGR agonism is 

thought to result in additive effects of reducing food intake and lowering glucose levels, 

making this an attractive approach for weight management in individuals with diabetes. In a 

Phase II trial, individuals with diabetes and who were overweight or affected by obesity 

receiving the dual GLP-1R/GCGR agonist cotadutide (MEDI0382) achieved significant 

lowering of glucose levels and bodyweight loss compared with patients receiving placebo 

over 41 days (p<0.0001 and p=0.0008, respectively).[122] Decreased appetite occurred 

more frequently in patients receiving cotadutide than those receiving placebo (20% vs. 0%), 
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however, GI disorders were also more frequent (74% vs. 40%).[122] Overall, the proportion 

of patients experiencing treatment-emergent AEs was similar in both groups (88% vs. 

88%).[122] In a Phase IIb trial of cotadutide in patients with overweight/obesity and T2DM, 

significant reductions in glycated haemoglobin levels (p<0.001) and percentage of 

bodyweight (p<0.001) were observed at all tested doses (100, 200 or 300 µg) of cotadutide 

versus placebo, and significant reductions in the percentage of bodyweight were seen with 

300 µg cotadutide versus liraglutide (p=0.009).[123] In addition, treatment with cotadutide 

improved hepatic parameters, with decreases in alanine aminotransferase, aspartate 

aminotransferase, gamma-glutamyl transferase and procollagen III levels and improvements 

in non-alcoholic fatty liver disease fibrosis score and Fibrosis-4 index observed in 

comparison with placebo, whereas liraglutide had no notable effect.[123] The incidence of 

treatment-emergent AEs was higher across all doses of cotadutide compared with placebo 

and liraglutide, with GI disorders being most commonly reported.[123] In overweight 

individuals without diabetes, dual GLP-1/glucagon infusion increased energy expenditure to 

a similar degree as glucagon alone; however, the addition of GLP-1 reduced the 

hyperglycaemic effect of glucagon.[124] Dual GLP-1/glucagon infusion has been reported to 

significantly reduce food intake (−13%, p<0.05) compared with similar doses of GLP-1 and 

glucagon administered separately, although patients reported post-prandial nausea and 
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some vomiting.[124] A trend towards increased pulse rate was also seen with dual GLP-

1/glucagon infusion compared with placebo or GLP-1 alone, although no substantial change 

in blood pressure was recorded.[81] Thus, concomitant GCGR and GLP-1R activation 

provides the beneficial effects of glucagon (i.e., maintaining a significant reduction in food 

intake with little effect on plasma glucose levels; Figure 2).[81, 124]

6. DUAL GLP-1R/GIPR AGONISTS

Although the lipogenic potential of GIP alone is under debate, coactivation of GLP-1R and 

GIPR is an attractive prospect in the treatment of T2DM and perhaps obesity (Figure 2).[125] 

For example, GIP analogues that do not alter bodyweight when administered alone to mice 

with diet-induced obesity were found to enhance GLP-1-induced weight loss, reduce food 

intake and prevent fat mass accumulation;[126, 127] however, similar results have also been 

obtained with GIP antibodies.[128] The dual GLP-1R/GIPR agonist tirzepatide (LY3298176) 

has been shown to improve insulin sensitivity independently of GLP-1R induced weight loss 

in Glp-1r-null mice (i.e. via GIPR antagonism), but whether this effect is present in man 

remains to be seen.[129] Furthermore, a balanced unimolecular GLP-1R and GIPR agonist 

reduced bodyweight, food intake and fat mass in mice with diet-induced obesity to a greater 
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extent than liraglutide.[127] Although the exact mechanisms of GLP-1/GIP synergism are 

unclear, it has been hypothesised that GIP could act directly via the CNS by inhibiting food 

intake, enhancing the anorexigenic action of GLP-1 or by increasing tolerability to GLP-1R 

agonists.[130] Dual GLP-1R/GIPR agonism has also shown efficacy in humans. In a Phase 

II trial of the dual GLP-1R/GIPR agonist tirzepatide (LY3298176), more individuals with 

T2DM achieved weight loss of ≤ 5% and ≤ 10%, and glucose control with the dual GLP-

1R/GIPR agonist than with a GLP-1R agonist (dulaglutide) alone.[131] Decreased appetite 

(although desirable) was the second most common AE, with dose-related GI events being 

the most common but the majority being transient and mild to moderate in severity.[131] In 

the Phase III SURPASS-2 trial, treatment with tirzepatide was superior to semaglutide at 

reducing bodyweight in patients with T2DM at all tested doses (5, 10 or 15 mg), with 34–57% 

of patients receiving tirzepatide experiencing bodyweight reductions of ≥10%, compared with 

24% of those receiving semaglutide (1 mg).[132] Initial, unpublished data from the Phase III 

SURPASS-3 and SURPASS-5 trials of tirzepatide (5, 10 or 15 mg) in individuals with T2DM 

(with or without metformin and/or a SGLT-2 inhibitor) show bodyweight reduction ranged 

from –9.8 kg to –15.2 kg loss of up to 13.9% and 11.6%, respectively, for tirzepatide 

compared with 2.7% and 1.7%, respectively, for placebo.[133] In both trials, t The most 

commonly reported AEs in the tirzepatide arms were GI-related and generally mild to 
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moderate in severity, with up to ~11% of participants in the tirzepatide arms discontinuing 

treatment due to AEs.[134]

7. TRIPLE GLP-1R/GCGR/GIPR AGONISTS

The synergistic actions of glucagon to reduce food intake and increase energy expenditure, 

GLP-1 to reduce calorie intake and GIP to potentiate bodyweight loss may aid in the 

treatment of obesity (Figure 2). The addition of both incretin components to glucagon appear 

to better mitigate the hyperglycaemic action of glucagon compared with the presence of 

GLP-1 or GIP alone, allowing for greater glucagon dosing and therefore greater potential for 

weight loss.[135] In animal models of obesity, balanced unimolecular triple agonism proved 

superior to existing dual agonists and best-in-class mono-agonists in reducing bodyweight 

and enhancing glycaemic control.[136] In a murine model of diet-induced NASH and fibrosis, 

the triple combination of GLP-1R, GCGR and GIPR mono-agonists increased bodyweight 

loss, reduced liver triglycerides and improved histological NASH disease activity score; 

weight loss was similar to that obtained with liraglutide alone, but histological NASH disease 

activity score was significantly improved (p<0.01)[137]. In addition, HM15211, a long-acting 
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triple agonist peptide, reduced bodyweight and improved liver function in cynomolgus 

monkey models of obesity and NASH.[138]

8. BALANCED AGONISM, SPECIFICITY AND SELECTIVITY

Activation of multiple receptors can be achieved by either a combination of two or more 

different monoagonists or a unimolecular multiagonist. A multiagonist may take the form of a 

multivalent fusion of monoagonist analogues or a hybridised molecule comprising multiple 

epitope regions that has an overall size comparable to the native peptides.[61] The latter 

approach is favoured when targeting GLP-1R, GCGR and/or GIPR because they are the 

same type of receptor (class B G-protein coupled) and have a high degree of sequence 

homology and native ligands with similar secondary structures.[61] The GCGR, GIPR and 

especially GLP-1R exhibit cross-reactivity with the other’s ligands, with glucagon being the 

most cross-reactive ligand;[61] thus, a full investigation and characterisation of the 

interactions at the relevant receptors is required. For example, LY2409021, originally 

developed as a GCGR antagonist, was subsequently found to block the actions of glucagon 

at the GCGR and GLP-1R, the actions of GLP-1 at the GLP-1R and the actions of GIP at the 

GIPR in vitro.[139] When designing unimolecular dual and triple agonist peptides, it is 
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important to consider whether the molecule activates all target receptors with equal potency 

(balanced agonism) or has a higher affinity for one receptor over the other(s) (preferential 

agonism).[61] An appropriately balanced unimolecular agonist can only occupy a single 

receptor at a time, which theoretically reduces the likelihood of preferential binding at any 

one type of receptor, as could happen with a multivalent fusion of agonists with different 

affinities.[61] In addition, the selectivity of an agonist for a given receptor has relevance for 

predicting and, ultimately, avoiding off-target effects.[139] 

9. AGENTS TARGETING THE INCRETIN/GLUCAGON SYSTEM IN OBESITY

The synergy of dual and triple incretin agonists in increasing bodyweight loss through 

decreased appetite and increased energy expenditure may offer an advanced therapeutic 

option for patients with obesity, and several novel unimolecular peptides are in clinical 

development (TABLE 2). Most trials have yet to be fully published and the majority of 

published reports describe early pharmacokinetic and tolerability studies; nevertheless, trials 

of GG-co-agonist 1177, JNJ-6456511, BI 456906 and tirzepatide are currently investigating 

bodyweight-related outcomes.
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10. SAFETY

Glucagon and related peptides have a multitude of hormonal and metabolic effects that are 

not all desirable when targeting the receptors therapeutically.[66] Some unwanted effects 

are usually classified as GI, although it is likely that they are mainly due to interactions with 

central receptors. Whereas delayed gastric emptying may be sensed as fullness, one 

consequence of the interaction with area postrema receptors triggered by GLP-1 and 

glucagon appears to be mild-to-moderate transient nausea,[46, 124, 131] which has also 

been reported in studies of single GLP-1 agonists in patients with diabetes.[25, 104] 

Additional GI AEs (vomiting and diarrhoea) have been observed in trials of GLP-1R/GCGR 

dual agonists.[122, 131] Cardiovascular AEs are of potential concern, and a number of 

cardiovascular outcomes trials will be required as development proceeds, such as the 

ongoing SURPASS-CVOT of tirzepatide.[140] Completed trials of the GLP-1R agonists 

liraglutide, semaglutide and dulaglutide have demonstrated superiority with respect to rates 

of adverse cardiac outcomes in comparison with placebo.[141-143]
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11. CONCLUSIONS

Obesity is associated with a considerable and progressive disease burden and an effective 

pharmacologic intervention is lacking. Glucagon is an attractive target for bodyweight 

management in individuals with obesity due to its ability to reduce food intake and stimulate 

energy expenditure, potentially without cardiovascular AEs. However, its action may need to 

be counterbalanced by concomitant use of incretin hormones (i.e., preventing 

hyperglycaemia and enhancing the central effects of glucagon). The incretin hormone GLP-1 

is also an attractive target because it supresses appetite and reduces food intake, although 

the role of the incretin hormone GIP in bodyweight reduction is under debate. GIPR agonism 

alone has been shown to reduce bodyweight in mice with obesity, as observed with GIPR 

agonists with a longer half-life than endogenous GIP. However, these agents alone may 

have limited efficacy. It is reasonable to assume that the dual and triple combinations of 

glucagon and incretin hormone receptor agonists could provide superiority in maximising 

bodyweight loss. Unimolecular dual and triple agonists that target glucagon and incretin 

hormone receptors have been shown to improve bodyweight loss, lower glucose levels and 

reduce food intake in animal models of obesity and NASH, and multiple dual agonists are in 

clinical development for the treatment of obesity and diabetes. Phase II clinical data have 

established that the dual GLP-1R/GIPR agonist tirzepatide has superior antidiabetic efficacy 

Page 24 of 56

World Obesity Journals

Obesity Reviews

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

compared with the GLP-1R agonist dulaglutide, alongside reductions in bodyweight and the 

induction of satiety. Reductions in bodyweight and glucose levels have also been 

demonstrated with dual GLP-1R/GCGR agonists. The extent to which glucagon contributes 

to such treatment effects remains to be understood, but it may contribute to weight loss by 

reducing appetite and food intake, while concomitant GLP-1R agonism ensures normal 

glucose control. Further research is required to fully understand the molecular mechanisms 

of action that underpin the efficacy of both dual and triple receptor agonists and the 

respective metabolic effects. 
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Table and figure legends

TABLE 1 Previous pharmacological agents approved for the treatment of obesity and the 

AEs resulting in their withdrawal[28-30]

*Approved for use up to 12 weeks

Abbreviations: AE, adverse event; NDRA, noradrenaline–dopamine releasing agent; NDRI, 

noradrenaline–dopamine re-uptake inhibitor; NRA, noradrenaline releasing agent; SNDRA, 

serotonin–noradrenaline–dopamine releasing agent; SNRI, serotonin–noradrenaline re-

uptake inhibitor; SRI, serotonin re-uptake inhibitor.
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TABLE 2 Summary of clinical trials of agents targeting the incretin/glucagon system under 

investigation in patients with obesity

Abbreviations: BMI, body mass index; BP, blood pressure; EE, energy expenditure; FFF, 

free fatty acids; HbA1c, glycated haemoglobin; MACE, major adverse cardiac events; PK, 

pharmacokinetics; QOL, quality of life; RQ, respiratory quotient; T2DM, type 2 diabetes; 

VAS, visual analogue score; WC, waist circumference.

FIGURE 1 Physiological and pharmacological actions of glucagon. Glucagon has a number 

of physiological (blue), pharmacological (green) and hypothetical (orange) actions in several 

organs, some of which may be species dependent. GI, gastrointestinal.

FIGURE 2 Incretin/glucagon targeting agents achieve their weight loss effect through a 

variety of mechanisms in several organs. GCG, glucagon; GI, gastrointestinal; GIP, glucose-

dependent insulinotropic polypeptide; GLP-1, glucagon-like peptide-1.

TABLE 1 

Agent Mechanism of action Launch

date

Withdrawal

date

Reason for 

withdrawal

Amfepramone 

(diethylpropion)

SNDRA 1957 1975 Cardiotoxicity

Amphetamine SNDRA 1939 1973 Drug abuse/

dependence

Aminorex fumarate SRI 1962 1967 Cardiotoxicity
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Benfluorex SRI 1976 2009 Cardiotoxicity

Caffeine and Ephedra Non-selective 

adrenergic agonist

1994 2004 Cardiotoxicity, 

psychiatric 

Chlorphentermine SRI 1962 1969 Cardiotoxicity

Clobenzorex SNDRA 1966 2000 Drug abuse, 

psychiatric

Cloforex SRI 1965 1967 Cardiotoxicity

Cyclovalone + retinol + tiratricol Bile acid secretion 1964 1988 Hepatotoxicity

Dexfenfluramine SRI 1995 1997 Cardiotoxicity

Fenbutrazate NDRA 1957 1969 Drug abuse, 

psychiatric

Fenfluramine SRI 1973 1997 Cardiotoxicity

Fenproporex (perphoxene) NRA 1966 1999 Drug abuse, 

psychiatric

Iodinated casein strophanthin Thyroxine analogue 1944 1964 Endocrine, 

metabolism

Levoamphetamine SNDRA 1944 1973 Drug abuse/ 

dependence

Lorcaserin Serotoninergic agonist 2012 2020 Increased risk 

of cancer

Mazindol NDRA 1970 1987 Drug abuse, 

psychiatric 

(interaction 

with lithium)

Mefenorex 

(methylphenethylamine)

SNDRA 1966 1999 Drug abuse, 

psychiatric

Methamphetamine 

(desoxyephedrine)

SNDRA 1944 1973 Drug abuse/ 

dependence

Phendimetrazine NDRA 1961 1982 Drug abuse

Phenmetrazine NDRA 1956 1982 Drug abuse

Phentermine* NDRA 1959 1981 Drug abuse

Phenylpropanolamine 

(norpseudoephedrine)

NDRA 1947 1987 Haemorrhagic 

stroke

Pipradrol NDRI 1953 1982 Drug abuse
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Pyrovalerone NDRA 1974 1979 Drug abuse

Rimonabant Cannabinoid 

antagonist/inverse 

agonist

2006 2007 Psychiatric

Sibutramine SNRI 2001 2002 Cardiotoxicity, 

psychiatric

TABLE 2

Agonist Agent Trial phase Selected outcome 

measures

Trial number

Single agonists

Phase I PK/safety NCT022359

61

Phase I PK/safety; Δ HbA1c NCT028702

31

GCGR 

agonist

NN9030

Phase I PK/safety; Δ HbA1c NCT028352

35

Dual agonists

Phase I PK/safety; Δ bodyweight NCT029410

42 

GG-co-agonist 

1177

Phase I PK/safety NCT033087

21

Phase I PK/safety NCT035868

43

Phase II (T2DM) Δ bodyweight; ≥ 5% 

bodyweight loss

NCT035868

30

JNJ-6456511

Phase II Δ bodyweight; ≥ 5% and 

≥ 10% bodyweight loss

NCT034863

92

MOD 6031 Phase I PK/safety NCT026927

81

Phase I PK/safety NCT035917

18

GLP-

1R/GCGR 

agonists

BI 456906

Phase I PK/safety NCT043840

81
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Phase II Δ bodyweight; ≥ 5%, ≥ 10% 

and ≥ 15% bodyweight loss

NCT046673

77

Phase II (T2DM) Δ HbA1c; Δ bodyweight; ≥ 

5%, ≥ 10% bodyweight loss

NCT041539

29

Phase I Δ food intake; Δ EE; Δ RQ; 

Δ % body fat; Δ FFA; 

Δ post-meal glucose

NCT040813

37

Phase I Δ energy intake; Δ appetite 

VAS

NCT043114

11

Phase I (+/–

T2DM)

PK; Δ HbA1c NCT044072

34

Phase III (T2DM) Δ bodyweight; ≥ 5%, ≥ 10% 

and ≥ 15% bodyweight 

loss; Δ WC; Δ BMI; 

Δ fasting glucose and 

insulin; Δ HbA1c; Δ lipids; 

Δ BP; Δ QOL

NCT046570

03

Phase III Δ bodyweight; ≥ 5%, ≥ 10% 

and ≥ 15% bodyweight 

loss; Δ WC; Δ BMI; 

Δ fasting glucose and 

insulin; Δ HbA1c; Δ lipids; 

Δ BP; Δ QOL

NCT046570

16

Phase III Δ bodyweight; ≥ 5% and 

≥ 10% bodyweight loss; 

Δ WC; Δ BMI; Δ fasting 

glucose and insulin; 

Δ HbA1c, Δ lipids; Δ BP; 

Δ QOL

NCT046606

43

Phase III MACE NCT042554

33

GLP-

1R/GIPR 

agonists

Tirzepatide 

(LY3298176)

Phase III Δ bodyweight; ≥ 5%, ≥ 10% 

and ≥ 15% bodyweight 

loss; Δ WC; Δ BMI; 

NCT041846

22
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Δ fasting glucose and 

insulin; time to T2DM onset; 

Δ HbA1c; Δ lipids; Δ BP; 

Δ QOL

Triple agonists

Phase I PK/safety NCT030958

07

Tri-agonist 

1706

Phase I PK/safety NCT036618

79

Phase I Safety NCT033742

41

GLP-1R/

GCGR/GIPR 

agonists

HM15211

Phase I Safety NCT037441

82
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Brain

Liver

Brown adipose

White adipose

KidneyGI tract

Heart

Key:

†Species dependent

Physiological
mechanisms

Proposed/hypothetical
mechanisms

Pharmacological 
mechanisms

↑ Glycogenolysis
↑ Gluconeogenesis 

↓ Glycolysis
↓ Glycogenesis

↑ Hepatocyte survival
↑ Beta oxidation

↓ Lipid synthesis

↑ Thermogenesis

↑ Lipolysis†

↑ Thermogenesis (beige)

↑ Glomerular filtration
↑ Water reabsorption↓ Motility

↑ Heart rate†

↑ Satiety
↓ Food intake
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Weight

loss

Brain

Liver

Brown adipose

White adipose

PancreasGI tract

Heart

↓ Lipogenesis
↑ Fatty acid oxidation

↑ Thermogenesis

↑ Lipolysis

↑ Insulin secretion
↓ Motility

↑ Heart rate

↑ Satiety
↓ Food intakeTriple agonist

GLP-1/GIP

GLP-1/GCG

GLP-1

GCG

Triple agonist

GLP-1/GIP

GLP-1/GCG

GLP-1

GCG

Triple agonist

GLP-1/GIP

GLP-1/GCG

Triple agonist

GLP-1/GCG

GCG

GLP-1

GCG

GLP-1/GCG

GCG

GLP-1/GCG

GCG

GLP-1/GCG

GLP-1
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Dear Professor York,

Further to our correspondence last year, we are pleased to submit our review article entitled 
The incretin/glucagon system as a target for pharmacotherapy of obesity for 
consideration for publication in Obesity Reviews.

As we outlined in our enquiry, our review discusses the complexities of obesity, focusing on 
the involvement of the incretin/glucagon system and the rationale for targeting it to achieve 
weight loss. We review and discuss relevant pre-clinical and clinical findings in obesity and 
other therapeutic areas of interest for glucagon, endogenous incretins GIP and GLP-1, 
including GIP receptor antagonists and GLP-1 receptor agonists, as well as their 
combinations as dual and triple agonists. We then summarise current pharmacotherapies in 
development that target multiple mechanisms in the incretin/glucagon system and their 
potential for achieving weight loss in obesity.

Thank you for your kind consideration. 

Yours sincerely,

Stefano Del Prato, Baptist Gallwitz, Jens Juul Holst, Juris Meier

Page 56 of 56

World Obesity Journals

Obesity Reviews

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


