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Abstract 

A fine-tuned balance of glucocorticoid receptor (GR) activation is essential for organ formation, with 
disturbances influencing health outcomes. Excess GR-activation in utero has been linked to brain-related 
negative outcomes, with unclear underlying mechanisms, especially regarding cell-type specific effects. To 
address this, we used an in vitro model of fetal human brain, induced pluripotent-stem-cell-derived cerebral 
organoids, and mapped GR-activation effects using single-cell transcriptomics across development. Interestingly, 
neurons showed targeted regulation of differentiation- and maturation-related transcripts, suggesting a delay of 
these processes upon GR-activation. Uniquely in neurons, differentially-expressed transcripts were significantly 
enriched for genes associated with behavior-related phenotypes and disorders. This suggests that aberrant GR-
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activation could impact proper neuronal maturation, leading to increased disease susceptibility, through 
neurodevelopmental processes at the interface of genetic susceptibility and environmental exposure.  

Introduction 

Human developmental trajectories are influenced by both genetic and environmental factors1. 
Understanding the molecular and cellular mechanisms of how these factors impact brain development has been 
difficult, given the restricted access to living human fetal brain tissue. An important environmental risk factor is 
over-activation of the glucocorticoid system during brain development, which has been related to several 
negative long-term health outcomes, including cognitive, behavioral and psychiatric outcomes1. The GC system 
mediates key processes in fetal organ development and glucocorticoid receptor (GR) activation by GCs like 
cortisol is essential for proper formation and maturation of all organs, especially the lung and brain2. GR 
functions as a transcription factor and upon activation translocates to the nucleus where it binds specific 
glucocorticoid response elements (GREs) that enhance or repress the transcriptional response of many genes in 
a cell-type-specific manner3.  

Tightly-regulated GR-activation seems to be critical for normal development. This is supported by 
endogenous mechanisms responsible for limiting excess activity of maternal glucocorticoids in the fetus, 
including a pregnancy-induced rise in corticosteroid-binding globulin4 that limits free cortisol and the placental 
enzyme 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) which converts maternal glucocorticoids to inactive 
cortisone, thus limiting its activity in the developing fetus5. In addition, increased glucocorticoids exposure has 
been associated with detrimental outcomes.  One example is synthetic glucocorticoid (sGC) use in pregnancy. 
When premature delivery is a risk for the developing fetus, current clinical guidelines recommend antenatal 
treatment with sGCs like betamethasone or dexamethasone6. sGCs are also given starting in the first trimester 
for fetuses at risk for congenital adrenal hyperplasia (CAH), which accounts for 1:15,000 births7. In recent years, 
antenatal sGC treatments have been on the rise, as 10% of pregnant women worldwide are at risk for preterm 
delivery, and most receive sGCs to promote fetal organ maturation2,8. There are clear benefits of glucocorticoid 
treatment on organ maturation and overall reduction of premature birth risk9, but increasingly more negative 
long-term outcomes have also been reported. sGCs readily cross the placenta10, thus potentially placing the 
fetus in danger of overexposure. Accumulating evidence from human cohorts indicates that fetal sGCs exposure 
in mid- to late pregnancy may result in adverse postnatal outcomes including hypertension11, cardiovascular 
disease12, dysregulated activity in the hypothalamic-pituitary-adrenal (HPA) axis and detrimental effects on brain 
structure and development13. Continued sGC treatment for CAH has also been linked to altered cognitive 
performance, including inattention, as well as increased fearfulness in childhood7. Furthermore, elevated 
endogenous maternal glucocorticoids have been linked to negative outcomes especially regarding brain 
development14. For example, elevated prenatal maternal cortisol was significantly associated with altered 
neonatal amygdala connectivity, associated with differences in sensory processing and integration, and 
subsequently internalizing symptoms in girls15. In addition, conditions associated with increased maternal GCs 
and decreased placental 11β-HSD2, such as prenatal stress and prenatal maternal depression1, which could lead 
to increased fetal GC exposure, have repeatedly been associated with long-term negative behavioral outcomes 
in children, including problems with attention and emotional regulation, as well as changes in brain structure 
and function, at birth and in childhood16-18. Prenatal depression alone affects 10% of women worldwide, with 
higher rates in developing countries19. Together with the increasing prevalence of prenatal sGCs administration, 
the societal impact of this problem is large and underlines the necessity for a better understanding of the 
mechanisms by which increased prenatal GR-activation in the developing brain leads to negative health 
outcomes. For this, model systems are necessary.  

GR-activation can be modeled robustly in vitro and in vivo and is thus amenable to system-wide 
investigation. Rodent studies have demonstrated that sGCs exposure during gestation leads to brain 
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development perturbations in GR-targeted brain regions – the medial prefrontal cortex, anterior cingulate 
cortex and hippocampus20 – as well as depression-like phenotypes and other negative outcomes in adult 
offspring21. While animal models have contributed important insight into the mechanisms of prenatal GR-
activation, they have limited use for understanding some human-specific risk mechanisms. During brain 
development, important differences exist between primates and rodents, notably regarding the abundance, 
lineage complexity and proliferative potential of certain neural progenitor cell types. This translates at a macro 
scale into a lisencephalic brain in mice compared to the gyrification of the human brain and marked differences 
in cell-type distribution and self-renewal or differentiation patterns22. In addition, animal models do not allow 
mapping of human-specific GREs and their possible interaction with human genetic variation, given that such 
enhancers are poorly conserved across species. A second interesting model system consists of primary human 
neuronal progenitor cell lines23,24. While these allow investigation of human-specific genomic effects, they do 
not recapitulate the complex architecture and cell types seen in the multi-cellular human brain. Human model 
systems using induced pluripotent stem cells (iPSCs) represent promising tools for filling this gap. Specifically, 
iPSC-derived human cerebral organoids recapitulate three-dimensional complexity and cell-to-cell 
interactions25,26 in addition to a human genetic background, thus allowing to model environmental exposures in 
the complex and species-specific context of human brain development. Organoids recapitulate early-to-mid fetal 
brain development, with most similarities matching the first and early second trimester27-29. This period is known 
to be critical for neuron production, migration, connection, and differentiation1, but environmental impacts 
during these sensitive periods are not fully understood. In this study, we aimed to test whether human cerebral 
organoids could be model systems to study the impact of prenatal GC exposure on the developing brain. We 
established that pharmacological GR-activation in cerebral organoids leads to cell-type-specific transcriptional 
responses that map to GR-responsive genes and cell types, which may moderate risk for negative 
neurodevelopmental trajectories.  

 

 

Results 

I. Cerebral organoids model the early developing brain in vitro and express the molecular machinery for 
response to glucocorticoids.  

 First, we confirmed that our cerebral organoids mapped onto brain development trajectories using bulk 
RNA sequencing (RNAseq) at seven successive developmental times from day 17 to day 158 (Table S1; 
Supplementary Results). We could delineate a distinct and robust developmental trajectory at the whole 
transcriptome level, with same-age samples clustering closest together and closer to samples of adjacent age; 
and with age-defining genes clearly clustering in a progressive temporal manner (Figure 1A).  

We compared these data with other bulk RNAseq datasets including fetal and adult postmortem 
brain30,31, as well as iPSC-derived in vitro differentiation models. Peripheral blood was used as a non-brain 
control. We found that older (beyond 70 days) organoids clustered with early fetal brain samples (Figure 1B). 
When surveying known markers cell-type associated with neuronal differentiation in the RNAseq data (Figure 
S1A-B, Table S2 and Supplemental Results), as well as at the protein level using immunofluorescence staining 
(IF) (Figure S1C), we showed a gradual maturing over time of the three-dimensional brain-like structure 
centered around the functional unit of the ventricle.  

We then asked whether the molecular machinery for GR-activation was present in this system, including 
essential chaperones and co-chaperones of the GR protein complex32 (Figure 1C, Table S1) using bulk RNAseq. 
We found NR3C1 expression increased with organoid age, with a significant increase between days 23 and 40 (p-
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value<0.0001; FC=1.29), plateauing after day 40 (Figure 1C). Furthermore, the primary genes encoding the GR 
protein complex were abundantly and stably expressed across organoid development (Figure 1C), supporting 
the possibility for a functional GR complex in this system. Using IF, we also mapped the protein form of the 
NR3C1 gene. We found GR protein expression throughout the organoids with no clear cell-type specificity (See 
Figure 2 and next section). 

 
Figure 1: Transcriptional characterization of organoids’ developmental trajectory and GR-activation cellular 
machinery. A. Heatmap representing all genes peaking at each of seven tested time-points (D17-D158) of 
organoid culture (n=3), organized following temporal trajectory. Gene lists are in Table S2. Organoids show a 
robust and linear progression of gene expression across developmental time. B. Principle Component Analysis of 
published bulk transcriptome datasets highlighting mid-to-older age organoids positioned among fetal brain 
samples and advanced two-dimensional in vitro neuronal cultures. Organoids transcriptome datasets (n=21 
total), represented by black diamond shapes, follow the linear trajectory of progressively maturing cell types or 
tissues according to organoid age. C. Expression levels of the primary GR protein complex genes across organoid 
development. Table (right) shows protein ID, gene name and gene ID. NR3C1 expression significantly increased 
only between days 23 and 40 (ANOVA and Holm-Sidak post-hoc pair-wise test; p-value <0.0001; FC=1.29; n=3 
per time point).  

II. Acute glucocorticoid exposure in cerebral organoids elicits differential expression of established 
glucocorticoid-responsive genes. 
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We activated the GR in this in vitro model via exposure to the selective synthetic agonist 
dexamethasone (Dex). Organoids were grown for 45 days to ensure maximal GR expression, and two acute 
paradigms (4 and 12 hours) were tested, with three different Dex concentrations (10 nM, 100 nM, and 1,000 
nM) in triplicate compared to vehicle (DMSO). Quantitative PCR analyses revealed that neither progenitor 
(SOX2, PAX6) nor neuronal cell markers (TUBB3, MAP2), nor the GR itself (NR3C1) were significantly Dex-reactive 
(Figure 2A-B; statistics in Table S3), suggesting that acute Dex treatment does not impact cell-type composition. 
This was contrary to transcripts known to be up-regulated by glucocorticoids: FKBP533, SGK122, TSC22D332 and 
ZBTB1634. Most of the dose-time combinations tested resulted in significant up-regulation of these genes, 
except for SGK1 (Figure 2A-B; statistics in Table S3). Twelve hours of stimulation (Figure 2B) elicited the 
strongest response in organoids, with fold-changes (Dex/Vehicle) as high as 39-fold for TSC22D3 and 20-fold for 
FKBP5 (Table S3). From these data, we concluded that 100 nM Dex for 12 hours represented a suitable acute 
GR-activation paradigm in cerebral organoids. Following this exposure, we also found evidence for GR-
activation31 at the protein level. In the vehicle condition, GRs were localized in both the cytoplasm and nucleus 
(Figure 2C), while following Dex (100nM; 12h) all detectable GRs were in the nucleus (Figure 2D), suggesting 
Dex-induced nuclear translocation of this transcription factor.  
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Figure 2: GR-activation paradigm in organoids. A-B. Quantitative PCR analysis of key GR-regulated genes across 
two different acute time paradigms 4 hours (panel A) and 12 hours (panel B) and dose (10nM, 100nM, and 
1000nM Dexamethasone) stimulation paradigms. Organoids were stimulated at 45 days in culture (n=3). Gene 
expression was normalized to the geometric mean of endogenous genes GAPDH, POLR2A, and YWHAZ. 
Statistical analysis and results are reported in Table S3. Fold changes are reported in reference to Vehicle 
(DMSO). Expression is graphically represented was normalized to the Vehicle expression for each gene 
(indicated by the dotted red line). Statistical significance (two-sided) is denoted with * representing p-value ≤ 
0.05. Error bars represent mean±SEM. C. Immunofluorescence image of an organoid in wild-type conditions 
showing GR protein localization in the cytoplasm of a neuronal cell (nuclei-DAPI = blue; DCX-neurons = green; GR 
= white). D. Immunofluorescence image of an organoid following 100nM Dexamethasone treatment for 12 
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hours showing nuclear translocation of GR in a neuronal cell (nuclei-DAPI = blue; DCX-neurons = green; GR = 
white; Magnification: upper panels = 25x, lower panels = 40x).  

 

III. Cell-type distribution in cerebral organoids across developmental time shows neuronal maturation. 
  We next wanted to understand cell-type-specific glucocorticoids-responses in the organoid model. For 
this we performed single-cell transcriptome sequencing at three time-points that captured the developmental 
pattern comparable with fetal brain and GR expression trajectory in organoids; at 30, 60 or 90 days in culture 
(D30, D60, D90; n=4) in organoids exposed to vehicle (DMSO; Veh) or Dex (100 nM; 12 hours). We profiled over 
15,000 cells, and following dissociation, microfluidic separation, selection of single-cells and quality control of 
sequencing data, we were left with 14,002 cells across all time-points and treatment conditions (D30 n=5,035 
cells; D60 n=4,315 cells; D90 n=4,652 cells).  

 We applied graph-based cluster analysis using Scanpy35 on all 14,002 cells and clustered the dataset into 17 
groups to discretize transcriptomic variability (Figure 3A). Of these, 13 clusters could be mapped to specific cell-
types based on top differentially-expressed cluster markers as well as established protein makers consistent 
with recent publications (Figure 3B-C; Table S4; Figure S2)25,26,36. When separating cells by developmental time-
point, by-and-large the same cell-types were represented and identified by the same markers, with the main 
difference being relative cell abundance (Figure 3C; Figure S3). For example, the proportion of cycling 
Neuroepithelial cells (cNE) decreased as the organoids aged (Chi-square=15.58, p-value=0.0004) while the 
proportion of more differentiated cell-types like the Dorsal Neurons (DN) increased (Chi-square=6.03, p-
value=0.049) (Figure 3C). 

 All 17 cell clusters could be grouped into three global cell classes based on well-established markers as 
described in detail in Supplemental Results. These were Neuroepithelial cells (n=1,027), Progenitors (n=8,823) 
and Neurons (n=4,152) (Figure 3D). Even more prominently than with individual cell-types, the percent of cells 
in each cell class across organoid age changed with maturity. Neuroepithelial cells decreased from 13% at D30 to 
4% cells D60 or D90 (Chi-square=8.3, p-value=0.016) while there was not significant change in Progenitors. 
Neurons increased progressively with organoid age from 19% to 32% to 39% of cells at D30, D60, and D90, 
respectively (Chi-square=9.8, p-value=0.007; Figure 3D).  
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Figure 3: Cell-type characterization using single-cell RNA sequencing. A. Dimensionality reduction Uniform 
Manifold Approximation and Projection (UMAP) plot depicting 14002 single cells passing quality control from all 
time-points and treatment conditions (n=12 experiments). Colors depict each of 17 Louvain groups representing 
individual cell types and labeled with an abbreviation as defined in C, inset table. B. Dot plot showing the 
average expression by cluster and percent of cells expressing each of the top 1-2 genes defining each cluster. C. 
Left, cell-cluster distribution across organoid age (day 30, 60, 90). Right, definition of the 14 identifiable cell 
types, abbreviations, number of cells in each cluster, cell class assigned to, and the genes defining each cluster 
identity. D. Left, classification of cells into three cell classes (Neuroepithelial cells, Progenitors, and Neurons). 
Right, distribution of cell classes across organoid age (day 30, 60, 90).  

 

IV. Cell-type specific responses to acute glucocorticoids stimulation reflect a delay in neuronal maturation. 
We next evaluated cell-type-specific GR-activation responses using MAST37 for differential expression 

(DE) analysis. Given the comparable cell-types observed at D30, D60 and D90 (Figure S3, Tables S5-S7) we 
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performed the main DE analyses in all combined cells to maximize statistical power, including technical batch as 
a covariate. We found no cell types unique to any treatment condition (Figure 4A). The GR (NR3C1 gene, Figure 
4B) was expressed across cell-types (see also Figure S3 for time-point-specific results), though on average GR 
was more abundant in the NE, S, and M clusters, with over 50% of cells having detectable expression (Figure 4C). 
At the 17-cluster level, we found significant DE genes in 9 clusters, ranging from one to 55 DE transcripts (q-
value≤0.05; Figure 4D, Table S8). The number of DE transcripts was not correlated with average NR3C1 
expression in the clusters (R2=0.001). However, absolute fold-changes for DE transcripts were significantly larger 
in NR3C1-positive cells within each of the three cell classes (Figure S4). Radial Glia (RG) had the most 
significantly DE genes (n=55) followed by the immature Dorsal Neurons (iDN, n=47 genes), the Dorsal Neurons 
(DN, n=38 genes), and the Proliferative Progenitors (PP, n=37 genes) (q-value≤0.05; Figure 4D, Table S8). No 
gene was DE in more than four clusters, but 5 genes were shared among the four clusters with most DE 
transcripts (PP, RG, iDN, and DN) (Figure 4E). Of these, one transcript (MGARP) was up-regulated, while 4 
transcripts (C1orf61, LINC01551, NEUROD6, NFIA) were down-regulated by Dex. The direction of DE fold-change 
(FC) was consistent across all three time-points (Tables S5-7), indicating a cell-type and not temporally-
dependent effect.  

When analyzing DE transcripts within the three broader cell classes, we found 68 DE genes in 
Neuroepithelial cells, 1,237 DE genes in Progenitors and 322 DE genes in Neurons (q-value≤0.05; Figure 5A; 
Table S8). Only 14 DE genes were shared among all three cell classes, while 34 genes overlapped between 
Neuroepithelial cells and Progenitors, and 137 genes between Progenitors and Neurons (Figure S6). Most 
overlapping genes showed the same direction of regulation between cell classes, but 5 genes had opposite 
directions between Neurons and Progenitors. These were CRABP1, DAPL1, ENO2, HES6, and PAX6 (Figure 5B), all 
of which are important in neurodevelopment, either by regulating cell proliferation or maintaining the 
progenitor pool38-42. Interestingly, all 5 genes were up-regulated in Neurons and down-regulated in Progenitors. 
When breaking down this effect by individual time-point (D30, D60, D90), all genes were consistently down-
regulated (significant when q-value≤0.05) in Neurons, while in Progenitors this was only true for ENO2 and HES6. 
Together with an enrichment of common GO terms in DE transcripts from both Progenitors and Neurons which 
included cell differentiation, head development, neurogenesis, neuron differentiation and nervous system 
development (Table S9, Supplementary Results), these findings suggest that sustained GR-activation during 
neurodevelopment may interfere with neuronal differentiation and maturation in the long term, confirming 
previous data from 2-dimensional cell systems24.   
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Figure 4: Cell-type-specific differential gene expression in organoids. A. UMAP plot depicting the cells from 
organoids that received treatment (red, n=6800 cells) or vehicle (grey, n=7202 cells). Even distribution of 
treated/untreated cells. B. UMAP plot depicting expression of the GR gene NR3C1 across all 14,002 cells in the 
analysis. Even distribution of NR3C1-positive cells across cell types.  C. Average NR3C1 expression by cell cluster. 
Y-axis is cell-type abbreviation, x-axis is log2-normalized average gene expression across each cluster. Color 
scheme corresponds to Figure 4. D. Differential gene expression by cluster. Scatter plots (log2 fold change) of all 
genes differentially expressed between treatment (Dex, x-axis) and control (Veh, y-axis) where the significant 
genes (q-value ≤ 0.05) are shown by blue dots (n of DE genes marked on graphs). E. Venn diagram depicting the 
intersection between lists of DE genes for the top four clusters by number of DE genes (PP, RG, iDN, and DN). 
The 5 genes shared by all four clusters are highlighted in the table along their differential expression fold change 
for each cluster. 
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V. Transcripts regulated by Dex in Neurons are specifically enriched for genes implicated by GWAS for 
behavioral traits. 

To better gauge a potential impact of aberrant GR-activation during neurodevelopment on phenotypes 
later in life, we mapped transcripts differentially regulated by Dex in our model of the developing brain to genes 
implicated by over 700 genome-wide association studies (GWAS) in different quantitative traits and diseases 
recorded in the GWAS Catalog43 (Table S10). We tested enrichment of our DE gene lists from the three cell 
classes (cut-off q-value≤0.05) within genes significantly associated with GWAS traits using FUMA44. No significant 
enrichment emerged for genes DE in Neuroepithelial cells, while transcripts DE in Progenitors were enriched for 
genome-wide associated genes in 8 traits and Neuron DE transcripts for genes associated with 12 traits 
(enrichment q-value≤0.05; Table S10, Figure 5C). We classified GWAS phenotypes not related to brain function 
as ‘Other’, while brain function-related traits were labeled ‘Brain/Behavior’. The latter were over-represented in 
traits enriched for Neuron DE transcripts, making up 83% of the traits with significant enrichment for this cell 
class (Figure 5C right; Table S10). This distribution was significantly different from the full list of traits (n=40) 
with at least one gene overlap to Neurons DE genes (Chi-square 5.46, p-value=0.02; Figure 5C) used as 
background for this analysis. Traits classified as ‘Brain/Behavior’ included depression, neuroticism, chronotype 
and adventurousness, suggesting that GR activation in the developing brain can impact genes relevant for 
behavioral phenotypes and psychiatric disorders later in life. Such an effect was not found in Progenitors, where 
all significant traits fell in the ‘Other’ category (Figure 5C right; Table S10). 

Since prenatal GR exposure has been shown to increase risk for a number of psychiatric traits and 
disorders, we tested the enrichment of our DE gene lists among genes carrying common variants identified by 
the genome-wide meta-analysis of the Cross-Disorder Group of the Psychiatric Genomics Consortium, which 
included cases with 8 mental illnesses45 (gene list in Table S11). In this analysis, we found a significant 
enrichment only for DE genes in Neurons (q-value=0.0047 and OR=3.91; Table S11). To test whether the 
enrichment results could be reflective of cell-type-specific mean expression ranges in each cell class, rather than 
being linked to GR-activation we used a permutations-based approach, explained in Online Methods In this 
analysis gene sets comparable in size and mean expression distribution, but not significantly DE (cut-off q-
value≤0.05) following Dex treatment were tested. A significant enrichment of these gene sets was only observed 
in 4 of 1,000 iterations (corrected empirical p-value=0.015; Table S11). This indicates that the enrichment of DE 
genes among genes with genome-wide significant associations in the Cross-Disorders GWAS is specific to the GR-
responsiveness of the transcripts and not their expression level in Neurons. 
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Figure 5: Phenotypic interpretation of differential GR response. A. Differential gene expression by cell class. 
Scatter plots (log2 fold change) of all genes differentially expressed between treatment (Dex, x-axis) and control 
(Veh, y-axis) where the significant genes (q-value ≤ 0.05) are shown by blue dots dots (n of DE genes marked on 
graphs). B. Split violin plots of the 5 genes that are significantly differentially expressed with fold changes in 
opposite directions between Progenitors and Neurons. C. Enrichment analysis in GWAS traits.  Left, significant 
results from enrichment analysis of DE genes from Progenitors and Neurons versus all currently published traits 
with GWAS-significant results (q-value ≤ 0.05; Progenitors: n=8 significant traits; Neurons: n=12 significant 
traits). Right, comparison of significantly enriched traits classified as either ‘Brain/Behavior’ or ‘Other’ (% of 
total) in Progenitors or Neurons compared to the full traits lists with at least one gene overlap to Neurons (n=40) 
or Progenitors (n=272) DE genes. D. Enrichment analysis of neurodevelopmental disorders. Significant results 
from enrichment analysis of DE genes from Neuroepithelial cells, Progenitors and Neurons versus gene lists from 
the DisGeNET database for Intellectual Disability (ID), Autism Spectrum Disorders (ASD) and 
Neurodevelopmental Disorders (ND), as well as Height as a control. Dotted line represents the FDR-corrected 
significance threshold (q-value ≤ 0.05). 

 

VI. GR-activation in Neurons specifically regulates neurodevelopmental disease-related genes. 
Neurodevelopmental phenotypes are not well represented among the tested GWAS traits43. To 

understand the relationship between our GR-activation findings in organoids and neurodevelopmentally-
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relevant genes, we tested for enrichment among genes associated with neurodevelopmental disorders. Firstly, 
we used gene lists based on various biological evidence from the DisGeNET database46, associated with three 
phenotypes: Intellectual Disability (ID), Autism Spectrum Disorders (ASD) and Neurodevelopmental Disorders 
(ND), and Height as a non-brain-related control (gene lists in Table S12). Secondly, we selected genes carrying 
loss-of-function mutations associated with ID from the Developmental Brain Disorders Database (DBDD)47 (gene 
list in Table S13). We found a significant enrichment for ID and ASD genes in DE transcripts from Progenitors (ID: 
q-value=0.00057, OR=1.36; ASD: q-value=0.0165, OR=1.53; Figure 5D, Table S12). An even more pronounced 
result emerged for DE transcripts in Neurons, where we found a strong significant enrichment with all three 
neurodevelopmental phenotypes (ID: q-value=2.49x10-7, OR=2.25; ASD: 8.29x10-5, OR=2.96; ND: 2.37x10-6, 
OR=5.53; Figure 5D, Table S12). While size and expression-level-matched gene sets (see above) for Progenitors 
also showed significant enrichments, this was not true for Neuron gene sets. Here permuted enrichments for 
any of the three neurodevelopmental phenotypes never reached p-value≤ the nominal p-value, making this 
finding specific to the Dex-regulated genes in Neurons (empirical q-value=0.012; Table S12). 

When testing for enrichments within genes with ID-related loss-of-function mutations in DBDD47, we 
found a highly significant enrichment of DE transcripts in Neurons only (q-value=2.05x10-7; OR=5.60 Table S13), 
finding which proved to be driven by GR-activation, with 0 of 1,000 permuted iterations of the test gene list 
reaching p-value≤ the nominal p-value (Table S13). This enrichment was based on 17 DE transcripts mapping to 
ID-associated genes with loss-of-function mutations, including the NRXN1, TCF4, TBR1 and PAX6 genes where 
multiple pathogenic mutations have been linked to neurodevelopmental disorders. When breaking the analysis 
down by cell-type, this result was consistent and even more pronounced in the most mature cell cluster, the 
Dorsal Neurons (q-value=5.05x10-8, OR=25.57; permutation-based empirical q-value=0.004; Table S13).  

The fact that neuronal transcripts DE following GR-activation were significantly enriched among genes 
carrying common variants associated with behavioral phenotypes as well as rare variants associated with ID, 
suggests a possible convergence of environmental and genetic factors on the same neurodevelopmental 
pathways.  

 

 

Discussion 

In epidemiological and clinical studies, GR-activation by prenatal maternal stress or the administration of 
sGCs during critical periods of human brain development has been associated with several negative health 
outcomes including endocrine dysfunction, brain structural and functional alterations, and emotional, 
behavioral, cognitive or mental health problems14,48,49. In this manuscript, we explored whether iPSC-derived 
human brain organoids could contribute to a better mechanistic understanding of the detrimental effects of 
aberrant in utero GCs exposure. We found that in this system the GR was expressed and functional across all cell 
types, translocating to the nucleus with activation by the GR agonist Dex, and triggering a profound 
transcriptional response. Using single-cell RNA-sequencing (scRNAseq), we found that GR-activation 
transcriptional response was cell-type-specific, specifically pointing to interference with neuronal differentiation 
and maturation. Transcripts responsive to GR-activation in Neurons were significantly enriched for genes 
associated with behavioral traits in GWAS and implicated in neurodevelopmental disorders, including genes with 
loss-of-function mutations related to intellectual disability. This suggests a possible convergence of 
environmental (glucocorticoid exposure in utero) and genetic factors on the same cell-type-specific 
neurodevelopmental pathways. Thus, brain organoids open the possibility to interrogate human-specific genetic 
vulnerability to prenatal stress and glucocorticoid exposure.  
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Previous studies suggested that cerebral organoids recapitulate, to a degree, transcriptomic and 
epigenomic profiles of the developing human brain25,26,28,29, specifically matching the first and early second 
trimester. We confirmed that organoids match transcriptomic profiles of early fetal brains based on possibly the 
densest temporal characterization of this system thus far using bulk RNAseq. We found temporal gene 
expression patterns to be consistent with gradually maturing brain-like tissue. Importantly, both transcriptome 
analyses showed the developmental trajectory of our organoid model to be robust between biological replicates 
and across time in culture. scRNAseq revealed that organoids of different developmental ages consisted of the 
same brain-specific cell types, but with shifting relative distribution across maturation.  

After demonstrating the presence of GR and its molecular partners in our system, we showed that GR-
activation elicited a robust transcriptional response and nuclear translocation of the receptor. GR-expressing 
cells in a given cell class showed a significantly higher transcriptional response than comparable cells without 
detectable GR, supporting direct effects of GR-activation. Even though within a cell class GR-positive cells 
showed a stronger transcriptional response to GR-activation, the number of significantly regulated transcripts in 
a cell class was not directly correlated with the number of GR-positive cells, suggesting that GR-responsiveness is 
moderated by additional, cell-type-specific factors. These could include the distinct presence of GR-cofactors or 
specific epigenetic changes.   

We found the most profound and impactful GR-activation response in neurons, with decreased 
expression of neuronal-specific genes like NEUROD6, FOXG1, TBR1, MYT1L and NFIA, but an increase of 
progenitor-specific genes like PAX6, HES6, ENO2, CRABP1 and MGARP across several cell-types. This result could 
only be identified in a complex multi-cellular system like organoids, which contain progressively maturing cell-
types from early neuroepithelia to dorsal neurons. While it confirms some previous results from cell and animal 
models showing glucocorticoids’ involvement in neurogenesis by increasing proliferation while decreasing 
differentiation23,24,50, our study is the first to support that aberrant GR-activation could lead to neuronal 
maturation and differentiation delay in a complex human developing brain model.  

Finally, we also explored whether glucocorticoids-responsive transcripts would mediate 
neurodevelopmental, behavioral and psychiatric phenotypes. We found this to be true for both common and 
rare genetic disease associations. We found an enrichment of GWAS genes linked to behavioral phenotypes, 
including psychiatric disorders, specific to transcripts DE following GR-activation in Neurons. In addition, we 
observed a significant enrichment of GR-activated transcripts among genes related to neurodevelopmental 
disorders including ID and ASD, again uniquely in Neurons. The fact that enrichment results for both genes 
associated with adult-onset behavioral disorders and neurodevelopmental disorders were specific to  Neurons 
and not more immature cell-types suggests that alterations of in utero GR-activation could lead to negative 
mental health outcomes mainly via effects in more mature cell-types – specifically by delaying maturation given 
our finding that many genes relevant for this process were down-regulated by GR-activation.  

These results further highlight the interplay between environmental exposure like synthetic 
glucocorticoids or increased maternal cortisol and inherited genetic factors on nervous system development. 
Organoids as a model system allow exploration of the interaction between human-specific genetic variation and 
environmental exposures like prenatal maternal stress in a cerebral cell-type-specific manner. While this 
manuscript shows human cerebral organoids as suitable models for aspects of in utero glucocorticoid exposure, 
experiments in additional genetic backgrounds will be necessary for a more complete picture. Furthermore, 
future studies should explore effects of the endogenous ligand cortisol and other sGCs. In the absence of 
quantitative data from exposed fetal brain, it is currently not clear what concentration of sGC or endogenous 
maternal glucocorticoids reach the fetal brain in different circumstances, and this is certainly an important 
research area. 
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Our findings position cerebral organoids as important model systems to fulfill the research gap of how in 
utero environmental disturbances affect neurodevelopment leading to negative outcomes. Organoids also allow 
extending these investigations to genomics or cellular to functional investigations using electrophysiology. 
Finally, these systems allow the modeling of environmental exposure in the context of human-specific genetic 
variation. Organoids could thus contribute to improved intervention and prevention strategies for 
developmentally-determined neuropathology. 
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Methods 

I. iPSCs and Organoids 
Induced pluripotent stem cells were derived via reprogramming from NuFF3-RQ human newborn foreskin 
feeder fibroblasts (GSC-3404, GlobalStem)51. They were cultured on 6-well plates (Thermo Fisher) coated with 
1:30 Matrigel (Corning) in mTesR1 basic medium supplemented with 1x mTesR1 supplement (Stem Cell 
Technologies) at 37°C, with 5% CO2. Cerebral organoids (COs) were generated as previously described52, starting 
with 9,000 iPSCs dissociated into single cells using StemPro Accutase Cell Dissociation Reagent (Life 
Technologies) per each well in U-shaped low attachment 96-well tissue culture plates (Corning) in hES medium 
(DMEM/F12-GlutaMAX supplemented with 20% Knockout Serum Replacement, 3% FBS, 1% Non-essential amino 
acids, 0.1 mM 2-mercaptoethanol, 4 ng/ml bFGF and 50 µM Rock inhibitor Y27632) for 6 days in order to form 
embryoid bodies (EBs). On day 6, EBs were transferred into low attachment 24-well plates in Neural Induction 
(NIM) medium (DMEM/F12 GlutaMAX-supplemented with 1:100 N2 supplement, 1% Non-essential amino acids 
and 5 µg/ml Heparin) and cultured for an additional 6 days. On day 12 EBs were embedded in Matrigel (Corning, 
354234) drops and transferred to 10-cm tissue culture plates in Neural Differentiation medium (NDM) without 
Vitamin A medium (DMEM/F12GlutaMAX and Neurobasal in ratio 1:1 supplemented with 1:100 N2 supplement 
1:100 B27 without Vitamin A, 0.5% Non-essential amino acids, insulin 2.5 µg/ml, 1:100 Antibiotic-Antimycotic 
and 50 µM 2-mercaptoethanol) in order to form organoids. 4 days after Matrigel embedding, organoids were 
transferred into an orbital shaker and cultured in NDM with Vitamin A (DMEM/F12GlutaMAX and Neurobasal in 
ratio 1:1 supplemented with 1:100 N2 supplement 1:100 B27 with Vitamin A, 0.5% Non-essential amino acids, 
insulin 2.5 µg/ml, 1:100 Antibiotic-Antimycotic and 50 µM 2-mercaptoethanol). Organoids were grown in these 
conditions at 37°C with 5% CO2 until collection for RNA extractions, cryopreservation, or single-cell dissociation.   

II. Glucocorticoid stimulation 
Organoids of different ages depending on experiment, were treated with glucocorticoids (GCs) by dissolving 
Dexamethasone (Dex) to the appropriate concentration (10 nM, 100 nM, or 1000 nM) in DMSO and 
subsequently in the culture medium. For acute stimulation, 4 hours or 12 hours exposure time was employed. 
For chronic treatment, exposure lasted for 7 days with media changes every second day. All exposures were 
performed in triplicate experiments.  

III. Immunofluorescence 
Organoids were fixed using 4% paraformaldehyde for 45 minutes at 4oC, cryopreserved with 30% sucrose, fixed 
in optimal cutting temperature (OCT) compound (Thermo Fisher Scientific) and stored at -20oC prior to cutting 
16 um cryosections. For immunofluorescence, sections were post-fixed using 4% PFA for 10 mins and 
permeabilized with 0.3% Triton for 5 mins. Sections were subsequently blocked with 0.1% TWEEN, 10% Normal 
Goat Serum and 3% BSA. Primary and secondary antibodies were diluted in blocking solution, and fluorescent 
staining was visualized and analyzed using a Leica laser-scanning microscope.  For staining with PAX6 and SATB2 
the slides were put through antigen retrieval before fixing with paraformaldehyde. More specifically, the slides 
were incubated with citric buffer (0.01 M, pH 6.0) for 1 min at 720 Watt and 10 mins at 120 Watt, left to cool 
down at room temperature for 20 mins and washed once with PBS. 

Antigen Dilution Vendor Catalog # 
DAPI 1:1000 Sigma Aldrich D9542 
PAX6 1:500 Biozol BLD-901301 
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SOX2 1:500 Cell Signaling 2748 
HOPX 1:1000 Santa Cruz HPA030180 
CTIP2 1:500 Abcam ab18465 
SATB2 1:500 Abcam Ab51502 
TBR1 1:500 Abcam ab31940  
MAP2 1:500 Sigma Aldrich M4403 
TBR2 1:500 Abcam ab23345 
NESTIN 1:500 Santa Cruz sc23927 
GR (D8H2) 1:100 Cell Signaling 3660S 

 

IV. Bulk RNA sequencing 
Organoids (following 17, 23, 40, 70, 120, 140, or 158 days in culture) were collected for bulk RNA extractions 
using the RNeasy Mini extraction kit (74104, Qiagen) according to the manufacturer’s instructions. RNA quality 
and concentrations were measured on an Agilent 2100 Bioanalyzer (Agilent). Three replicates were analyzed per 
time point, every sample containing 1-3 pooled organoids. Sequencing libraries were prepared from a starting 
amount of 100ng total RNA using the NEBNext® Ultra™ DNA Library Prep Kit for Illumina (E7370L, New England 
Biolabs) using ribosomal depletion as a selection method, and sequenced paired-end on an Illumina HiSeq4000 
system at the Helmholtz Zentrum Core Facility (Munich, DE). 5 libraries were pooled per lane for a total 
coverage of on average 50 M reads/library. Raw reads were processed using FastQC53 and cutadapt54 and 
aligned using the STAR aligner55. The counts data were batch-corrected, normalized and analyzed and using the 
ImpulseDE2 framework56. For practical representation in the heatmap (Figure 1), all genes were normalized to 1.  
Individual genes were plotted using GraphPad Prism V6 using log2-transformed values and mean ± standard 
deviation. 

To confirm the developmental specificity of our cerebral organoid data, we integrated bulk gene expression data 
with several transcriptional data sets from human post-mortem brain tissue and other iPSC-derived models. We 
used a recently described approach to integrate these data57,58. In brief, a total of 15 independent studies were 
analyzed covering 2,716 independent samples and 11,572 genes. These studies span a broad collection of 
developmentally specific gene expression, covering expression related to iPSCs, iPSC-derived NPCs, iPSC-derived 
neurons, bulk prenatal brain tissue (early, mid and late fetal stages) as well as bulk postnatal brain tissue (early, 
mid and late stages). All expression values were converted to log2 RPKM and collectively normalized using 
quantile normalization from the limma R package59. These data, along with our bulk cerebral organoid 
expression data were jointly analyzed and integrated using principal component analysis (PCA). The first two 
principal components were used to depict developmental trajectories.  

V. Quantitative Real-time Polymerase Chain Reaction (qRT-PCR) 
Total RNA was extracted from organoids using the RNeasy Mini extraction kit (74104, Qiagen) according to the 
manufacturer’s instructions. Complementary DNA (cDNA) synthesis was performed using the Maxima H Minus 
Reverse Transcriptase (Thermo Fisher) along with oligo(dT)16 primers (Invitrogen) and random hexamers (IDT 
DNA) in a 1:1 ratio. Real-time PCR reactions were run in quadruplicate using PrimeTime qPCR Primer Assays (IDT 
DNA) and PrimeTime® Gene Expression Master Mix (IDT DNA) on an ABI PRISM 7900HT Sequence Detection 
System (Applied Biosystems) or a LightCycler 480 Instrument II (Roche). Relative gene expression levels were 
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quantified using the absolute quantification method, and using GAPDH, POLR2A and YWHAZ as endogenous 
genes. Statistical differences between groups were analyzed by Two-Way repeated measures ANOVA with 
Dunnet’s post-hoc multiple comparisons tests. Statistical significance was calculated, and graphs were plotted 
using GraphPad Prism 7. A p-value of ≤0.05 was considered statistically significant and marked as *, and ≤0.1 
was considered suggestive of a trend for significance and marked as # in graphs. 

Gene ID Gene name PrimeTime Assay 

SOX2 SRY (sex determining region Y)-box 2 Hs.PT.58.237897.g 

PAX6 Paired box protein Pax-6 Hs.PT.58.38519242 

MAP2 Microtubule-associated protein 2 Hs.PT.58.20103440 

TUBB3 Class III β-tubulin Hs.PT.58.20385221 

NR3C1 Glucocorticoid Receptor Hs.PT.58.27480377 

FKBP5 FKBP prolyl isomerase 5; FK506 binding protein 5 Hs.PT.58.20523859 

SGK1 Serum and glucocorticoid-regulated kinase 1 Hs.PT.58.19153459.gs 

TSC22D3 GILZ; glucocorticoid (GC)-induced leucine zipper Hs.PT.58.4331913 

ZBTB16 Zinc finger and BTB domain containing 16 Hs.PT.58.605743 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase Hs.PT.39a.22214836 

POLR2A RNA Polymerase II Subunit A Hs.PT.39a.19639531 

YWHAZ Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation 
Protein Zeta 

Hs.PT.39a.22214858 

 

VI. Single-cell RNA sequencing 

Data collection 
Whole organoids (after 30, 60, or 90 days in culture) were treated with Dex (100 µM) or Vehicle (DMSO) for 12 
hours until harvesting for single-cell preparation. All experiments were performed in quadruplicate at all three 
time points, with a paired design of a treatment (Dex) or control (Veh) condition per each experiment/iCell8 
chip, for a total of 12 chips. Single cells were dissociated using StemPro Accutase Cell Dissociation Reagent (Life 
Technologies), filtered through 30 uM and 20 uM filters (Miltenyi Biotec) and cleaned of debris using a Percoll 
(Sigma, P1644) gradient. Single cells were resuspended in ice-cold Phosphate-Buffered Saline (PBS) 
supplemented with 0.04% Bovine Serum Albumin and prepared for single-cell separation and labeling using the 
iCELL8 Single-Cell System (Wafergen, Takara Bio) according to the manufacturer’s recommendations. Briefly, 
cells were stained with Propidium Iodide (for live cells) and DAPI (for dead cells) on ice for 5-10 minutes and 
dispensed in the loading plate. Following microfluidic separation, iCell8 chips were imaged using the built-in 
fluorescence microscope and snap-frozen and stored at -80oC until library preparation. Based on fluorescence 
labeling, only wells containing live single cells were selected for library preparation, which was performed 
according to the manufacturer’s guidelines using the iCell8 Chip and Reagent Kit using in-chip RT-PCR 
amplification chemistry (Wafergen, Takara Bio) and Nextera XT DNA Library Preparation Kit and Nextera XT 
Index Kit (Illumina). Libraries were assessed using a High Sensitivity DNA Analysis Kit for the 2100 Bioanalyzer 
(Agilent) and KAPA Library Quantification kit for Illumina (KAPA Biosystems), and sequencing was performed 
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paired-end with 26nt/100nt configuration on an Illumina HiSeq4000 system at the Helmholtz Zentrum 
Sequencing Core Facility (Munich, DE). 

 

Data Analysis 

Pre-processing and quality control of single-cell RNAseq data 
Sequencing of the iCell8 single cell libraries was performed on an Illumina HiSeq4000 (Illumina, San Diego, CA), 1 
lane per chip, generating paired-end reads of 100 bp length. The initial quality check was performed using 
FastQC53 before demultiplexing the cells by their barcode with Je multiplexer version 1.0.660 requiring a perfect 
match of the sequence. Subsequent adaptor trimming was performed using cutadapt version 1.1161. For read 
alignment, the STAR module55 of the Cell Ranger 2.1.1 release with the corresponding reference index of 
GRCh38 version 1.2.0 was used, both provided by the 10X Genomics. Only uniquely aligned reads with a 
minimum overlap of 31 bp to the transcriptome were regarded for gene quantification with the featureCounts 
package version 1.6.462. 

We carried out all downstream analyses using the python-based Scanpy package35 
(https://github.com/theislab/scanpy) unless stated otherwise. We converted Ensemble Gene IDs to Gene 
Symbols using the R package BED63. To remove low quality cells, we filtered cells with a high fraction of reads 
from mitochondrial genes (20% or more - indicating stressed or dying cells), cells with <2,000 or > 600,000 total 
reads, as well as cells expressing < 600 genes. We also removed cells that were labelled as empty wells as part of 
the iCell8 library preparation procedure. In addition, we excluded genes with expression in < 20 cells. When 
analysing cells from one of the three time-points separately we removed all genes with expression in < 10 cells 
of the time-point in question. Unless stated otherwise, we carried out all following analyses with cells from all 
time-points combined as well as separately for each of the three time-points (day 30, 60 and 90). 

Normalisation and batch correction 
To approximate the effect of sequencing depth in the data, we used the computeSumFactors() function from the 
R package scran64. To remove this effect, we divided the reads of each cell by its associated size factor as 
computed by scran. We log-transformed the data and used the resulting expression matrix for computing 
marker genes as well as for differential expression analysis downstream. For the visualisation of gene expression 
levels of individual genes we removed technical variation introduced by handling of the different iCell8 chips 
using the Scanpy implementation of the combat package65. For improved interpretability of plots representing 
gene expression, we limited colour scales and axis limits to combat-corrected expression values between 0 and 
8. This ensures comparability between the visualisation of the expression values of different genes prevents 
outlier cells with extremely high expression values from dominating visualisations and also ensures that negative 
expression values produced by combat are not affecting visualisations.  

The small positive and negative expression values introduced by combat in places of zero gene 
expression are particularly problematic when relying on dot plots to visualise the expression of marker genes. 
While this behaviour is a natural result of the underlying regression approach combat uses to remove technical 
variation, this result is not compatible with a dot plot as a marker gene visualisation tool.  This is because the 
concept of a dot-plot relies heavily on the absence of expression of a gene in all but a few cells. In order to 
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ensure compatibility between combat-correction and dot plot visualisations of marker genes, we adjusted the 
expression matrix in the following way: (1) we computed the median expression of each gene after combat 
correction while excluding all values from the median calculation that were zero before combat correction; (2) 
we set all entries in the post-combat expression matrix to zero which were zero before combat correction and at 
the same time were below the previously computed median expression value of the respective gene. This way, 
we only allowed combat to activate the expression of genes if the combat-corrected expression value was above 
the median expression value of that gene. On the one hand this prevents combat to turn on expression of 
spurious genes by a small amount and on the other hand still allows for turning on gene expression if the batch 
effect dominates the expression of a particular gene. 

In order to obtain a meaningful low-dimensional embedding of the data, we carried out a separate 
normalisation and batch correction step starting again from the raw count data as before. We used a negative 
binomial generalised linear regression model with regularised over-dispersion parameter theta, as introduced 
in66, with the iCell8 chip ID as a batch covariate. To this end we used the R function norm.nb.reg( ) from the 
github repository associated with66 (https://github.com/ChristophH/in-lineage). We constructed the normalised 
expression matrix from the Pearson residuals of the regression model. 

Low dimensional embedding, visualisation and clustering 
We computed the single-cell neighbourhood graph on the 50 first principal components of the negative binomial 
residuals’ expression matrix using 15 nearest neighbours. We used Uniform Manifold Approximation and 
Projection (UMAP)67 for visualising the data in two dimensions. For clustering and cell type identification we 
used louvain-based clustering68 at varying resolution in different parts of the data manifold as implemented in 
louvain-igraph (https://github.com/vtraag/louvain-igraph) and adopted by Scanpy. We annotated cell types 
based on the expression of known marker genes. We merged clusters if only reflecting further heterogeneity 
within a cell type not discussed in this manuscript. For the exact steps of clustering and annotation and the 
parameters used consult the available code. In different figures varying resolutions of subtype clustering are 
shown in this manuscript. We identified characteristic gene signatures of each cluster by testing for differential 
expression of a single cluster against all other cells using a t-test with overestimated variance implemented in 
the sc.tl.rank_genes_groups() function of Scanpy. 

Differential Expression Testing 
We used the MAST69 package for all single-cell differential expression analyses. MAST uses a two-part linear 
(‘hurdle’) model to match the distribution of scRNA sequencing data. We tested differential expression between 
Dex and Vehicle samples in different subgroups of cells. Firstly, we tested the effect in each of the fine clusters 
individually. Secondly, we investigated the same effect, but instead considering the three coarser cell classes. To 
correct for the batch effect of iCell8 individual experiments/chips, we included the chip ID as a covariate in the 
MAST model. Additionally, we included the number of genes expressed in each cell as a further covariate. After 
fitting the model we used a likelihood ratio test to test for differential expression between conditions. As an 
output from MAST we obtained raw p-values, p-values corrected for multiple testing with the Benjamini-
Hochberg approach (false discovery rate) and log2 fold changes of gene expression between conditions. We 
used a false discovery rate of 0.05 as a significance threshold. 

Treatment response in NR3C1-positive vs. -negative cells 
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To investigate dependence of the Dex response on expression of the GR, we fitted the MAST model as described 
above for each of the three coarser cell classes and obtained log2foldchanges between cells that do or do not 
express the gene NR3C1 (GR). As a next step, we intersected the full gene list with genes previously identified to 
be differentially responsive to Dex in hippocampal progenitors24. We then used the Wilcoxon signed-ranks test 
to ask if there was a significant difference in the response between NR3C1-positive and -negative cells in each of 
the three cell-type groups. Results were deemed significant at a p-value ≤ 0.05. This analysis was done for cells 
from all three time-points combined and not for individual time-points. 

Enrichment analyses 
Enrichment analyses were carried out only on the differential expression results of cells from all three time-
points combined, not on DE results from individual time-points. 

a. FUMA 
Enrichment of differentially-expressed genes against genes carrying SNPs with Genome-Wide Association to a 
variety of traits was tested using the FUMA algorythm44 by inputting the various DE gene lists into the 
GENE2FUNC software. This analysis references the NHGRI-EBI GWAS Catalogue43 (https://www.ebi.ac.uk/gwas/) 
most recently updated on 27 May 2019 and containing 943 traits from different studies. We ran an enrichment 
analysis separately for the DE genes (FDR ≤ 0.05) in the Neuroepithelia (genes recognized by software: Input: 66; 
Background: 16,752), Progenitors (genes recognized by software: Input: 1163; Background: 16837) and Neurons 
(genes recognized by software: Input: 303; Background: 16,829) cells classes and limited the analysis to traits 
where 5 or more genes overlapped with the respective test gene sets (corrected p ≤ 0.05). There were no traits 
with overlapping genes for the Neuroepithelial cells DE genes, so we continued the analyses with the other two 
gene sets. We categorized all traits as ‘brain/behaviour’ or ‘other’ in the full list of traits for each cell class where 
at least one gene was shared. We assessed significant divergence from the ‘master’ trait list using a Chi square 
test, with significance set at p ≤ 0.05. 

b. Enrichment analyses for disease-associated genes 
To test for enrichment of selected gene-sets in the differentially expressed genes (FDR ≤ 0.05), we used a 
hypergeometric test as implemented in the package diffxpy (https://github.com/theislab/diffxpy/). We tested 
for enrichment of all Gene Ontology Biological Function sets (v6.2), obtained from the Molecular Signatures 
Database70,71. We furthermore tested for enrichment of genes sets associated to disease as follows. (1) Genes 
mapping to SNPs with genome-wide significance in the genome-wide meta-analysis of the Cross-Disorder Group 
of the Psychiatric Genomics Consortium, which included 8 mental illnesses45 (gene list in Table S11). (2) Gene 
sets from the DisGeNET database46, which includes curated lists of disease-associated genes not only from 
genetic associations, but also from gene expression analyses and pharmacological studies. Here we focused on 
three phenotypes: Intellectual Disability (ID), Autism Spectrum Disorders (ASD) and Neurodevelopmental 
Disorders (ND), and used Height as a non-brain-related phenotype (Gene list in Table S12. (3) Genes carrying 
loss-of-function mutations and associated with Intellectual Disability from the most recent Developmental Brain 
Disorders Database (DBDB: https://www.dbdb.urmc.rochester.edu/home; Updated March 2019)47 (gene list in 
Table S13). We carried out enrichment tests only for cells from all time-points combined and in the following 
subgroupings: each of the three coarse cell classes individually or each of the fine clusters individually. We 
applied Benjamini-Hochberg FDR correction on the cluster level (correcting for multiple testing within different 
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groups of cells) as well as on the enrichment list level for the number of compared gene lists when using more 
than one gene set at once as with sets obtained from the DisGeNET database. 

c. Permutation testing of enrichment results 
To ensure that enrichment analyses results were not simply reflective of high expression levels of marker genes 
in particular cell types or classes, we generated 1,000 permutations of equal-sized gene sets that also had the 
same mean expression distribution as the significant DE gene sets from each cell class (68 DE genes in 
Neuroepithelial cells, 1,237 DE genes in Progenitors and 322 genes in Neurons). The latter was achieved using 10 
equal-gene-number bins where the mean gene expression was matched by bin. We then repeated all previous 
enrichment analyses using each of the permuted genes sets and counted the number of times a p-value ≤ the 
nominal p-value was reached. We used this to compute empirical p-values and corrected for the number of 
comparisons (both number of cell types/classes with significant enrichment results to consider, as well as the 
number of gene lists tested) using Bonferroni correction. 

Software specifications 
We used Python v3.6.8 with Scanpy v1.4, anndata v0.6.18, h5py v2.9.0and diffxpy v0.6.3. Versions of packages 
required by Scanpy that might influence numerical results are indicated in the custom scripts. We used R version 
3.6.0 with packages scran v1.12.0, MAST v1.10.0 and BED v1.1.5 with database version with UCB-Human 
2019.04.23. We used matplotlib and seaborn to generate figures.  

Data and code 
Primary data and processed data are available upon request prior to publication and will be made publicly 
available upon publication. Code for all analyses is available in the attached file.  
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Supplementary Results and Figures 

 

Supplementary Results 

Temporal expression of cell-type markers in bulk RNAseq data 
     We showed consistent levels of early progenitor markers PAX6 and NESTIN (NES gene) throughout 

organoid development. Intermediate progenitor markers TBR2 (EOMES gene) and HOPX progressively increased 
in expression across organoid maturation with significant peaks at day 158, likely reflective of increased 
neuronal maturation (Figure S1A, Table S2). Complementarily, young neuronal marker MAP2 and mature 
neuronal markers TBR1 and CTIP2 (BCL11B gene) appeared later in organoid development but maintained 
constant levels as the organoids increased in age, from day 40 on with a significant peak at day 120 (Figure S1B, 
Table S2). This cell-type distribution is consistent with a gradual maturing of the three-dimensional brain-like 
structure centered on the functional unit of the ventricle, with progenitors populating the apical surface of the 
ventricular zone and migrating toward the basal surface of the cortical plate as they differentiate. At the protein 
level following IF staining, this trend is clear based on early progenitor markers PAX6 and NESTIN, intermediate 
progenitor markers TBR2 and HOPX, early neuronal marker MAP2 and late neuronal markers TBR1 and CTIP2 at 
both 40 days and 90 days of organoids culture (Figure S1C). 

Annotations of cell types based on marker genes in single-cell transcriptome data 
All 17 identified cell clusters fit within three cell classes based on well-established markers25,26,28,36,72-74 as 

follows (Figure 3B, Figure 3C inset table). Neuroepithelia (n=1027 cells total), representing the most immature 
cells, were characterized by expression of epithelial marker EPCAM (Figure S2) and tight junction protein OCLN. 
Importantly, these early cells do not yet express vimentin (VIM) at high levels, which appears during the 
mesenchymal-to-epithelial transition from neuroepithelia to radial glia. These symmetrically-dividing cells 
represent the precursors to all potential neuronal and progenitor cell types, and form the neural plate in vivo 
and neural tube during embryonic development. In our organoids, we see two neuroepithelial clusters, with the 
cycling neuroepithelia (cNE) being primarily made up of day 30 cells and distinctly expressing cell cycling markers 
LIN28A and ASPM, while the slightly older neuroepithelia (NE) cluster distinctly expressing a combination of 
early markers EDN1 (endothelial), CD68 (associated to microglia and other peripheral cells), TSTD1, CDH1, all of 
which have been shown by other groups to be associated with NE cells (Figure 3B; Figure S2).  

The second cell class represents the Progenitors (n=8823 total cells), defined by appearance of VIM72 (Figure 
3C-D; Figure S2), and consisting of 12 clusters including most notably the Mesenchymal cells (M) which express 
structural proteins like LUM and DCN and collagens like COL1A2; Glial Precursors (GP) which express 
oligodendrocyte precursor as well as astrocyte marker S100B and glial precursor transcription factor SOX10; 
Proliferative Precursors (PP) defined by expression of cycling markers TOP2A, MIK67, ASPM; Early Progenitors / 
Neuronal Precursors (EP) which express VIM, progenitor marker PAX6 as well as neuronal lineage markers NES, 
NCAM1; and Radial Glia (RG) expressing markers PAX6, SOX2, HES1, HES5, and CDH2 (Figure 3B; Figure S2). This 
is the most inclusive and heterogeneous class of cells, showing the potential of organoid-derived progenitor cells 
to differentiate into the majority of cell types present in the human brain. However, their abundance also 
highlights the early stage of development modeled in this system.  

The third cell class represents the Neurons (n=4152 total cells) and is defined by expression of neuronal 
marker STMN272 (Figure 3C-D; Figure S2). It includes the most immature and heterogeneous immature Neurons 
(iN) which express MAP2, DCX, some dorsal markers like NEUROD1 and NEUROD4 as well as ventral marker 
OTX2, but also some retinal markers like CRX and RCVRN. In spite of some ventral markers present, our 
organoids primarily seem to differentiate along a dorsal lineage, with the immature Dorsal Neurons (iDN) 
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expressing MAP2, DCX, and some dorsal-specific NEUROD6 and the most differentiated Dorsal Neurons (DN) 
expressing NEUROD6 abundantly, as well as glutamatergic receptor GRIA2 and synaptic protein SNAP25 (Figure 
3B; Figure S2).  

Effect sizes of GR-activation response at the single-cell level  
Overall, GR-activation effect sizes were moderate, consistent with the single-cell technique, with 

absolute fold-change rarely exceeding 2.0-fold, and a trend for larger FC in downregulated transcripts. Genes 
associated with neuronal maturity like NEUROD6, C1orf61, NFIA, and NFIB, were among the most strongly 
down-regulated in multiple clusters (Figure 4E inset table for FC). The DN cluster exhibited the largest FCs, but 
even this only had the top 6 ranked transcripts by p-value with absolute FC above 2.0 (Figure S5, Table S8). 
Interestingly, all these 6 transcripts were down-regulated by Dex, and included the neuron-specific genes 
mentioned above, pointing to a disruptive effect of GR-activation on neuronal differentiation and maturation.  

Gene Ontology analyses following differential expression in single-cell transcriptome data 
To understand cell-type-specific response patterns, we performed a gene ontology enrichment analysis 

in the DE gene lists for each of the three cell classes (Table S9). We focused on the Biological Process (BP) GO 
term class, as it was most relevant for the questions in this study. The trends identified reflected the fact that 
glucocorticoids in very early neurodevelopment cell types like the Neuroepithelia can impact early development-
relevant biological processes, with significant terms referring to embryonic placenta development and 
proliferation. In the maturing cells of the Progenitors group, terms like cell differentiation, head development, 
and neurogenesis were enriched, reflecting a neuronal specification and consequently the effect of 
glucocorticoids on these developmental processes. Finally, in the Neurons cell class, the differentially-expressed 
genes were additionally enriched for more specialized GO terms like forebrain development and neuron 
development, in line with a glucocorticoid impact on later stages of neuronal and brain maturation (Table S9). 

Cell-type specific glucocorticoid response in organoids is GR-dependent 
Since glucocorticoid-response has previously been established by our group and others in different 

tissue types like peripheral blood cells75 as well as more recently neuronal cell types like hippocampal 
progenitors24, we wanted to test the overlap of these previous findings with our results from GC-exposure in 
organoids. We tested whether the effects we observed following glucocorticoid exposure was dependent on 
expression of the glucocorticoid receptor (NR3C1 gene). We found that cells with sufficient mRNA levels of 
NR3C1 and thus positive for this gene’s expression in our data, tended to have significantly (p-value =0.01) 
higher absolute fold changes in all three cell classes (Neuroepithelia p-value <0.0001, Progenitors p-value = 0.01, 
Neurons p-value = 0.018) compared to NR3C1-negative cells after Dexamethasone treatment (Figure S4). This 
fold-change distribution was tested in a set of genes that was previously determined to be indicative of 
glucocorticoid-response in hippocampal progenitor cells following a similar acute stimulation paradigm24. This 
suggests that the Dex-response phenotype of individual cells is in part dependent on presence of the receptor.  
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Supplementary Figures 

 
Supplementary Figure 1: Organoids characterization by known progenitor and neuron markers in bulk 
RNAseq. A-B. At RNA expression levels in bulk RNAseq data at days 17-158 in culture. Both progenitor (blue, A) 
and neuronal (red, B) marker genes are chose. C. Using Immunofluorescence and confocal microscopy at protein 
expression levels at days 40 (top) or 90 (bottom) in culture. Progenitor markers: PAX6 (green), NESTIN (NES 
gene, red), TBR2 (EOMES gene, green), HOPX (green in day 40 and grey in day 90). Neuron markers: MAP2 (red 
in day 40 and green in day 90), TBR1 (green in day 40 and grey in day 90), CTIP2 (BCL11B gene, red). For all 
images in C-D, DAPI is used as nuclear marker (blue). 
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Supplementary Figure 2: UMAPs for cell-types or cell classes. LIN28A, OCLN, CD34, LUM, EDN1, S100B, TRPM1, 
MKI67, PAX6, DAPL1, NEUROD1, MAP2, GAP43, C1orf61, MROH8, GAL, SLN, EPCAM, VIM, STMN2 are referenced 
in dot plot in Figure 3B for cell-type characterization and in Figure 3D for cell class characterization. The last 
three plots represent the three cell classes defined in Figure 3D, as follows: Neuroepithelial cells = EPCAM, 
Progenitors = VIM, Neurons = STMN2. Detailed explanation in Supplementary Results.  
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Supplementary Figure 3: Cell type characterization by individual days. A-C. UMAP plot of cell-type clustering 
individually reported for day 30, 60, or 90. D-F. UMAP plot of NR3C1 gene (GR protein) expression individually 
reported for day 30, 60, or 90. G-I. Immunofluorescence image of GR protein staining in wild-type organoids at 
days 30, 60, or 90. Magnification is 25x, obtained with a confocal microscope (nuclei-DAPI = blue; DCX-neurons = 
green; GR = white). J. Violin plot of NR3C1 expression individually reported for day 30, 60, or 90 in all combined 
cells. Inset table: percent of total cells at each day expressing NR3C1 at detectable levels. K. Violin plots of 
NR3C1 expression individually reported for day 30, 60, or 90 in individual cell types of interest: left, 
Mesenchymal cells (M) clusters; right: Radial Glia (RG) cells clusters. 
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Supplementary Figure 4: Differential gene expression by cell class in GR-positive vs. GR-negative cells. 
Distribution and statistics shown in A. for Neuroepithelial cells; in B. for Progenitor cells; and in C. for Neurons. 

 
Supplementary Figure 5: Violin plots of the top 6 DE genes from Dorsal Neurons (DN) cluster analysis in all 
combined cells. These genes (NEUROD6, NFIA, C1orf61, AC004158.1, NFIB, LINC01551) resulted in the highest 
(negative) fold changes across all analyses.  

 

 
Supplementary Figure 6: Venn diagram of overlapping differentially-expressed genes for the cell class 
analyses. The q-value cut-off was 0.05 for DE gene lists, and cell classes are represented as follows:   
Neuroepithelial cells (blue), Progenitors (red), Neurons (green). 
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Supplementary Table Legends 

Supplementary Table 1: Bulk RNAseq counts matrix. Batch-corrected and normalized gene expression counts for 
each of 21 RNAseq libraries, following ImpulseDE2 analysis. Genes in Column 1 are presented as Ensembl IDs. 
Each library/sample name is presented as "DayX_replicate". 

Supplementary Table 2: ImpulseDE2 results depicting genes that peak (significantly different from the other 
days) at each organoid developmental time point. Genes' normalized expression levels are represented visually 
in Figure 2A via a heatmap. 

Supplementary Table 3: Quantitative PCR differential expression after dose-time experiment in bulk organoids 
at day 45 in culture. Treatment was done in the medium with Dexamethasone dissolved in DMSO (10nM, 
100nM, and 1000nM concentrations). The vehicle condition was DMSO. Triplicate biological experiments were 
used for the treatment, and the qPCR analyses were run in quadruplicate technical replicates. Analysis of qPCR 
data was done using the absolute quantification method.  

Supplementary Table 4: Cluster markers. 

Supplementary Table 5: Significant DE results for Day30 organoids, based on cluster classification (in 13 named 
cell-type clusters) and cell class (in 3 cells classes). 

Supplementary Table 6: Significant DE results for Day60 organoids, based on cluster classification (in 13 named 
cell-type clusters) and cell class (in 3 cells classes). 

Supplementary Table 7: Significant DE results for Day90 organoids, based on cluster classification (in 13 named 
cell-type clusters) and cell class (in 3 cells classes).  

Supplementary Table 8: Significant differentially-expressed genes from all-cells combined analysis, based on 
cluster (in 9 named cell-type clusters with significant results) and cell class (in 3 cells classes) classification. 

Supplementary Table 9: Gene ontology analysis in DE genes from three cell classes. Enrichment tested against 
Biological Process (BP) GO terms and multiple testing corrections performed using Benjamini-Hochberg 
correction against number of terms and number of test genes sets.  

Supplementary Table 10: FUMA GWAS enrichment results. GWAS-significant traits with 5 or more overlapping 
genes to the test gene set (DE after Dex in Progenitors of Neurons in organoids) were included in the enrichment 
analysis. Benjamini-Hochberg multiple testing correction was done for each test gene set against the number of 
traits included in analysis. 

Supplementary Table 11: Enrichment analyses of psychiatric disease-related gene sets associated genome-wide 
significant common variants from the genome-wide meta-analysis of the Cross-Disorder Group of the Psychiatric 
Genomics Consortium.  

Supplementary Table 12: Enrichment analyses of neurodevelopmental disease-related gene sets from the 
DisGeNET database. 
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Supplementary Table 13: Enrichment of Genes with Loss-of-Function mutation associated with Intellectual 
Disability from the Developmental Brain Disorders Database (DBDD) genes database (last updated Mar 2018). 
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