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scPower accelerates and optimizes the design of
multi-sample single cell transcriptomic studies
Katharina T. Schmid 1,2, Barbara Höllbacher 1,2, Cristiana Cruceanu3, Anika Böttcher 4,5,6,

Heiko Lickert 4,5,6, Elisabeth B. Binder 3,7, Fabian J. Theis 1,8 & Matthias Heinig 1,2✉

Single cell RNA-seq has revolutionized transcriptomics by providing cell type resolution for

differential gene expression and expression quantitative trait loci (eQTL) analyses. However,

efficient power analysis methods for single cell data and inter-individual comparisons are

lacking. Here, we present scPower; a statistical framework for the design and power analysis

of multi-sample single cell transcriptomic experiments. We modelled the relationship

between sample size, the number of cells per individual, sequencing depth, and the power of

detecting differentially expressed genes within cell types. We systematically evaluated these

optimal parameter combinations for several single cell profiling platforms, and generated

broad recommendations. In general, shallow sequencing of high numbers of cells leads to

higher overall power than deep sequencing of fewer cells. The model, including priors, is

implemented as an R package and is accessible as a web tool. scPower is a highly custo-

mizable tool that experimentalists can use to quickly compare a multitude of experimental

designs and optimize for a limited budget.
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Understanding the molecular basis of phenotypic variation,
such as disease susceptibility, is a key goal of con-
temporary biomedical research. To this end, researchers

use transcriptomic profiling to identify changes of gene expres-
sion levels (differentially expressed genes; DEGs) between sets of
samples, e.g., patients and healthy controls1–5. Combining this
with genetic information leads to the analysis of differential
expression between genotypes and the identification of expression
quantitative trait loci (eQTLs)6–9, supplying the molecular link
between genome and phenotype10.

Single cell RNA-sequencing (scRNA-seq)11–15 allows for dif-
ferential gene expression and eQTL analysis on the level of
individual cell types. Typically, single cell differential gene
expression analysis seeks to identify genes whose expression levels
are markedly different between different cell types16–18. In con-
trast, multi-sample experiments aim at the identification of DEGs
between sets of samples within the same cell type. These sets can
be defined by different experimental conditions or genotypes and
are each measured at the single cell level. Multi-sample experi-
ments have been identified as one of the grand challenges for
single cell data analysis19.

Power analysis is an important step in the design of statistically
powerful experiments given certain assumptions about the
expected effect sizes and constraints on the available resources.
Researchers need to decide on parameters such as the sample size,
the number of cells per sample and the number of reads. The
power is tightly linked with the statistical testing procedure.
Several methods have been established based on the theory of
linear regression models20 and the control of the false discovery
rate21–24 for microarray studies. For bulk RNA-seq studies, power
analysis methods based on the theory of negative binomial count
regression25,26, other parametric models27–29, or simulations30,31

have been proposed and benchmarked32.
In principle methods for bulk RNA-seq power analysis could

also be applied to compute power or minimally required sample
sizes for given effect sizes for single cell experiments, however
they fail to take into account specific characteristics of single cell
data. In scRNA-seq experiments, individual cells are typically not
sequenced to saturation, leading to sparse count matrices, where
only highly expressed genes are detected with counts greater than
zero. In addition, the overall number of transcripts as well as the
number of transcripts of individual genes can be highly cell type
specific33.

Recently, individual aspects of single-cell specific experimental
design were addressed (Supplementary Table S1). First, recom-
mendations of sequencing depth have been obtained by com-
paring sensitivity and accuracy of different technology
platforms34–36. Second, it has been established that the minimal
number of sequenced cells required to observe a rare cell type
with a certain frequency can be modelled with a negative bino-
mial distribution37,38 or multinomial distribution39.

While these insights also help with the design of multi-sample
experiments, there are additional parameters that need to be
taken into account such as the sample size and the effect sizes. For
single cell differential expression analyses, several simulation-
based methods have been published recently which estimate the
power dependent on the effect size between the groups40–43.
However, only one simulation tool also addresses multi-sample
comparisons with cells from different individuals in each group
and can thereby give recommendations for the sample size43.

Two benchmarking studies, one applying the aforementioned
simulation tool and one using different example data sets,
demonstrated that the “pseudobulk” approach in combination
with classical differential gene expression methods such as
edgeR44 and limma-voom45 outperforms single cell specific
methods and mixed models in multi sample DE analysis43,46. The

pseudobulk approach approximates cell type specific gene
expression levels for each individual as the sum of UMI counts
over all cells of the cell type and was also successfully applied in
different single cell eQTL studies47–49.

While simulations43 successfully assess the power of the
pseudobulk approach, they suffer from a number of short-
comings. A big disadvantage of simulation-based studies are their
long runtimes, which make them unsuitable to evaluate the large
number of experimental designs needed to optimize parameter
combinations. Even power analysis for a single experiment with a
large sample size can be very memory and runtime intensive. In
addition, handling more complex designs is not easily accom-
plished with simulation based methods, but could be achieved
with analytical power analysis methods.

A first analytic exploration of different experimental designs
for single cell eQTL studies showed the importance of the opti-
mizing parameters for a restricted budget50, as shallow sequen-
cing of more samples can increase the effective sample size.
However, the analysis provided no generalizable tool that can be
applied on other data sets and is missing an exact power esti-
mation based on effect size priors. Furthermore, it is not
applicable for DEG analysis.

Here, we provide a resource that enables choosing the opti-
mal experimental design for interindividual comparisons. It
focuses on the power to detect DEGs and eQTLs while also
addressing the power to detect rare cell types. Our model was
specifically developed for the pseudobulk approach, including a
quantification of the probability to detect cell type specific gene
expression in scRNA-seq data. We ensure an accurate power
estimation with our model by selecting appropriate priors for
the cell type specific expression distributions and for the effect
size distributions. We derive data driven priors on expression
distributions from single cell atlases of three different
tissues51,52. We combine these with cell type specific priors for
effect sizes based on DEGs and eQTL genes from bulk RNA-seq
experiments on cells sorted by fluorescence activated cell sort-
ing (FACS)53–57. Comparing our method against established
simulation-based approaches validates our power estimates. In
contrast to simulation-based methods, our analytic method can
efficiently test a multitude of design options, making it suitable
for the optimization of experimental parameters. Our model
provides the basis for rationally designing well powered
experiments, increasing the number of true biological findings
and reducing the number of false negatives.

Efficient calculation including a selection of different possible
priors is easily accessible for the user, as we provide our model
and parameters as an open source R package scPower on github
https://github.com/heiniglab/scPower. All code to reproduce the
figures of the paper is provided in the package vignette. The
repository includes a shiny app with a user-friendly graphical user
interface, which is additionally available as a web server at http://
scpower.helmholtz-muenchen.de/.

Results
Power analysis framework for scRNA-seq experimental design.
Our power analysis framework targets multi-sample tran-
scriptomic experiments analyzed with the pseudobulk approach.
Each analysis starts with a count matrix of genes times cells.
These counts can either be counts of unique molecular identifiers
(UMI), in the case of droplet-based technologies, or read counts
in the case of Smart-Seq. Cells are annotated to an individual and
a discrete cell type or state. These can be derived by clustering and
analysis of marker genes, potentially considering multiple levels
of resolution58 or using the metacell approach59. Individuals are
annotated with different experimental covariates, such as disease
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status. We focused on two group comparisons, but more complex
experimental designs, which can be analyzed with generalized
linear models, can also be accommodated (see package vignette).

To determine cell type specific differential expression between
samples, gene expression estimates for each sample and each cell
type are approximated as the sum of (UMI) counts over all cells
of the cell type47–49. This pseudobulk approach has been
identified as one of the currently best performing approaches
for multi sample DE analysis in recent benchmarking studies43,46.
It is important to keep in mind that the pseudobulk approach on
single cell data is distinct from traditional bulk RNA-seq. In
pseudobulk the ability to detect the expression of a gene depends
on the number of cells of the cell type and on the expression level
of the specific gene. Therefore, we model the general detection
power dependent on the number of cells per sample nc which is
related to the number of cells per cell type. Two additional
experimental parameters determine the power in our model and
also the cost of a scRNA-seq experiment in general: the number
of samples ns and the number of reads sequenced per cell r. In
order to compute the power of the experiment, we either need to
make explicit assumptions or use prior knowledge about
unknown experimental parameters, such as the assumed effect
sizes and gene expression levels of eQTLs and DEGs. This prior
knowledge is combined with user-defined parameters and cost
determining factors to model the overall detection power (Fig. 1).

In order to choose the optimal parameter combination of
sample size, cells per sample and read depth for an experimental
design, there are two types of power to consider. First, the power
to detect the cell type of interest and second, the power to detect
DE/eQTL genes within this cell type (i.e., overall detection
power).

The power to observe the cell type of interest depends on its
frequency, the number of cells sequenced per individual and the
total number of individuals. Following Abrams et al.37, we model
this problem using the negative binomial distribution (see
“Methods”). Using prior knowledge of cell proportions in periph-
eral blood mononuclear cells (PBMCs) from the literature, we
determine the number of cells required for each individual to
detect a minimal number of cells of a specific type (Supplemen-
tary Fig. S1). The comparison for varying numbers of individuals
shows that the number of cells required for each individual is

most strongly affected by the frequency of the cell type and only
to a smaller degree by the number of individuals.

The power to detect DE/eQTL genes within this cell type is
called overall detection power P. Our framework models P of an
experiment across all considered DEGs/eQTL genes D condi-
tional on the experimental design parameters and the priors. The
overall detection power is defined as the mean gene level
detection power Pi conditional on gene specific priors of gene i:

P ¼ 1
jDj ∑i2D Pi ð1Þ

In order to identify a gene as an DEG/eQTL gene, it must be
both expressed and exceeding the significance cutoff. Therefore,
we further decompose the gene level detection power Pi into the
expression probability Pði 2 EÞ, which quantifies the probability
to detect gene i in the set of expressed genes E, and the DE/eQTL
power, which we denote as the probability Pði 2 SÞ that gene i is
in the set of significant differentially expressed genes S. This
quantifies the power (probability to reject H0 when H1 is true) of
the statistical test for gene i and depends on the assumed effect
sizes Θp, which can be derived from prior data, and the multiple
testing adjusted significance threshold α. In addition, both the
expression probability and the DE/eQTL power depend on the
mean μ and dispersion ϕ of expression levels of gene i. In our
model μ and ϕ are determined by the experimental design
parameters ( nc; r) and the parameters of cell type specific
expression distributions Θe. Conditioning the gene level detection
power Pi on these priors and experimental design parameters,
allows for decomposing Pi as the product of the expression
probability and the DE/eQTL power:

Pi ¼ Pði 2 E ^ i 2 Sjns; nc; r;Θe;Θp; αÞ ¼
¼ Pði 2 Ejns; μðnc; r;ΘeÞ; ϕðnc; r;ΘeÞÞ�

Pði 2 Sjns; μðnc; r;ΘeÞ; ϕðnc; r;ΘeÞ;Θp; αÞ
ð2Þ

In the following sections the models for the gene level
expression probability and the DE/eQTL power are specified.

scPower accurately models the number of detectable genes per
cell type. In scRNA-seq experiments, typically only highly
expressed genes are detected with counts greater than zero34–36.

User defined parameters

Priors

ModelCost determining factors

Cell type 
detection probability

DE/eQTL 
power

Expression 
probability

Overall detection power 

# samples

# cells per sample

# reads per cell

Expression rank of gene 
1.
2.

Effect size

Easy customization

Efficient computation

Mean and dispersion 
per gene

Mapping efficiency

Significance threshold & 
Multiple testing method 

Multiplet fraction

Expression cutoff & 
Threshold criteria

Expression level 
distribution in cell type 

Frequency of target 
cell type

Group size ratio 
(for DE analysis) 

Library complexity

Fig. 1 Dependence of experimental design parameters. The cost determining factors (purple: number of samples, number of cells per sample and number
of reads per cell) affect the overall detection power through the expression probability and the DE/eQTL power (blue). In addition, the power depends on
prior knowledge or assumptions (green) as well as user-defined parameters such as the significance threshold and the expression cutoff (grey). Our model
enables fast power calculation, independent of the chosen experimental parameters, and easy adaptation to different use-cases through reference priors.
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This sparsity makes it difficult to assess gene expression levels and
probabilities of detecting expressed genes of future experiments.
We tackled this by modelling the cell type specific expression
distribution based on the number of reads sequenced per cell r,
the number of cells of the cell type per individual nc;s and the
number of individuals ns. Taken together with a user-defined
cutoff, this allows us to accurately predict the number of
detectable genes per cell type. In the following sections, we
explain how we parameterize the model by these three variables.

In order to model expression probabilities that are cell type-
specific, we need to take into account that the overall RNA
abundance and distribution varies between different cell
populations33. These cell type specific differences can be captured
in priors that describe the general expression distribution in the
target cell types. We illustrate our expression probability model
and the strength of expression priors on various blood cell types.
To this end, we fit the expression priors per cell type using a
scRNA-seq data set of PBMCs from 14 healthy individuals
measured with 10X Genomics (Supplementary Fig. S2, Table S2),
in the following called the training data set, and evaluate it on a
second independent PBMC data set47, the validation data set. Of
note, the pilot data should in general represent controls without
strong DE effects, that cover the natural inter-sample variability.

For the cell type specific expression prior, we approximate the
single cell count distribution in each cell type with a small
number of hyperparameters dependent on the read depth
(Fig. 2a). We model UMI counts per gene i in a particular cell
type c as independent and identically distributed according to a
negative binomial distribution with a mean μi;c and dispersion
parameter ϕi;c. The distribution of means μi;c across all genes is
further modeled as a mixture distribution with a zero component
and two left censored gamma distributions to cover highly
expressed genes (see “Methods” and Supplementary Fig. S3).
Subsampling the read depth of our data shows that the
parameters of the mixture distribution are linearly dependent
on the average UMI counts (Supplementary Fig. S4). The
dispersion parameter ϕi;c is modelled dependent on the mean
μi;c, using the approach of DEseq60. As the initial experimental
parameter for our model is the read depth and not directly the
UMI counts, average UMI counts are related to the average
number of reads mapped confidently to the transcriptome, which
are in turn related to the number of reads sequenced per cell
(Supplementary Fig. S5).

Taken together, we now have a model of per cell read counts
across all genes parameterized by the number of reads sequenced,
which was trained on cell type specific expression data. The set of
parameters describing the gamma mixture distribution dependent
on the UMI counts, the mean-dispersion curves and the read
depth-UMI curves is called expression prior in the following. It is
required for a correct modelling of the count distribution in
unseen data and so the expression probabilities. We provide
expression priors for 25 different cell types from 3 different
tissues in scPower and the user can easily generate their own
expression priors for missing cell types with our package.

We can now use these expression priors to quantify the
expression probability of all genes in a future experiment with
different experimental parameters. For this, we quantify the
expression distribution of a particular gene in a particular cell
type and individual based on its prior expression strength. This
prior is represented by the expression rank of the gene compared
to all other genes. We determine its mean expression level as the
quantile corresponding to this expression rank in the single cell
expression prior distribution. This quantity is dependent on the
read depth. Next, we derive the pseudobulk count distribution
from the single cell expression distributions. This pseudobulk

count distribution is again a negative binomial distribution. Its
mean and dispersion are scaled by the number of cells per
individual and cell type.

Whether a gene is expressed or not, can now be estimated
based on this gene specific pseudobulk distribution, combined
with a user defined threshold. In our default settings, the
threshold is composed of a minimum pseudobulk count (sum of
UMI counts per gene per cell type per individual) and a certain
fraction of individuals. Specifically, we compute the probability
that the observed counts are greater than the user defined
minimal count threshold in at least a given number of individuals.
Summing up these gene expression probabilities allows for
modelling the expected number of expressed genes (see
“Methods” section for detailed formulas). On top of our default
threshold criteria, our package offers the user alternative options
for expression thresholds, e.g., that a gene is called expressed if it
has a count > 0 in a certain percentage of cells.

Subsampling of our data shows that the number of expressed
genes per cell type depends on the number of cells of the cell type
and the read depth (Fig. 2b, c). The observed numbers of
expressed genes (solid lines) are closely matched by the
expectation under our model (dashed lines), shown here with
example cutoffs of counts greater than ten and zero. We show the
results for one batch of the PBMC data set (Fig. 2b), while the fits
of all batches can be found in Supplementary Figs. S6 and S7.
Predicted and observed numbers of expressed genes were highly
correlated (all r2 > 0.9, Supplementary Table S3).

To validate our model, we applied it on a second PBMC data
set47 that was not used during parameter estimation for the
expression priors (Fig. 2c). This validation data set was measured
at a smaller read depth of 25,000 reads per cell and for a different
sample size (batch A and B with 4 individuals and batch C with 8
individuals). The observed numbers are closely matched by the
expectation under our model (all r2 > 0.9), which demonstrates
that it can generalize well between data sets and different
experimental parameters. Taken together, we now have a general
model for the expected number of expressed genes, which is
parameterized by the number of cells per cell type and the number
of reads per cell. Of note, gene expression distributions are cell
type specific and the model parameters have to be fitted from
suitable (pilot) experiments, such as the human cell atlas project61.

scPower models the power to detect differentially expressed
genes and expression quantitative trait genes. Building on our
expression probability model, we can assess the DE/eQTL power
of the expressed genes using existing analytical power analysis
tools that have been established for bulk sequencing data. They
estimate the power to detect an effect of a given effect size
depending on the sample size, the gene mean expression level and
the chosen significance threshold. Analytic power analysis com-
pares the distributions of the test statistic under the null and the
alternative model (e.g., applying a certain effect size). Based on
the significance threshold the critical value of the test statistic is
determined from the null distribution. Then the power is given by
the probability mass of the distribution under the alternative
model that exceeds the critical value.

An adjustment of the significance threshold is necessary due to
the large number of parallel tests performed in a DEG analysis in
order to avoid large numbers of false positive results. We provide
two methods in our framework for that, either controlling the
family-wise error rate (FWER) using the Bonferroni method62 or
the false discovery rate (FDR)22. In the following analyses, we
used the FDR adjustment for DE power and FWER adjustment
for eQTL power, as proposed by the GTEx Consortium63 for a
genome-wide cis eQTL analysis.
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Specifically, the power analysis methods we apply for DE and
eQTL studies are based on negative binomial regressions64 and
linear regressions20, respectively. This also leads to different effect
size specifications; fold changes in the DE case and R-squared
values in the eQTL case. Of note, the R-squared values combine
allele frequency and beta value in the linear model.

For DE analysis, power calculations are based on negative
binomial regression, which is a powerful approach used in tools
such as DESeq5,60 or edgeR44 for DEG analysis of both RNA-seq
and scRNA-seq18,65–67. Benchmarking studies showed that these
tools combined with the pseudobulk approach outperform other
methods in multi-sample differential expression analysis43,46. We

verified that all our training data sets could be modelled by
negative binomial distributions after pseudobulk transformation
and found no evidence of zero inflation (Supplementary Table S4).
In contrast to the other technologies, the Smart-seq2 data showed
zero-inflation on the single cell level (see also68,69), but
aggregation to pseudobulk removed the excess of zero values.
Hence, it is valid to apply analytical methods for the power
analysis of negative binomial regression models64. To obtain a
range of typical effect sizes and mean expression distributions in
specific immune cell types, we analyzed several DEG studies
based on FACS sorted bulk RNA-seq53,54 (Supplementary Figs. S8
and S9). Combined with our gene expression model, we can
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Fig. 2 Expression probability model parameterized by UMI counts per cell. a The expression probabilities for genes in pseudobulk of a newly planned
experiment are estimated based on the expression prior and the planned experimental parameters. For this, the expression prior is derived from the mean
and dispersion parameters of gene-wise negative binomial distributions fitted from a matching pilot data set. b Using this approach, the number of
expressed genes expected under our model (dashed line) closely matches the observed number of expressed genes (solid line) dependent on the number
of cells per cell type (cell type indicated by point symbol) for one batch of the training PBMC data set (Supplementary Table S2). The data is subsampled to
different read depths (indicated by colour). The r2 values between estimated and expressed genes were highly significant for both expression thresholds. c
The model performed similarly well for the three batches of an independent validation PBMC data set47. Used expression threshold: count > 10 (right
panels of b, c) or count > 0 (left panels of b, c) in more than 50% of the individuals.
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Fig. 3 Expression probability, DE/eQTL power and overall detection power and their validation in simulation studies. Power estimation using data
driven priors for DE genes (a) and eQTL genes (b) dependent on the total sample size and the number of measured cells per cell type. The detection power
is the product of the expression probability and the power to detect the genes as DE or eQTL genes, respectively. The fold change for DEGs and the R2 for
eQTL genes were taken from published studies, together with the expression rank of the genes. For (a), the Blueprint CLL study with comparison iCLL vs
mCLL was used, for (b), the Blueprint T cell study. The expression profile and expression probabilities in a single cell experiment with a specific number of
samples and measured cells was estimated using our expression prior, setting the definition for expressed to > 10 counts in more than 50% of the
individuals. Multiple testing correction was performed by using FDR adjusted p values for DE power and FWER adjusted p values for eQTL power. The
probabilities calculated in (a) were verified by the simulation-based methods powsimR and muscat with each point representing one parameter
combination. f The eQTL power of (b) could be replicated with a self-implemented simulation. Runtime (g) and memory requirements (h) were drastically
higher in the simulations than for our tool scPower during the evaluations of (c–e), showing the strength of our analytic model.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26779-7

6 NATURE COMMUNICATIONS |         (2021) 12:6625 | https://doi.org/10.1038/s41467-021-26779-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


calculate the overall detection power of DE genes averaging over
the gene specific expression probability times the power to detect
the gene as a DE gene based on fold changes from prior DEG
studies. In the following analyses, we assume a balanced number
of samples for both groups, but scPower can also evaluate
unbalanced comparisons, which lead to a decrease in power.

Using fold changes from a study comparing CLL subtypes iCLL
vs mCLL53 as effect size priors (sample size of 6, 84 DEGs with
median absolute log fold change of 2.8) we find a maximum
overall detection power of 74% (Fig. 3a). This power is reached
with the experimental parameters of 3000 cells per cell type and
individual, a total balanced sample size of 20, i.e., 10 individuals
per group, and FDR adjusted p values. For this parameter
combination and prior, the DE power would reach even 98% for
all DE genes of the study, however, only 74% are likely to be
expressed. Overall, the DE power increases with higher number of
measured cells and higher sample sizes, while the expression
probability is mainly influenced by the number of measured cells.

The influence of the sample size is not so pronounced in this
example due to the small sample size of the reference study.
Potential weaker effect sizes that would be identified with larger
sample sizes could not be considered in the priors, which leads to
a low required sample size for the power estimation. For other
reference studies the impact of a higher sample size on the power
is more visible (Supplementary Fig. S10). Similar detection ranges
are found for the comparison of other CLL subtypes in the same
study, while the detection power in a study of systemic sclerosis vs
control were much lower with values up to 30% (Supplementary
Fig. S10). Smaller absolute fold changes in this study decrease the
DE power and therefore also the overall detection power. The
effect of using the FWER adjustment also for the DE power can
be seen in Supplementary Fig. S11.

For eQTL analysis, power calculations are based on linear
models20. Due to the very large number of statistical tests
(~millions), simple linear models are usually applied to trans-
formed read count data45,70, as they can be computed very
efficiently. For large mean values, the power is estimated
analytically, for small mean values, this approximation can be
imprecise and instead simulations are used that take the discrete
nature of scRNA-seq into account. This introduces a dependency
between the eQTL power and the expression mean and thus eQTL
power is considered conditional on the mean. The mean threshold
below which simulations are used, was defined by comparison of
simulated and analytic power (Supplementary Fig. S12).

Overall detection power for eQTL genes (Fig. 3b) shows a
stronger effect of the sample size, which increases the eQTL
power. In the depicted use case, the applied priors originate from
an eQTL study of T cells from the Blueprint consortium57, which
had a sample size of 192 and identified 5,132 eQTL genes with a
median absolute beta value for the strongest associated SNP of
0.89. Increasing the number of cells per individual increases both
the expression probability and the eQTL power by shifting the
expression mean of the pseudo bulk counts to higher values.
Notably, increasing the number of measured cells per individual
and increasing the sample size both result in higher costs. A
maximal detection power of 64% was found for a sample size of
200 individuals and 3,000 measured cells per cell type and
individual. The Blueprint eQTL data set also contains eQTLs
from monocytes where we observe the same trend and found a
maximal detection power of 65% (Supplementary Fig. S11).

scPower estimations are supported by simulations. The accu-
racy of scPower was evaluated by benchmarking against different
simulation-based methods (Fig. 3c–f). In general, simulation-
based methods generate and analyze example count matrices.

Therefore, they are always approximations and need to be repe-
ated multiple times for accurate results, while we transformatively
enable the design of experiments with our analytic model that
requires order of magnitude less runtime and memory (Fig. 3g-h).

For single cell DE experiments, we compared our model with
powsimR40 and muscat43, which both show well matching power
estimations compared to our tool scPower. powsimR is a widely
used simulation-based method that is however not designed for
multi-sample single cell comparison, i.e., it is only possible to
make comparisons of groups of single cell measurements within
the same sample but not between multiple samples. Adaptations
of powsimR were necessary to make it comparable to scPower
(see “Methods” for a detailed description of changes). In contrast,
muscat is a recent method that already incorporates the
pseudobulk approach for multi-sample comparison and can be
used directly. Both simulation methods can be combined with
different DE analysis methods for the downstream analysis of the
simulated counts. We evaluated them in combination with
different common DE methods, such as DESeq25, edgeR44 and
limma45.

The simulation based power estimates from the adapted
version of powsimR as well as from muscat matched the estimates
from scPower very well (Fig. 3c–e). We compared the expected
number of expressed genes, the DE power of these expressed
genes and the overall power for all simulated genes. Running
simulations with different DE methods showed that the observed
power also depends on analysis choices such as the DE method
with scPower estimates being most accurate when using edgeR
(Supplementary Fig. S13). Furthermore, powsimR and muscat
differ slightly, caused by different modelling assumptions. The
overall trends when comparing different experimental designs are
in good agreement between scPower and all analysis methods
applied to the simulated reads. This is true for both FWER
adjustment and FDR adjustment as multiple testing correction. A
comparison over a wide range of experimental design parameters
between edgeR applied to simulated data from powsimR and
scPower confirms the agreement of power estimates (Fig. 3c–e
and Supplementary Fig. S14).

Furthermore, we used the simulation-based methods to
evaluate how well our power analysis method performs for
different real-life conditions, such as batch effects or unbalanced
cell type proportions between the groups. Simulating batch effects
showed a clear drop in power, especially if the magnitude of the
batch effect is larger than the effect size of DEGs (Supplementary
Fig. S15). However, under the assumptions of an unconfounded
experimental design with batches containing both controls and
cases, batch effects can be removed by adding a batch covariate to
the regression model71. This increases the power compared to
non-batch corrected analyses72–74. Following this strategy, we
could recover the same power as in experiments without batch
effects, i.e., our power estimations stay accurate in experiments
with batch effects, given that they are adjusted for in the analysis.

A second source that can lead to a reduction of power are
different cell type proportions in both groups (Supplementary
Fig. S16). In this case, a conservative power estimation can be
achieved by setting the expected cell type frequency to the
frequency of the smaller group. This represents a good lower
bound estimation, especially in cases with small sample sizes.

Contrary to DE analysis, there currently exists no power
estimation method for single cell eQTL that explicitly accounts
for specific effect size priors. Therefore, we compared the
analytical eQTL power with our own simulation method, which
is also used for power estimation of genes with small mean values.
The simulation method applies our underlying expression
probability model of scPower for assigning a mean value to each
gene. This part of the model is the same for eQTL and DE power
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and was already shown to be accurate compared to powsimR and
muscat. Therefore, we focus on benchmarking the eQTL power,
which showed good agreement between the simulated and
analytic values (Fig. 3f).

The analytic calculations of scPower are orders of magnitude
faster than the simulation-based approaches: calculations for
Fig. 3c–e took 8 days for powsimR, 3 days for muscat and less
than a minute for scPower (Fig. 3g). Also the memory
requirements are much lower, as no count matrices are generated.
For the simulation-based methods the memory requirements
increase with larger sample size and numbers of cells, leading for
example for 20 samples and 3000 cells per sample to 48GB used
memory for powsimR and 35GB used memory for muscat
compared to the parameter-independent requirements of
scPower of few MB (Fig. 3h). In addition the installation of
scPower is easier due to less dependencies: 11 dependencies of
scPower vs. 82 dependencies of powsimR and 28 dependencies of
muscat. These advantages of scPower over simulation based
approaches enable a systematic evaluation of a large number of
design options as described in the next section.

scPower maximizes detection power for a fixed budget by
optimizing experimental parameters. With this model for power
estimation in DE and eQTL single cell studies in place, we are
now able to optimize the experimental design for a fixed budget.
The overall cost function for a 10X Genomics experiment is the
sum of the library preparation cost and the sequencing cost (see
“Methods”). The library preparation cost is defined by the
number of measured samples and the number of measured cells
per sample, while the sequencing cost is defined by the number of
sequenced reads, which also depends on the target read depth
per cell.

We evaluated exemplarily the three parameters maximizing
detection power, given a fixed total budget (Fig. 4). In this
scenario, the optimal parameter combinations are identified for a
DE study with a budget of 10,000€ (Fig. 4a) and for an eQTL
study with a budget of 30,000€ (Fig. 4b). Besides the budget, the
user can choose a criterion and threshold to define whether a
gene is expressed. We followed the recommendation of edgeR75

that the expression cutoff should correspond to the percentage of
samples in the smaller group. For our DE example, this results in
a percentage threshold of 50% due to the balanced DE design. For
the eQTL example, we consider an eQTL with a minor allele
frequency of 0.05, which is a common lower threshold for genetic
variants tested for associations. We suggest that the gene should
be at least expressed in the heterozygotes and thus pick a
percentage threshold of 9.5% (see “Methods”).

We use our method to calculate the overall detection power for
different parameter combinations of cells per individual and read
depth, while the sample size is defined uniquely given the other
parameters and the fixed experimental budget. For the DE study
with this specific prior combination, the optimal parameters are
measuring 1200 cells in 4 samples with a read depth of 30,000.
Measuring more cells per individual increases the expression
probability and so the overall detection power (Fig. 4c), but due to
the fixed budget this goes hand in hand with measuring less
samples which decreases the DE power. A similar trend exists for
the read depth (Fig. 4d).

For the eQTL study with this specific prior combination, the
optimal parameters are measuring 1500 cells in 242 samples with
a read depth of 10,000. Again a balance of the eQTL power, which
depends mostly on the sample size, and the expression
probability, which depends mostly on the cells per sample and
the read depth, is visible (Fig. 4e–f). A user-specific version of this

analysis with custom budget and priors can be generated using
our webtool http://scpower.helmholtz-muenchen.de.

We can expand our analyses with expression priors from our
10X PBMC data set and find the optimal parameter combinations
depending on a given experimental budget (Fig. 5). We system-
atically investigated the evolution of optimal parameters for
increasing budgets in four prototypic scenarios for DEG (Fig. 5a)
and eQTL analysis (Fig. 5b), four scenarios based on prior DEG
(Fig. 5c) and two scenarios on prior eQTL (Fig. 5d) experiments
on FACS sorted cells (for the estimated costs see Supplementary
Table S5). The prototypic scenarios reflect combinations of effect
sizes (high, low) and expression ranks (high, low) of DEGs and
eQTL genes. We observed that the number of cells per individual
is the major determinant of power, as this is the variable that is
either directly set to maximum values or increased first in the
optimization (Fig. 5). This effect is least pronounced in the
prototypic eQTL scenario (Fig. 5b), where small effect sizes
require large sample sizes. For most DEG scenarios, the number
of reads per cell is increased before increasing the sample size
(Fig. 5a,c), indicating that strong effects can be detected with
relatively few samples, while the detection of expression requires
deeper sequencing. For eQTL scenarios, increasing the sample
size first is more beneficial than increasing the read depth
(Fig. 5b,d), which remains relatively low (10,000 reads per cell).

Figure 5 was generated with FDR adjusted p values for DE
power and FWER adjusted p values for eQTL power. Using
FWER adjustment for DE power changes the observed overall
power, but leads to very similar optimal parameter combinations
and the same trends overall (Supplementary Fig. S17).

In the cost optimization, we also took into account that
increasing the number of cells per lane leads to higher numbers of
doublets, i.e., droplets with two instead of one cell. Doublet
detection methods such as Demuxlet47 and Scrublet76 enable
faithful detection of those to exclude the doublets from the
downstream analysis. We validated the doublet detection and
donor identification of Demuxlet using our PBMC data set by
comparing the expression of sex specific genes with the sex of the
assigned donor (Supplementary Fig. S2b) and found high
concordance after doublet removal, also for run 5, which was
overloaded with 25,000 cells.

The increase of the doublet rate through overloading was
modeled using experimental data77 to accurately estimate the
number of usable cells for the eQTL/DEG analysis. However, we
observe in our own data set as well as in published studies47,78

slightly higher doublet rates than shown in77. Therefore, we
consider the modeled doublet rate as a lower bound estimation.
With a high detection rate of doublets, overloading of lanes is highly
beneficial, since larger numbers of cells per individual lead to an
increase in detection power, while not causing additional library
preparation costs. This supports previous evaluations that demon-
strated the benefit of overloading50. Even though overloading leads
to a decreasing number of usable cells and a decreasing read depth
of the singlets, as doublets contain more reads, the overall detection
power still rises strongly for both DE and eQTL studies.

scPower generalizes across tissues and scRNAseq technologies.
Our power analysis framework is applicable to data sets for other
tissues besides PBMC and to other single cell technologies besides
10X Genomics. We demonstrate this with a lung cell data set
measured by Drop-seq52 and a pancreas data set measured by
Smart-seq251.

Drop-seq is a droplet-based technology similar to 10X
Genomics, which is why we only need minor adjustments to
our model. We set doublet rates as a constant factor, since Drop-
seq does not provide information on the effect of overloading and
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from there, the DE/eQTL power calculations are the same as for
10X Genomics.

Smart-seq2 is a plate-based technology, generating read counts
from full-length transcripts. To correct for the resulting gene-
length bias, we express the count threshold for an expressed gene
relative to one kilobase of the transcript. We fitted the expression
model including the transcript length in the size normalization
factor of the count model. In addition, as the technology is sorting
individual cells into wells and does not suffer from variable
doublet rates due to overloading, we modelled the doublet rate as
a constant factor.

With these adaptations, our expression probability model
(Supplementary Fig. S18) for both Drop-seq and Smart-seq2
performs as well as for 10X Genomics with r2= 0.995 and
r2= 0.991, respectively (Supplementary Table S3). Furthermore,
the power calculations are in good agreement with simulation
based estimates (Supplementary Fig. S19).

The adapted expression probability models combined with
platform-specific sequencing costs, either default (Supplementary
Table S5) or user-defined, serve as input to budget optimization.
Analogous to (Fig. 5), we evaluated the evolution of parameters
for simulated priors and observed priors in Drop-seq and Smart-

Fig. 4 Parameter optimization for constant budget. Maximizing detection power by selecting the best combination of cells per individual and read depth
for a DE study with a budget of 10,000€ (a) and an eQTL study with a budget of 30,000€ (b). Sample size is uniquely defined given the other two
parameters due to the budget restriction and visualized using the point size. c–f Overall detection power dependent on cost determining factors. Influence
of the cells per individual given the optimized read depth (c, e) and of the read depth given the optimized number of cells per individual (d, f). Corresponds
to the DE study in (a), visualized in (a) by the red frame around the row with the optimal number of cells (corresponding to (c)) and the red frame around
the column with the optimal read depth (corresponding to (d)). Same frames for (e, f) in the eQTL study (b). The optimal sample size values are shown in
the upper x axes for (c–f). Vertical line in the subplots marks the optimal parameter combination. Effect sizes were chosen as in Fig. 3. Gene expression is
defined as detected in >50% (DE analysis) or >9.5% (eQTL analysis) of individuals.
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seq2 (Supplementary Fig. S20). For the Smart-seq2 pancreas
study, the overall observed power is lower. In contrast to 10X
Genomics and Drop-seq, the optimal number of reads per cell is
much higher and the number of cells per individual and sample
size is only increased at higher budgets for both the prototypic
and data driven priors. In general, we observe that Smart-seq2
experiments are not less powerful per se, but the significantly
higher cost in the multi-sample setting leads to less powerful
designs when restricting the budget. This allows only to measure
much fewer cells, even though a higher number of samples and
cells would be beneficial. For the Drop-seq lung data we observe

similar trends as for the 10X PBMC data set, with the number of
cells per individual being the major determinant of power.

Discussion
We have introduced scPower, a method for experimental design
and power analysis for interindividual differential gene expression
and eQTL analysis with cell type resolution. Our model gen-
eralizes across different tissues and scRNAseq technologies and
provides the means to easily design experiments that maximize
the number of biological discoveries.

Fig. 5 Optimal parameters for varying budgets and 10X Genomics data. The maximal reachable detection power (column 1) and the corresponding
optimal parameter combinations (columns 2–4) change depending on the given experimental budget (x-axis). The coloured lines indicate different effect
sizes and gene expression rank distributions. Different simulated effect sizes and rank distributions for DEG studies (a) and eQTL studies (b) with models
fitted on 10X PBMC data. highES= high effect sizes, lowES= low effect sizes, highRank= high expression ranks and unifRank= uniformly distributed
expression ranks (always relative to effect sizes observed in published studies). Effect sizes and rank distributions observed in cell type sorted bulk RNA-
seq DEG studies (c) and eQTL studies (d) with model fits analogously to (a, b). Expression thresholds were chosen as for Fig. 4.
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Previous experimental design methods for multi-sample
scRNA-seq43 are based on simulations. These simulations allow
for assessing complex single cell multi-sample data, including
scenarios of cell to cell heterogeneities other than differential gene
expression. However, analytical models, such as our framework,
are by orders of magnitude faster than comparable simulation-
based tools. This transformatively enables the evaluation of many
experimental design options in a short time and thus to identify
optimal experimental parameters for a limited budget. In addi-
tion, analytical models require only a small amount of memory
independent of the assessed experimental parameters, while
simulation of data sets with larger sample sizes lead to increasing
memory usage. A sample size of 20 with 3000 cells per sample
required already between 35 GB (muscat) and 48GB (powsimR)
in our evaluation. Therefore, larger data sets with hundreds of
samples, as required for eQTL studies, will be very difficult to
simulate.

A first analytic investigation of power optimization in single
cell eQTL studies50 has been done, but suffered from several
limitations. First, it was based solely on the effective sample size,
ignoring actual effect sizes and expression strength of eQTL
genes. Second, it provided no generalizable tool. Third, it is
limited to eQTL analysis and does not cover DE studies. In
contrast, our approach provides gene level and overall power
estimates based on prior data and we provide a generalizable tool
for analytic power analysis of single cell DE and eQTL studies.
This enables the user the evaluation of his target experiment in
order to identify the use-case specific optimal parameter combi-
nation. The method is implemented in an R package with a user-
friendly graphical user interface and is freely available on github.
In addition, the graphical interface of our model is also available
over this website http://scpower.helmholtz-muenchen.de/.

We identify the optimal experimental parameters based on
expression priors from single cell atlases of three different tissues
and cell type specific effect size priors from bulk DEGs and
eQTLs. We show that the number of cells is not only crucial for
the power to detect rare cell types37,38 but also for the power to
find DE/eQTL genes by increasing the sensitivity of gene
expression detection. In line with Mandric et al.50, our analyses
suggest that aggregating shallowly sequenced transcriptomes of a
large number of cells of the same cell type is a more cost efficient
way than increasing read depth to increase the sensitivity for
individual level gene expression analysis. Most likely, multiple
independent library preparations in individual cells lead to an
improved sampling of the transcriptome as compared to fewer
independent libraries sequenced more deeply, an effect that has
previously been analyzed in the context of variant detection79.

Specifically, we found the optimal read depths to be ~10,000 in
most evaluations, which is relatively low compared to previous
recommendations34–36,80,81. However, in a systematic analysis of
spike-in expression it has been shown that the accuracy of the
measurements is not strongly dependent on the sequencing depth
and consistently high for a read depth of 10,000 reads per cell35.
Hence, we expect to accurately quantify the gene expression levels
with the optimized experimental design.

On top of the DE/eQTL power, the number of cells and
sequencing depth also determine accurate cell type annotation82.
Shallow sequencing of more cells has been recommended for
extracting the gene expression programs required for annotations,
because it has achieved equal accuracy as deeper sequencing of
fewer cells50,82. These recommendations match our optimal
determined parameters. To ensure sufficient power for cell type
annotation, our framework scPower can be combined with spe-
cific power analysis tools for cell type annotation38,82.

The optimal sample size is mostly dependent on the effect size,
with low effect sizes requiring large sample sizes and

consequently optimal setting with high sample size typically lead
to low sequencing depth and relatively low number of cells.

In general, priors affect the optimal design and should there-
fore be selected carefully. In the optimal case, priors are known
from well matched pilot experiments or knowledge from the
literature. Of note, our data driven priors only allow for reliably
assessing the overall power in sample sizes that are smaller or
roughly equal to the sample size of the pilot data sets from which
the effect sizes were estimated. Consequently, a larger sample size
will identify new significant DEGs with lower effect sizes, which
were not identified in the smaller pilot study and thus not
included in the computation of the overall detection power.

In the absence of well-matched pilot experiments, it is never-
theless important to make assumptions explicit by either selecting
a prior based on a similar biological phenomenon or by choosing
a prototypic case. In our study, we have compared the prototypic
cases of strong effect sizes and relatively high expression versus
intermediate effect sizes and expression levels across the whole
range from highly expressed to lowly expressed genes. Both
options, processing priors from a selected reference study and
simulating proteotypic priors, are possible with scPower and
described in the package vignette.

The pseudobulk approach presented here leverages well
established power analysis methods based on (generalized) linear
models. While the (negative binomial) regression model for
pseudobulk is currently the most powerful method for assessing
individual level differential expression43, it requires a discrete cell
type definition and our approach is tightly linked to it. Therefore,
continuous cell annotations such as pseudo time would need to be
discretized before the power analysis.

Our model requires the user to choose between our defaults
and custom settings for parameters such as doublet rate and
expression threshold. The default for the doublet rate is based on
reference values from 10X Genomics and is a lower bound
compared to the doublet rates we estimate for our own data and
to rates reported by other studies47,78. Thus, actual experiments
might result in higher doublet rates and lower number of usable
cells. The choice of a threshold on the number of reads required
for a gene to be called expressed also influences the choice of
optimal parameters. In our examples we used a threshold of >10
and >3 reads, however, some eQTL analyses of bulk RNAseq data
advocate using >0 reads70.

Following the independent filtering strategy of DESeq25,83, we
additionally offer users to find the threshold optimizing the
number of discoveries at a given FDR (see package vignette). The
identified optimal thresholds are low and increase the number of
detectable genes. However, the user needs to be aware that this
strategy is likely increasing the number of false positives18. For
this reason, best practice guidelines for differential gene expres-
sion with RNA-seq recommend cutoffs that remove between 19
and 33% of lowly expressed genes, depending on the analysis
pipeline84. These percentages correspond to 1–10 reads per mil-
lion sequenced, which translates to 1–5 UMI counts for a median
of around 5000 UMI counts per cell in our data set. Our gene
expression probability model is cell type specific and has to be
fitted based on realistic pilot data. We have shown that our model
can be applied to data generated with 10X Genomics, Drop-seq
and Smart-seq2 and we are confident that it is applicable to
similar technology platforms.

When using our approach, the user should keep in mind that
our experimental design recommendations are optimized for
differential expression between individuals. Other applications
might result in very different optimal experimental designs. For
instance, co-expression analysis requires a high number of
quantified genes per cell, especially when one is interested in cell
type specific co-expression and comparison of such co-expression
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relations between individuals. Furthermore, the power to anno-
tate new rare cell types by clustering analysis of scRNA-seq data
might have different optimal parameters38. Lastly, we did not
address the power for the detection of variance QTLs (quantita-
tive trait loci associated with gene expression variance across
cells) from scRNAseq data48 due to the lack of data driven priors
for the effect sizes.

The human cell atlas project has made it its goal to build a
reference map of healthy human cells by iteratively sampling the
cells with increasing resolution61,85. This will create high quality
priors that will further broaden the applicability of scPower. We
are convinced that scPower will provide the foundation for
building rational experimental design of interindividual gene
expression comparisons with cell type resolution across a wide
range of organ systems.

Methods
Collection of PBMCs. Blood was collected from healthy control individuals
according to the clinical trial protocol of the Biological Classification of Mental
Disorders study (BeCOME; ClinicalTrials.gov TRN: NCT03984084) at the Max
Planck Institute of Psychiatry86. All individuals gave informed consent. Peripheral
blood mononuclear cells (PBMCs) were isolated and cryopreserved in RPMI 1640
medium (Sigma-Aldrich) supplemented with 10% Dimethyl Sulfoxide at a con-
centration of roughly 1M cells per ml.

Ethics approval, consent to participate and consent for publication. All
investigations have been carried out in accordance with the Declaration of Helsinki,
including written informed consent of all participants. Study conduct complies with
the recommendations by the ethics committee of the Ludwig-Maximilian Uni-
versity, Munich. Applicable national and EU law, in particular the General Data
Protection Regulation (GDPR) (Regulation (EU) 2016/679) has been followed.

Permission for using the data has been obtained from the Biobank of Max
Planck Institute of Psychiatry. Consent for secondary use of the existing data has
been obtained. In compliance with the consent for secondary use, the data
generated in this project will be stored and can be used for future research. All data
has been pseudonymized. Written informed consent of all participants allows for
publication of data in online repositories.

Single cell RNA-sequencing. For single-cell experiments, 14 cell vials from dif-
ferent individuals (7 male and 7 female) were snap-thawed in a 37 °C water bath
and serially diluted in RPMI 1640 medium (Sigma-Aldrich) supplemented with
10% Foetal Bovine Serum (Sigma-Aldrich) medium. Cells were counted and equal
cell numbers per individual were pooled in two pools of 7 individuals each. Cell
pools were concentrated and resuspended in PBS supplemented with 0.04 % bovine
serum albumin, and loaded separately or as a combined pool with cells of all 14
individuals on the Chromium microfluidic system (10X Genomics) aiming for
8000 or 25,000 cells per run. Single cell libraries were generated using the Chro-
mium Single Cell 3′library and gel bead kit v2 (PN #120237) from 10X Genomics.
The cells were sequenced with a targeted depth of ~50,000 reads per cell on the
HiSeq4000 (Illumina) with 150 bp paired-end sequencing of read2 (exact numbers
for each run in Supplementary Table S2).

Preprocessing of the single cell RNA-seq data. We mapped the single cell RNA-
seq reads to the hg19 reference genome using CellRanger version 2.0.0 and 2.1.187.
Demuxlet version 1.0 was used to identify doublets and to assign cells to the correct
donors47. In addition, Scrublet version 0.1 was run with a doublet threshold of 0.28
to identify also doublets from cells which originate from the same donor88.
Afterwards, the derived gene count matrices from CellRanger were loaded into
Scanpy version 1.489. Cells identified as doublets or ambivalent by Demuxlet and
Scrublet were removed, as well as cells with less than 200 genes or more than 2,500
genes and with more than 10% counts from mitochondrial genes.

Verification of Demuxlet assignment using sex-specific errors. We validated
the donor assignment and doublet detection of Demuxlet by testing if assigned cells
express sex-specific genes correctly. Xist expression was taken as evidence for a
female cell, expression of genes on the Y chromosome as evidence for a male cell.

The male-specific error shows the fraction of cells assigned to a male donor
among all cells expressing Xist (count > 0). The threshold for the female-specific
error was set less strictly, as mismapping of a few reads to the chromosome Y
occurs also in female cells. Instead, the female-specific error indicates which
fraction of cells is assigned to a female donor among all cells having more reads
mapped to chromosome Y than the qf quantile of all cells, with qf being the overall
fraction of cells assigned to a female donor among all cells. TPM mapped to

chromosome Y is calculated by counting all reads mapped to chromosome Y,
excluding reads mapped to the pseudoautosomal regions, times 106 divided by the
total number of read counts per cell.

Both error rates are calculated twice, once with all cells and once without
doublets from Demuxlet and Scrublet.

Cell type identification. We performed the cell type identification according to the
Scanpy PBMC tutorial90. Genes which occurred in less than 3 cells were removed.
Counts were normalized per cell and logarithmized. Afterwards the highly variable
genes were identified, the effect of counts and mitochondrial percentage regressed
out. We calculated a nearest neighbour graph between the cells, taking the first 40
PCs, and then clustered the cells with a Louvain clustering91. Cell types were
assigned to the clusters using marker genes (Supplementary Table S6).

Frequency of the rarest cell type. The probability to detect at least nc;s cells of a
specific cell type c in each individual s depends on the frequency of the cell type f c,
the number of cells per individual nc and the number of individuals ns . For one
individual, the minimal number of cells can be modeled using a cumulative
negative binomial distribution37 as FNBðnc � nc;s; nc;s; f cÞ and for all individuals as
FNBðnc � nc;s; nc;s; f cÞns .

The cell type frequencies were obtained by literature research, the frequencies in
PBMC are approximately twice as high as in whole blood92. All other parameters
can be freely chosen (dependent on the expected study design).

Influence of read depths. We used subsampling to estimate the dependence of
gene expression probabilities on read depths. The fastq files of all 6 runs were
subsampled using fastq-sample from fastq-tools version 0.893. The number of reads
was downsampled to 75%, 50% and 25% of the original number of reads. Cell-
Ranger was used to generate count matrices from the subsampled reads. Donor,
doublet and cell type annotation were always taken from the full runs with all reads.

Expression probability model. The gene expression distribution of each cell type
was modeled separately because there are deviations in RNA content between
different cell types33. The UMI counts x per gene across the cells of a cell type are
modeled by a negative binomial distribution. We used DESeq60 to perform the
library size normalization as well as the estimation of the negative binomial
parameters. The standard library size normalization of DEseq and the variant
“poscounts” of DESeq25 were both used, depending on the quality of the fit for the
specific data set. For the PBMC 10X data set (Supplementary Table S2), the
standard normalization was taken, for the Drop-seq lung and the Smart-seq2
pancreas datasets the poscount normalization, which is more suitable for sparse
data. Only cell types with at least 50 cells were analyzed to get a robust estimation
of the parameters. Negative binomial distributions were fitted separately for each
batch to avoid overdispersion by batch effects and the fits combined downstream
(see paragraph about gamma mixture distribution).

The negative binomial distribution is defined by the probability of success p
and the number of successes r:

f NBðx; r; pÞ ¼ NBðx; r; pÞ ¼ x þ r � 1
x

� �
� ð1� pÞr � px ð3Þ

DESeq uses a parametrization based on mean μ ¼ p � r
1� p and dispersion

parameter ϕ ¼ 1
r.

We formulated the definition of an expressed gene in a flexible way so that users
can adapt the thresholds. The definition is based on the pseudobulk approach
where the counts xi;j are summed up per gene i for all cells j part of cell type c and
donor s to a three dimensional matrix yi;c;s ¼ ∑

j2C^j2S
xi;j with C the set of all cells

part of cell type c and S the set of all cells part of donor s.
In general, a gene i is called expressed in a cell type c if the sum of counts yi;c;s

over all cells of the cell type within an individual s is greater than n in more than k
percent of the individuals.

We assume a negative binomial distribution (f NBðxi;j; μi;c; ϕi;cÞ) for the counts xi;j
of each gene i in each cell type c with μi;c and ϕi;c. The sum of gene counts yi;c;s follows
a negative binomial distribution where the parameters are altered by the number of
cells per cell type and donor nc;s ¼ jfj 2 C ^ j 2 Sgj to μ0i;c;s ¼ nc;s � μi;c and
ϕ0i;c;s ¼ ϕi;c

nc;s
. The probability that the sum of counts y is greater than n is

pi;s ¼ Pðyi;c;s>nÞ ¼ 1� FNBðn; μ0i;c;s; ϕ0i;c;s0 Þ ð4Þ

with FNB as the cumulative negative binomial distribution.
To define a gene as expressed, we require that it can be found in a certain

fraction of more than k percent in all ns individuals. The expression probability of a
gene i is obtained from a cumulative binomial distribution FBin as

Pði 2 EÞ ¼ 1� FBinðk � ns; ns; pi;sÞ ð5Þ
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So in total, the expected value of the number of expressed genes ðEÞ can be defined
as

EðEÞ ¼ ∑
gene i

Pði 2 EÞ ð6Þ
To generalize the expression probability model also for unseen data sets, the

distribution of the mean values μi;c over all genes in a cell type c is modelled as a
mixture distribution with three components, a zero component ZðxÞ and two left-
censored gamma distributions Γðx; r; sÞ

f μt ðxÞ ¼ p1ZðxÞ þ p2Γðx; r1; s1Þ þ p3Γðx; r2; s2Þ ð7Þ
The model is an adaptation of the distribution used in the single cell simulation

tool Splatter94. The largest part of the mean values can be fitted with one gamma
distribution, a small fraction with high expressed gene outlier with the second
gamma distribution. The genes with zero mean values originate from two sources.
Either, the gene is not expressed or the expression level is too low to be captured in
the setting. The lower bound for the expression level at which both Gamma
distributions are censored depends on the number of cells j measured for this cell
type nc ¼ jfj 2 Cgj. The smallest expression level to be captured is 1

nc
.

The density of the gamma distribution is parametrized by rate r and shape s:

Γðx; r; sÞ ¼ sr xr�1 e�sx

ðr � 1Þ! ð8Þ

For modeling of the gamma parameters, also the parameterization by mean
μ ¼ s

r and standard deviation σ ¼ ffiffiffiffi
s
r2

p
is used.

The relationship between the mean UMI counts per cell and the gamma
parameters (mean and standard deviation of the two gamma distributions) is linear
and β values are estimated by linear regression, fitted over the gamma distribution
for each run and all subsampled runs. The mixture proportion of the zero
component p1 is linearly decreasing with the mean UMI counts, also estimated by
linear regression. The lower bound of p1 is set to a small positive number: 0.01. In
contrast, the mixture proportion of the second gamma component p3 is modelled
as a constant, independent of the mean UMI counts. We set it to the median value
of all fits per cell type. The mixture proportion of the first gamma component is
p2 ¼ 1� p1 � p2 and is linearly increasing with increasing mean UMI counts.

The number of transcriptome mapped reads is linearly related to the logarithm
of the mean UMI counts per cell, with an increasing read depth leading to a
saturation of UMIs. 10X Genomics describes this also with the sequence saturation
parameter. The exact logarithmic saturation curve depends on multiple biological
and technical factors, therefore, it needs to be fitted for each experiment
individually. However, scPower provides example fits from the different scenarios
observed in our analysis.

The dispersion parameter is estimated dependent on the mean value using the
dispersion function fitted by DESeq. The parameters of the mean-dispersion curve
showed no correlation with the mean UMI counts, therefore the mean of the
parameters of the dispersion function across all runs and subsampled runs were
taken, resulting in one mean-dispersion function per cell type.

Expression cutoffs and threshold criteria. The selection of expression cutoffs
both on the individual level and the population level depends on the users and their
research question, balancing the increase in power by more lenient cutoffs and the
potential higher false positive rates associated with it. We applied different UMI
count cutoffs for the individual level to prove the flexibility of our tool.

For the population level, we followed in most of our analyses the
recommendation of edgeR75 that the expression cutoff should correspond to the
percentage of samples in the smaller group. In the DE case, this results in a cutoff
of 50% as we focus on studies with balanced design. In the eQTL case, the
definition of groups depends on the genotype and is therefore not directly chosen
by the user. We decided to select the cutoff based on the minor allele frequency f A ,
so that at least in heterozygotes the gene should be expressed. The fraction of
heterozygotes f AB is thereby calculated dependent on the minor allele frequency as:

f AB ¼ 2 � f A � ð1� f AÞ ð9Þ
For example, assuming a minor allele frequency of at least 0.05 would result in a
population cutoff of 0.095.

Furthermore, our R package provides alternative threshold criteria. On the
population level, instead of a percentage threshold for the number of individuals,
an absolute threshold can be chosen. On the individual level, instead of an absolute
count threshold in the pseudobulk, a gene can be defined as expressed if it is
expressed in a certain number of cells with count larger than 0. Both alternative
criteria are based on the same model as explained above in the previous section.

If the users want to choose a threshold that maximizes the power, our package
provides an optimization function for that.

Power analysis for differential expression. The power to detect differential
expression, also denoted as the probability Pði 2 SÞ that gene i is in the set of
significant differentially expressed genes S, is calculated analytically for the negative
binomial model64. An implementation of the method can be found in the R
package MKmisc. Parameters are sample size, fold change, significance threshold,
the mean of the control group, the dispersion parameter (assuming the same

dispersion for both groups) and the sample size ratio between both groups. We
focus in our analyses on balanced comparisons with the same number of samples
in both groups, represented by a sample size ratio of 1. Zhu et al. implemented
three different methods to estimate the dispersion parameter, we chose method 3
for the power calculation, which was shown to be more accurate in simulation
studies in the paper. More complex experimental designs can be addressed using
the method of95.

Power analysis for expression quantitative trait loci. Additionally to the DE
analyses, the use of scRNA-seq for the detection of expression quantitative trait loci
(eQTLs) was evaluated. We distinguish for the eQTL power between genes with
high and with low expression levels, where the mean is used to parameterize a
simulation. Therefore, the eQTL power is a function of the mean expression level.

For genes with high expression level, the power to detect an eQTL is calculated
analytically using an F-test and depends on the sample size ns, the coefficient of
determination R2 of the locus and the chosen significance threshold α. R2 is
calculated for the pilot studies from the regression parameter β, its standard error
seðβÞ and the sample size N of the pilot study:

t ¼ β

seðβÞ ð10Þ

R2 ¼ t2

N � 2þ t2
ð11Þ

The implementation pwr.f2.test of the R package pwr is used for the F-test20.
The degrees of freedom of the numerator are 1 and of the denominator are ns � 2,
the effect size is R2

1�R2.
This power calculation assumes that the residuals are i.i.d. normally distributed.

For large count values, it has been shown that normalized log transformed counts
have a constant variance independent of the mean value and can be analyzed with
linear models45. However, for genes with small mean values, i.e., only very few
non-zero counts, this normalization might not be effective and the power is
overestimated by the analytical power calculation based on the F-test. We
performed a simulation study to assess the effect of the mean values on the
eQTL power.

To account for the discrete nature of the counts we adopted a simulation
scheme similar to a negative binomial regression model and analyzed the log
transformed counts using linear models45. As for the analytical power calculation,
the effect size is given by the coefficient of determination R2 of the locus. To
determine the simulation based power for sample size ns, significance threshold α
and mean count μc of the allele with lower expression, the following steps are
repeated B = 100 times:

1. Simulate genotypes. To also account for the discrete nature of the genotypes,
we first draw allele frequency f a from a uniform distribution between 0.1 and
0.9. A random genotype vector g with gi 2 f0; 1; 2g of length ns is generated
with the expected number of each genotype ðf a2; 2f að1� f aÞ; ð1� f aÞ2Þ
according to Hardy Weinberg equilibrium.

2. Simulate read counts. Using the allele frequency, the beta value β and the
standard deviation of the residuals σ̂ is calculated:

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2

2 � f a � ð1� f aÞ

s
ð12Þ

σ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

p
ð13Þ

The associated gene expression count vector x is sampled from a negative
binomial distribution parameterized for each genotype gi with mean μi ¼ elogðμc Þþ β�gi
and dispersion ϕi . In the following, we work with log transformed counts (plus one
pseudo count). To match with the effect size R2, the dispersion parameter ϕi is
chosen, such that the variance of the log transformed counts is σ̂. Since the Taylor
approximation of the dispersion parameter45 was not accurate enough, we used
instead a numerical optimization. This numerical optimization is precalculated for a
range of parameter combinations to speed up calculation for the user.

Using the linear regression logðxi þ 1Þ � gi , the p value Pi for Ho : β ¼ 0 is
determined.

Finally, the simulation based power is estimated as ∑
B

i¼1
Pi < α

The power of the simulation was compared with the analytic power calculated
by scPower to assess at which value of the mean μc the analytic power starts to
overestimate the simulation based empirical power (see Supplementary Fig. S12)
for Bonferroni adjusted significance thresholds used in eQTL analyses. We choose
a cut-off of mean count < 5 and estimate the power for genes with smaller mean
values based on simulation instead of the F-test to increase accuracy for small
count values.

Overall detection power. The overall detection power for DEGs/eQTLs is the
product of the expression probability and power to detect DEGs/eQTLs, as both
probabilities are conditionally independent given the expression mean of the gene.
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Expression probabilities were determined based on the gene expression rank in the
observed (pilot) data. The number of considered genes G was set to 21,000, the
number of genes used for fitting of the curves. Ranks i were transformed to the
quantiles i

G of the gamma mixture model parameterized by the mean UMI counts
to obtain the mean μc of the negative binomial model, which is in turn used to
compute the expression probability.

To quantify the overall power of an experimental setup, we compute the
expected fraction of detected DEG/eQTL genes with prior expression levels and
effect sizes derived from the pilot data. We obtain gene expression ranks of DEGs/
eQTLs and their corresponding fold changes to compute overall detection power
for each gene. The overall power of the experimental setup is then the average
detection power over all prior DEG/eQTL genes.

DE/eQTL power is computed using a significance threshold α corrected for
multiple testing, controlling either the family-wise error rate (FWER) or the false
discovery rate (FDR). We used FDR adjustment for the DE power and followed the
approach of the GTEx consortium63 based on FWER adjustment for the eQTL
power. However, our framework allows for any combination of power analysis and
multiple testing method. For all analyses shown, adjusted α was set to 0.05.

The family-wise error rate is defined as the probability of at least one false
positive among all tests. Each expressed gene is tested once in the DE analysis,
therefore, the adjustment for the family-wise error rate is done by correcting the
threshold to α

ðEÞ for ðEÞ expected expressed genes. For eQTLs we followed the
approach of the GTEX consortium63, which assumes that for each gene on average
10 independent (uncorrelated) SNPs are tested in a genome-wide cis eQTL
analysis. Thus, the adjusted p value threshold is set at 0:05

ðEÞ � 10.
In our tool, the number of independent SNPs can be flexibly chosen, for

example if the user wants to perform a cis and trans eQTL analysis, he can define a
higher number of independent SNPs.

Alternatively, for DE analysis the significance threshold can be adjusted for the
false discovery rate using the method of Jung22. In contrast to the Bonferroni
correction, which depends only on the number of tests, the FDR correction
depends on the p value distribution of all genes. As our analytic method outputs
the power without computing the p values, we can not apply the FDR correction
directly and use the method of Jung.

The goal of the approach is to identify the raw p value α’ corresponding to
chosen FDR corrected threshold α ¼ FDRðα0Þ.

The FDR is the fraction of false positives among all rejected null hypotheses
(predicted positives), which includes both the false positives and the true positives.
Based on the probability integral transform, the distribution of p values for the mo
true null hypotheses is uniform. Therefore, we expect mo � α’ false positives at a
raw p value significance threshold of α’. Here mo= ðEÞ � ðEDEG=eQTLÞ is the number
of expected expressed genes without the expected expressed DEGs/eQTLs.

The expected number of true positives is directly derived from the power we
reach for α’. Summing up the gene-wise power (at α’) yields the expected number
of significant DEGs/eQTLs r1ðα’Þ.

Using numerical optimization of the complete formula

FDRðα0Þ ¼ m0 � α0
m0 � α0 þ r1ðα0Þ

ð14Þ

with respect to the unknown parameter α0 we identify the raw p value threshold α0

corresponding to the FDR threshold of α .

Pilot data sets. Realistic DE and eQTL priors, i.e., effect sizes and expression
ranks, were taken from sorted bulk RNA-seq studies of matching tissues (PBMCs,
lung and pancreas). For all studies, the significance cut-off of the DE and eQTL
genes was set to FDR <0.05 and the expression levels of the genes were taken from
FPKM normalized values. When published, we took directly the effect sizes,
otherwise we recalculated the DE analysis with DEseq2.

Differential gene expression: To get realistic estimates for effect sizes (fold
changes), data sets from FACS sorted bulk RNA-seq studies were taken53,54. The
data sets were used to rank the expression level of the DEGs among all other genes
using the FPKM values. The cell types used in the studies were matched to our
annotated cell types in PBMCs for the expression profiles. The expression profile of
CD14+ Monocytes was used for the study of Macrophages, the profile of CD4+
T cells for the CLL study.

Lung cell type specific priors were obtained from a DE study of freshly isolated
airway epithelial cells of asthma patients and healthy controls55. As no effect sizes
were reported, the analysis was redone with the given count matrix from GEO
(accession number GSE85567) using DEseq2.

A DE study analyzing age-dependent gene regulation in human pancreas56 was
used to get pancreas cell type specific priors. We obtained expression ranks and
gene length, which is needed for proper normalization of Smart-seq2 expression
values.

eQTLs: We used eQTL effect and sample sizes from the Blueprint study on bulk
RNA-seq of FACS sorted Monocytes and T cells57. Neutrophils were excluded as
they are not PBMCs. We took the most significant eQTL for each gene, using a
significance cutoff of 10−6. We compared the FPKM normalized expression levels
of the eQTL genes among all other genes to get the expression rank for each eQTL

gene. Effect sizes were derived from the slope parameters of the linear regression
against genotype dosage, its standard error and the sample size of the study.

Comparison with simulation-based power analysis tools. To validate our
model, we compared the DE power estimations of our framework with two
simulation-based tools, called powsimR and muscat40,43. For both tools, a few
changes needed to be implemented to compare the output exactly with our
approach. powsimR is not designed for multi-sample comparison and for both
methods the option to apply a vector of log-fold changes with matching expression
ranks was not available. A detailed explanation of both methods and applied
changes can be found below.

The simulation-based methods perform random sampling of their count
matrices and therefore the simulation was repeated 25 times for each parameter
combination to generate stable results. Both tools allow the power estimation for
different DE methods. We evaluated powsimR in combination with edgeR-LRT,
DESeq and limma-voom, together with median-ratio normalization of DESeq
(‘MR’), and muscat in combination with edgeR, DESeq2, limma-voom and limma-
trend. No imputation or filtering was applied for any of the methods. In the
comparisons with our model scPower, the expression probability parameters of
scPower were set to minCounts >0 in at least one individual to match the detected
genes of powsimR and muscat.

Exemplarily, the CD4 T cells of our PBMC data set were used for fitting the
simulation models of powsimR and muscat. We evaluated all DE methods for 4, 8
and 16 samples in combination with 200, 1000 and 3000 cells per person.
Additionally, we performed a comparison for a large range of parameter
combinations of powsimR with edgeR-LRT and muscat with edgeR, testing all
combinations as evaluated in (Fig. 3a).

In the following, it is important to distinguish the training data set, which is
used for model fitting of powsimR/muscat and restricts the number of simulated
genes, and the simulated data set which is sampled from the trained model.

The three main components of our statistical framework were evaluated in the
comparison, the expression probability (by comparing the number of expressed
genes), the power (here according to the definition of powsimR, i.e., the power of
all genes expressed in the simulated data) and the overall detection power.

1. Expressed genes: The expected number of expressed genes for scPower is
compared with the number of expressed genes in powsimR and muscat,
which are all genes with at least one count in the simulated matrix. An
important limitation of the simulation based frameworks is here that the
number of expressed genes in the simulation tools can never be larger than
the number of expressed genes in the training data set, while scPower can
also approximate expression of unseen genes with smaller mean values and
so estimate more expressed genes than seen in the pilot data.

2. DE power: The reported power of powsimR includes only genes, which are
expressed in the simulated data set (count > 0). The same value can also be
calculated for muscat. To make the DE power of our framework
comparable, the mean power for all expressed DE genes was calculated.
An expressed DE gene for scPower is defined by its expression rank, which
needs to be smaller than the expected number of expressed genes.

3. Overall power: powsimR does not return directly an overall power, which
we define as the power over all simulated DE genes (including genes
simulated with count > 0 and count = 0). However, the overall detection
power of powsimR can simply be calculated by dividing the number of true
positives of powsimR by the number of all simulated DE genes. The same
was done for muscat.

powsimR: uses training data to fit the parameters of the expression distributions
for each cell type and gene. Using these parameters, it is randomly generating count
matrices for two groups of cells introducing differential gene expression between
these two groups for a prespecified number of DE genes. These DE genes are
randomly selected and the means of their distributions shifted by a given effect size.
In the next step the simulated data is analyzed with different methods and results
are compared to the simulated group truth to determine the power.

Adaptations of powsimR are required to simulate a multisample setting and
thus make it comparable to scPower: We added an additional step that generates a
pseudobulk count matrix for multi-sample comparison. For this, we included an
additional parameter for the sample size ns , with samples distributed equally across
both groups (ns=2 samples per group). Thus, individual level effect sizes are
identical to the cell level effect sizes, as more complex differential distributions are
not implemented in powsimR96. After simulation of the new count matrix C with
dimensions nC (number of cells) times nG (number of genes) in powsimR, we
changed the algorithm to equally distribute the simulated cells between the samples
(nC=nscells for each sample), while preserving the group structure. Summing up
the counts for each sample generates a pseudobulk matrix with dimensions ns
times nG , which can be processed exactly the same way as a single cell matrix in the
following steps in powsimR. Furthermore, instead of randomly sampling the
position of the DE genes with powsimR, we assigned DE genes based on their
expression ranks in the bulk studies, as in scPower.

muscat: was specifically implemented for multi-sample comparisons, in contrast
to powsimR. It fits one negative binomial distribution separately for each sample
and subpopulation in the training data set. The subpopulation definition is hereby
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equivalent to our cell type definition. We noticed that fitting each sample separately
decreases the number of expressed genes quite drastically, if not a sufficient
number of cells are available for each sample. Because again only as many genes
can be sampled as are detected in the training data set. To get a robust fit of the
negative binomial distribution with our training data set, we therefore decided to fit
the negative binomial distribution for all samples together, for a very large training
data set this is probably not necessary.

Another difference to powsimR is that muscat provides different scenarios for
simulating differential expression besides the shift of the mean expression (called
DE in muscat). Additionally, they simulate genes with different proportions of low
and high expression-state (DP), differential modality (DM) or changes in both
proportions and modality (DB). For comparison with powsimR and scPower, we
focus on the DE scenario.

Similar to powsimR, we also incorporated here the option to assign genes of a
specific expression rank a specific log fold change to simulate the same DE genes as
in scPower.

We applied the simulation-based methods to further validate the scPower
estimations in regards to two different real life scenarios that can affect the power:
batch effects and differences of cell proportions between the groups. The
introduction of batch effects was already implemented in powsimR. Of note, we
slightly adapted the code of powsimR again to the multi-sample setting by
assigning all cells from one individual to the same batch. We separated the
individuals into two different batches with 50% cases and 50% controls in each
batch, which represent a setup based on a non-confounded experimental design.
20% of the genes were randomly sampled to show batch log fold changes with
values between 2 and 6. We ran the downstream powsimR power analysis with
edgeR once without accounting for batch effects and once with adjusting for the
batch effects using a model that includes a batch covariate. This was repeated for
different batch effects and experimental parameter combinations and each time the
results were compared with the scPower estimation.

The second real life scenario simulating differences of cell proportions between
the groups is readily implemented in muscat. The cell proportion parameter
represents the fraction of all measured cells that belong to group 1, i.e., a fraction of
0.3 means that 30% of measured cells belong to group 1 and 70% to group 2. We
evaluated cell proportions between 0.1 and 0.5 in combination with different
experimental parameter combinations and compared the results to scPower. For
the scPower estimation, we calculated two versions, once the default approach
assuming balanced distribution of cells between the groups and once a conservative
approach, also assuming the balanced distribution, but reducing the cell frequency
f c by the cell proportion parameter pc so that the number of cells per cell type
entering the model matches the cell frequency in the lower group 2 � f c � pc.

As no simulation-based power analysis for eQTLs exists (and also no other
method), we benchmarked the eQTL power with our own simulation tool
(described in the methods section Power analysis for expression quantitative trait
loci). Our simulation method uses our expression probability model to estimate the
mean parameter, therefore only the power itself is compared (not the expression
probability and overall power). We tested again 25 rounds of simulation for all
parameter combinations depicted in Fig. 3b.

Cost calculation and parameter optimization for a given budget. The overall
experimental cost Ct for a 10X Genomics experiment is the sum of the library
preparation cost and the sequencing cost. It can be calculated dependent on the
three cost determining parameters sample size ns, number of cells per sample nc
and the read depth r. The library preparation cost is determined by the number of
10X kits, depending on how many samples are loaded per lane ns;l and the cost of
one kit Ck . The cost of a flow cell Cf and the number of reads per flow cell rf
determine the sequencing cost.

Ct ¼ ceiling
ns

6 � ns;l

 !
� Ck þ ceiling

ns � nc � r
rf

 !
� Cf ð15Þ

We optimized the three cost parameters for a fixed budget to maximize the
detection power. A grid of values for number of cells per individual and for the
read depth was tested, while the sample size is uniquely determined given the other
two parameters and the fixed total costs. As an approximation of the sample size,
the ceiling functions from the cost formula were removed.

ns ¼ floor Ct

�
Ck

6 � ns;l
þ nc � r � Cf

rf

 ! !
ð16Þ

The same approach can also be used with a grid of sample size and cells per
sample or read depth. In general, two parameters need to be chosen and the third
parameter is uniquely determined given the other two and the fixed
experimental cost.

Given the three cost parameters, the detection power for a specific cell type and
a specific DE or eQTL study can be estimated. However, we also have to account
for the appearance of doublets during the experiment. The fraction of doublets
depends on the number of cells loaded on the lane. Following the approach of37, we
model the doublet rate d linear dependent on the number of recovered cells, using

the values from the 10X User guide of V377. A factor of 7:67 � 10�6 was estimated,
so that d ¼ 7:67 � 10�6 � nc � ns;l .

The number of usable cells per individual used for the calculation of detection
power is then nu ¼ ð1� dÞ � nc . We assume that nearly all doublets are detectable
using Demuxlet and Scrublet and discarded during the preprocessing of the data
set. The expected number of cells for the target cell type with a frequency of f c will
be f c � ð1� dÞ � nc.

A second effect of doublets is that the read distribution is shifted, as doublets
contain more reads than singlets. Again following the approach of37, we assume
that doublets contain 80% more reads than singlets. In the following, the ratio of
reads in doublets compared to reads in singlets is called doublet factor f d , a factor
of 1.8 is assumed in the calculations in this manuscript. Therefore, depending on
the number of doublets, the read depth of the singlets will be slightly lower than the
target read depth.

rs ¼
r � nc

nu þ f d � ðnc � nuÞ ð17Þ

In addition, the mapping efficiency is taken into account. Assuming a mapping
efficiency of 80%, rm ¼ 0:8 � rs mapped read depth remains. In the power
calculation, the number of usable cells per cell type will be used instead of the
number of cells and the mapped read depth instead of the target read depth.

Instead of defining the number of samples per lane directly, usually the number
of cells loaded per lane nc;l is defined. So, the doublet rate per lane can be directly
restricted. We use in our analyses nc;l ¼ 20; 000, which leads to a doublet rate of at
most 15.4%. The number of individuals per lane can be derived directly as
ns;l ¼ floorðnc;l=ncÞ.

Simulation of effect sizes and gene rank distributions. Model priors, i.e., effect
sizes and gene rank distributions, were derived from FACS sorted bulk RNA-seq to
get realistic assumptions. In addition, we simulated different extreme prior dis-
tributions to evaluate their influence on the optimal experimental parameters. The
log fold changes for the DE studies were modeled as normally distributed. High
effect size distributions were simulated with a mean of 2 and a standard deviation
of 1, low effect sizes distributions with a mean of 0.5 and standard deviation of 1.

Effect sizes (R2 values) for the eQTL studies were obtained by sampling
normally distributed Z scores and applying the inverse Fisher Z Transformation.
Because very small values are not observed due to the significance threshold, the
normal distribution is truncated to retain values above the mean. High effect sizes
were simulated with a mean of 0.5 and standard deviation of 0.2, low effect sizes
with a mean of 0.2 and a standard deviation of 0.2. A similar standard deviation
was also observed in the pilot data.

250 DEGs were simulated and 2000 eQTL genes. The ranks were uniformly
distributed, either over the first 10,000 genes or the first 20,000 genes. This leads to
four simulation scenarios for each, high and low effect sizes (ES) and high or
uniformly distributed expression ranks, called in the studies highES_highRank,
lowES_highRank, highES_unifRank and lowES_unifRank.

Evaluation of Drop-seq and Smart-seq2 data. We validated our expression
probability model for other tissues and single cell RNA-seq technologies. Two data
sets of the human cell atlas were used for that, a Drop-seq data set measured in
lung tissue52 and a Smart-seq2 data set measured in pancreas tissue51.

The Drop-seq technology is also a droplet-based technique, similar to 10X
Genomics. The same model can be used, only adapting the doublet and cost
parameter. However, as there was no data available to model the linear increase of
the doublet rate during overloading correctly, the doublet rate was modeled instead
as a constant factor and the library preparation costs were estimated per cell.
scPower provides models for both cases and with the necessary prior data, users
can also model the overloading for Drop-seq.

Smart-seq2 is a plate-based technique, which produces full length transcripts and
read counts instead of UMI counts. To compensate the gene length bias in the counts,
the definition of an expressed gene was adapted to at least n counts per kilobase of
transcript, resulting in a gene specific threshold of n �1000

li
with li as gene length for

gene i. The gamma mixed distribution of the mean gene expression levels is modelled
using length normalized counts, but the gene length is required as a prior for the
dispersion estimation and the power calculation, as DEseq uses counts, which are not
normalized for gene length. These priors can be obtained together with the effect sizes
and the expression ranks from the pilot bulk studies. In the simulation of non-DE
genes, an average mean length of 5000 bp is assumed. The linear relationship of the
parameters of the mixture of gamma distributions is modeled directly based on the
mean number of reads per cell. Doublets also appear in Smart-seq2, but as a constant
factor, not increasing with a higher number of cells per individual. We observed for
the parameter of the DEseq dispersion model a linear relationship with the read
depth, which was not visible for Drop-seq and 10X Genomics. So, instead of taking
the mean value per cell type, a linear fit is modeled for Smart-seq2.

For both data sets, the cell type frequencies varied greatly among individuals,
therefore an estimation of expressed genes in a certain fraction of individuals could
not be validated, as this requires similar cell type frequencies for each donor.
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Instead, the expressed genes were estimated to be above a certain count threshold
in all cells of a cell type, independent of the individual.

Both data sets were subsampled to investigate the effect of the read depth. The
Drop-seq reads are subsampled using fastq-tools version 0.893 and the subsampled
UMI count matrix was generated following the pipeline previously described in97.
The Smart-seq2 read matrix was subsampled directly using the function
downsampleMatrix of the package DropletUtils98.

We compared the budget restricted power to our PBMC 10X Genomics results,
using the same simulated effect sizes and distribution ranks as well as matched
observed priors from FACS sorted bulk studies.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The single cell PBMC data set generated and analysed during the current study is available
on Gene Expression Omnibus (GEO) with accession number GSE185714. The other single
cell test data sets are available on GEO with accession numbers GSE96583, GSE130148 and
GSE81547. The effect sizes for the eQTL and DE power were taken from published studies,
accessible in the supplement of Chen et al. 2016 (https://doi.org/10.1016/j.cell.2016.10.026),
Rendeiro et al. 2016 (https://doi.org/10.1038/ncomms11938), Moreno-Moral et al. 2018
(https://doi.org/10.1136/annrheumdis-2017-212454) and Arda et al, 2016 (https://doi.org/
10.1016/j.cmet.2016.04.002). For one data set, we reanalysed the count matrix at GEO with
accession number GSE85567 to get the effect sizes.

Code availability
All code is available as open source R package scPower on github https://github.com/
heiniglab/scPower and on Zenodo https://doi.org/10.5281/zenodo.555275399. Code to
reproduce the figures of the paper is provided in the package vignette. The repository
includes a shiny app with a user-friendly graphical user interface, which is additionally
available as a web server at http://scpower.helmholtz-muenchen.de/.
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