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ABSTRACT  

Background. Inflammatory processes have been implicated in the development of chronic 

kidney disease (CKD). We investigated the association of a large panel of inflammatory 

biomarkers reflecting aspects of immunity with kidney function and CKD incidence. 

Methods. We used data from two independent population-based studies, KORA F4 

(discovery, n=1,110, mean age 70.3 years, 48.7% male) and ESTHER (replication, n=1,672, 

mean age 61.9 years, 43.6% male). Serum levels of biomarkers were measured using 

proximity extension assay technology. The association of biomarkers with estimated 

glomerular filtration rate (eGFR) at baseline and with incident CKD was investigated using 

linear and logistic regression models adjusted for cardiorenal risk factors. Independent results 

from prospective analyses of both studies were pooled. The significance level was corrected 

for multiple testing by false-discovery rate (PFDR < 0.05.) 

Results. In the KORA F4 discovery study, 52 out of 71 inflammatory biomarkers were 

inversely associated with eGFR estimated based on serum creatinine. Top biomarkers 

included CD40, TNFRSF9 and IL10RB. Forty-two of these 52 biomarkers were replicated in 

the ESTHER study. Nine of the 42 biomarkers were associated with incident CKD 

independently of cardiorenal risk factors in the meta-analysis of the KORA (n=142, mean 

follow-up of 6.5 years) and ESTHER (n=103, mean follow-up of 8 years) studies. Pathway 

analysis revealed the involvement of inflammatory and immunomodulatory processes 

reflecting cross-communication of innate and adaptive immune cells. 

Conclusions. Novel and known biomarkers of inflammation were reproducibly associated 

with kidney function. Future studies should investigate their clinical utility and underlying 

molecular mechanisms in independent cohorts. 

Keywords: chronic kidney disease, glomerular filtration rate, inflammation, population 

cohort, proteomics 
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KEY LEARNING POINTS 

What is already known about this subject? 

 In clinical practice, the glomerular filtration rate (GFR) remains to be one of the most 

important markers used to evaluate chronic kidney disease (CKD) diagnosis and 

prognosis. However, GFR represents functional information without 

pathophysiological insights underlying kidney impairment processes. 

 There is an increasing necessity to identify novel biomarkers for early kidney 

impairment and deliver better insight into pathophysiological pathways.  

What this study adds? 

 In extension to previous studies that have been limited by small sample size, cross-

sectional study design and restrictions to patients with diabetes or advanced CKD 

stages, we examined a relatively large number of participants from two population-

based cohorts to identify novel protein biomarkers for early kidney impairment and 

CKD development.  

 We identified 42 inflammatory biomarkers to be inversely associated with GFR 

estimated based on serum creatinine in both the discovery and validation study. Nine 

out of these were nominally significantly associated with CKD incidence. 

 Pathway analysis revealed the involvement of inflammatory and immunomodulatory 

processes reflecting cross-communication of innate and adaptive immune cells. 

What impact this may have on practice or policy? 

 The application of proteomics in easily accessible tissues is of particular interest in 

population-based settings, where early screening interventions could facilitate 

identifying high-risk individuals of CKD.  
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INTRODUCTION 

Chronic kidney disease (CKD) affects between 8% to 16% of the population in high-income 

countries and the prevalence continues to increase, accelerated by risk factors such as 

diabetes, hypertension and obesity [1-3]. In the setting of an aging population, 35% of those 

older than 70 years are diagnosed with an early stage of CKD [3, 4]. In turn, kidney 

impairment is an independent risk factor for cardiovascular morbidity, mortality and 

decreased quality of life, which is expected to put a high burden on health care systems [5, 6].  

 

In clinical practice, the glomerular filtration rate (GFR) based on creatinine remains to be one 

of the most important markers used to evaluate CKD diagnosis and prognosis. However, this 

marker represents functional information without pathophysiological insights underlying 

kidney impairment processes. Also, no targeted therapies exist for CKD beyond the 

management of traditional cardiometabolic risk factors. Therefore, there is an increasing 

necessity in kidney research to identify novel biomarkers for early kidney impairment and 

deliver better insight into pathophysiological pathways, a knowledge that can be used to 

design possible drug targets. 

 

Several pathways have been hypothesized to play an important role in CKD development, 

with systemic inflammation being one of the most prominent [7]. However, the molecular 

mechanisms are largely unknown. Previous evidence suggests that, for example, tumor 

necrosis factor receptor superfamily members predict progression to end-stage renal disease 

in individuals with diabetes [8]. Other efforts have attempted to identify markers of renal 

function but they have been characterized by limited sample size, cross-sectional study 

design or they were performed in subpopulations of people with diabetes or advanced CKD 
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stages [9-12]. Investigations in the general population with a longitudinal design in relation to 

CKD development are rare [13].  

 

High-throughput proteomics approaches developed in recent years allow the simultaneous 

deeper characterization of immune pathways in easily accessible tissues such as blood that 

might be implicated in inflammatory processes in CKD [14, 15]. 

 

Therefore, our study aimed to investigate and validate associations between a multiplex assay 

panel of biomarkers of inflammation and kidney function in two population-based cohorts of 

middle-aged and older adults in a discovery/replication design. Biological pathways of 

significant biomarkers for kidney function were further explored. A prospective analysis was 

performed to identify novel biomarkers of CKD development, independent of established 

cardiorenal risk factors.  

 

MATERIALS AND METHODS 

Study population 

The Cooperative Health Research in the Region of Augsburg (KORA) Study 

The KORA F4 (2006–2008) and FF4 (2013-3014) studies are both follow-up examinations of 

the population-representative KORA S4 study (1999–2001), conducted in Augsburg 

(Germany) and two surrounding counties [16]. The studies were carried out in accordance 

with the Declaration of Helsinki, including written informed consent from all participants, 

and were approved by the ethics committee of the Bavarian Chamber of Physicians (Munich, 

Germany). The KORA F4 study was used as a discovery sample. From 1,161 KORA F4 

participants aged 62-81 years, after excluding participants as shown in the flow chart of 

Supplementary Figure 1.A, the final baseline study population resulted in 1,110 participants 
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with available proteomics data. For the prospective analysis, there were 576 participants 

without CKD at baseline. The study design and other standard physical and medical 

examinations have previously been described in detail [17, 18]. A drop-out analysis 

comparing participants and non-participants in KORA FF4 was published before [16]. 

 

ESTHER Study 

For the baseline examination (2000–2002) of the ESTHER study (German study name: 

Epidemiologische S                                                              

THerapie chronischer ER                                           40                   

50–74 years were recruited by their general practitioners (GPs) during a routine health check-

up in the German federal state of Saarland. The study design has previously been described in 

detail [19]. The cohort study is ongoing and was followed up for incident chronic diseases 

after 2, 5, 8, 11, and 14 years by standardized questionnaires sent to study participants and 

their GPs. The ESTHER study has been approved by the ethics committees of the Medical 

Faculty of the University of Heidelberg and the Medical Association of Saarland and has 

been conducted in accordance with the Declaration of Helsinki. The ESTHER study was used 

as a replication sample using the baseline visit and the 8-year follow-up visit (to approximate 

a similar follow-up time as in KORA F4/FF4). Supplementary Figure 1.B describes the 

study population selection for the present study. Biomarkers were measured in a randomly 

selected subsample of n=1,750 study participants due to limited funding availability. After 

exclusion of serum samples, which did not pass quality control or missed a serum creatinine 

measurement, 1,672 individuals were available at baseline with both clinical and proteomics 

assay data. The prospective analysis resulted in 675 participants, after excluding CKD cases 

at baseline and individuals lost to follow-up.  
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Measurement of outcomes  

Renal function was defined based on estimated GFR from standard creatinine (eGFRcr). 

Standard creatinine was calculated using the following equation: standard creatinine= 0.95  

calibrated creatinine [20]. eGFRcr was calculated using the Chronic Kidney Disease 

Epidemiology Collaboration equation (CKD-EPI) [21]. CKD cases were defined as having 

eGFRcr < 60 ml/min per 1.73m
2
. Additionally, estimated GFR from cystatin C (eGFRcys) 

and urine albumin to creatinine ratio (UACR) were also calculated. For further details on the 

outcomes, please refer to Supplementary Text 1. 

 

Measurement of biomarkers of inflammation 

Biomarkers of inflammation from KORA and ESTHER participants were measured in serum 

samples of fasting participants using the OLINK Inflammation multiplex immunoassay 

(OLINK Proteomics, Uppsala, Sweden). The OLINK Inflammation panel covers 92 protein 

biomarkers including pro-and anti-inflammatory cytokines, chemokines, growth factors and 

factors involved in acute inflammatory and immune responses, angiogenesis, fibrosis and 

endothelial activation. More information on the biomarkers can be found in a previous 

publication of our group [22]. This immunoassay is based on the proximity extension assay 

(PEA) technology, measuring the relative abundance of the proteins [23, 24]. After exclusion 

of some of the biomarkers (Supplementary Text 1), 71 markers were used for analysis in 

KORA. 

 

Individual information of the OLINK and CKD related measurements in respective studies 

can be found in Supplementary Text 1 and Supplementary Table 1. 
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Statistical analysis 

Continuous variables are reported as mean ± SD for normally distributed data and as median 

[interquartile range (IQR)] for skewed data. Categorical variables are presented as total 

numbers with the corresponding percentage. We log-transformed all variables that did not 

follow a normal distribution. All biomarkers of inflammation were analyzed per unit change 

in standard deviation (SD). 

 

In the cross-sectional part of the study, linear regression models were performed to assess 

associations between biomarkers of inflammation and eGFRcr. Model 1 was age- and sex-

adjusted. In both studies, a multivariable model (model 2) was compiled, including a wide 

range of established cardiorenal risk factors such as age, sex, body mass index (BMI), 

systolic blood pressure, use of antihypertensive medication, triglycerides (naturally log-

transformed), high-density lipoprotein cholesterol, use of lipid-lowering medication, 

smoking, physical activity, alcohol intake, prevalent diabetes, use of glucose-lowering 

medication and prevalent cardiovascular disease. For the ESTHER analysis, the multivariable 

model accounted for plate effects as well because samples were measured at two distinct time 

points. Correlations between biomarkers of inflammation that showed significant associations 

w         y f        w                    P      ’                 ff       . L      

regression models were also used to assess associations between biomarkers of inflammation 

and UACR in participants of the F4 study, adjusting for all covariates in the above model 2 

and baseline eGFR. 

 

The significance level was corrected for multiple testing by a false-discovery rate (FDR) 

method using the Benjamini-Hochberg procedure [25]. A FDR-adjusted p-value (PFDR) < 

0.05 was considered statistically significant.  
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To investigate the prospective association of biomarkers of inflammation with CKD 

incidence, logistic regression analysis was performed in a multivariable model in both 

cohorts with participants without CKD at baseline. Additional adjustment in the multivariable 

model for baseline eGFRcr levels was performed in this analysis. To account for individual 

follow-up times, a Cox proportional hazards model would have been most appropriate; 

however, given our population-based setting in both studies, we did not know the exact times 

when the events happened. Furthermore, especially the exclusion of participants who died 

during the follow-up period could have introduced some selection bias of healthier 

participants. The results of the discovery and replication sample were pooled in an inverse-

variance weighted fixed-effects meta-analysis to maximize the statistical power. The 

significance level was set to a nominal p-value < 0.05. Data analysis was performed with R-

Studio v. 1.2.1335. Except for HDL-cholesterol levels in the ESTHER study which had 40% 

missing values, all other covariates in both studies had a relatively low percentage of missing 

values (~10%). In order to retain as much data from the study participants and maximize 

power, missing data were imputed by multiple imputations. Afterwards, the results from five 

datasets were pooled to obtain the final estimates. 

 

Ingenuity Pathway Analysis (IPA) software (QIAGEN, Hilden, Germany) was used to 

identify biological pathways that are enriched for biomarkers of inflammation associated with 

kidney function in the fully adjusted model. 
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RESULTS 

Characteristics of the study population 

Table 1 summarizes the baseline characteristics for the participants from the KORA and 

ESTHER studies. The largest differences between the two cohorts were observed for age, 

systolic blood pressure, LDL cholesterol, prevalence of diabetes, use of glucose-lowering and 

lipid-lowering medication. Mean baseline eGFRcr levels were lower in KORA than in 

ESTHER participants. Nevertheless, ESTHER study participants had a higher prevalence of 

CKD at baseline (17.2% vs 14.1% in KORA). Clinical and renal characteristics stratified by 

incident CKD status are presented in Supplementary Table 2. 

 

Association of biomarkers of inflammation with kidney function  

A flowchart of the study analysis is shown in Figure 1. First, we investigated the 

multivariable-adjusted associations of biomarkers of inflammation with eGFRcr in 1,110, 

participants of the KORA study. Fifty-two out of 71 inflammatory markers were (PFDR < 

0.05) and inversely associated with eGFRcr (Table 2). The five biomarkers with the lowest 

PFDR value for the association with eGFRcr were CD40 (PFDR < 3.34E-40), TNFRSF9 (PFDR < 

6.34E-32), IL10RB (PFDR < 1.59E-31), CST5 (PFDR < 2.42E-27) and CX3CL1 (PFDR < 2.42E-

27). Pairwise correlations of the 52 biomarkers with significant associations with eGFRcr are 

shown in Figure 2. The biomarkers were mostly positively correlated with a mean correlation 

coefficient of 0.28 (SD 0.16, range -0.10 to 0.8). Additionally, we investigated the association 

of these biomarkers with eGFR based on cystatin C (mean (SD), 75.71 (17.93) ml/min/1.73 

m
2
). All but one biomarker were found to be also significantly associated with eGFRcys, 

reaffirming that the identified biomarkers robustly represent renal filtration. Supplementary 

Figure 2 represents a scatter plot of beta estimates of the association of biomarkers of 
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inflammation with eGFRcr against those of eGFRcys (r=0.69, P <2E-16). Beta estimates for 

associations of all individual biomarkers of inflammation with eGFRcr and eGFRcys are 

presented in Supplementary Table 3 (KORA F4). Beta estimates of the association of 63 

biomarkers with eGFRcr at baseline for ESTHER are presented in Supplementary Table 4. 

 

Forty-five out of 52 discovery markers were available in ESTHER. In this replication cohort, 

we found 42 out of these 45 biomarkers to be significantly and inversely associated with 

eGFRcr in the multivariable model (threshold: PFDR < 0.05) (Table 2).  

 

Association with incident CKD 

During a mean follow-up time of 6.5 years in 576 participants free of CKD at baseline, we 

identified 141 cases with incident CKD in the KORA study (incidence rate, 3.7 per 100 

person-years). For the ESTHER study, during a mean follow-up time of 8 years in 675 

participants free of CKD at baseline, 103 incident cases were identified with CKD (incidence 

rate, 2.1 per 100 persons-years). To increase the power of our investigation, we meta-

analyzed the prospective results of CKD incidence (n=244 cases) from both KORA and 

ESTHER. All replicated 42 biomarkers were investigated using multivariable models further 

adjusted for baseline eGFRcr levels. Nine out of the 42 biomarkers (IL8, MCP3, EN_RAGE, 

MCP1, MCP4, CD5, MMP10, TNFRSF9, and OSM) were nominally significantly associated 

with CKD incidence. The odds ratios of associations between these biomarkers and incident 

CKD ranged from 1.22 (e.g. for OSM and MMP10, P=0.042 and P=0.032, respectively) to 

1.36 (e.g. for IL8, P=0.001). Supplementary Table 5 shows the association of replicated 

biomarkers with CKD in KORA and ESTHER, separately. Adjusting the models for the 

difference in time (years) between measurements of eGFRcr at baseline and follow-up did 

not change the results. 
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Moreover, when investing the association of the biomarkers with UACR, a marker of kidney 

damage, more than half of the 42 replicated markers were nominally significant among 

participants of the KORA F4 study (Supplementary Table 6). 

 

Pathway analysis 

Ingenuity pathway analysis revealed 15 canonical pathways (PFDR<0.01), which were 

enriched for 42 biomarkers of inflammation associated and replicated with kidney function in 

the fully adjusted model in both studies (Table 3). Top pathways involved inflammatory 

responses related to innate immunity such as granulocyte adhesion and diapedesis, cell 

signalling, cell differentiation or maturation; other pathways related to adaptive immunity 

with the involvement of T cell signalling and activation. These pathways suggest 

communication between innate and adaptive immune cells. The IPA analysis revealed several 

processes related to conditions such as atherosclerosis, (rheumatoid) arthritis, allergy, 

influenza and other hepatic components. 

 

DISCUSSION 

In this study, we identified a panel of biomarkers of inflammation associated with kidney 

function in two population-based studies: the KORA and the ESTHER study. All biomarkers 

(n=42) were inversely associated with eGFRcr and were involved in processes related to a 

variety of inflammatory and immune-modulatory responses linked to kidney disease. Higher 

serum concentrations of 9 of these biomarkers (IL8, MCP3, EN_RAGE, MCP1, MCP4, CD5, 

MMP10, OSM, and TNFRSF9) were found to be associated with increased risk of incident 

CKD independent of other cardiorenal risk factors.  
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While most of the identified biomarkers of inflammation represent novel findings in relation 

to kidney function, some of them have been previously reported to play an important role in 

kidney pathophysiology. A previous study investigated the association of another panel of 92 

biomarkers related to cardiovascular diseases with eGFR decline in a discovery sample of 

687 participants and replicated the top biomarkers in a sample of 360 men [13]. This panel 

included several biomarkers also measured in the present study. They found 20 markers to be 

nominally significantly associated with eGFR decline, three of which were identified also in 

our cross-sectional analysis: CD40 receptor, monocyte chemotactic protein 1 (MCP-1) and 

fibroblast growth factor 23 (FGF-23). These biomarkers have been previously reported to be 

involved in progressive kidney disease [26-28]. In the community-based InCHIANTI, IL-18 

did not show any significant association with kidney function and incident CKD as opposed 

in our analysis, in which the biomarker was inversely associated with eGFR [9].  

 

Nine biomarkers of inflammation from our panel were associated with CKD development 

after adjustment for cardiorenal risk factors. Some of them have been previously related to 

kidney pathology. For example, among the three chemokines, MCP3, MCP4, and MCP1, the 

latter is involved in promoting inflammation, renal injury and fibrosis in diabetic nephropathy 

[29, 30]. EN_RAGE represents a calcium-binding proinflammatory protein mainly secreted 

by granulocytes and has been hypothesized to link CKD and CVD through pathways related 

to vascular calcification and endothelial dysfunction [31]. TNFRSF9 is a member of the TNF 

receptor superfamily involved in biological mechanisms such as cell survival, proliferation 

and death together with other immunomodulatory responses linked to kidney disease. A 

previous study used an aptamer-based approach to measure a panel of 194 proteins that 

included many of the circulating inflammatory proteins known in the literature. The study 

identified a kidney risk inflammatory signature (KRIS) comprised of 17 inflammatory 
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proteins enriched for TNF-R superfamily members to be significantly associated with a 10-

year risk of end-stage renal disease among patients with diabetes [8]. In line with our 

pathway analysis, the study supported the involvement of both innate and adaptive immune 

response. The study also found no correlation between the majority of the KRIS proteins and 

their corresponding gene expression in kidney biopsy specimens in 56 participants. These 

results suggest that non-kidney sources (such as leukocytes) may play an important role in 

generating these KRIS proteins.  

 

Another longitudinal study in individuals with type 2 diabetes (PROVALID) investigated 17 

plasma biomarkers in relation to kidney function decline and found among others two of our 

identified biomarkers, FGF23 and HGF, to be associated with eGFRcr decline over time in 

the multivariable analysis [32]. The authors reported that baseline eGFR exhibited the largest 

explained variability of kidney decline, whereas the identified markers explained only a small 

percentage. In our prospective analysis, nine out of forty-two markers were significantly 

associated with CKD incidence. In the individual studies, most of our associations between 

biomarkers and CKD were also explained by baseline eGFR levels. These findings suggest 

that inflammation may to some extent be a consequence rather than a cause of CKD. 

Integration of proteomics with genetic data might allow Mendelian randomization-based 

approaches to test whether markers lie in causal pathways to kidney impairment or CKD 

development [33].  

 

When investigating the associations of the biomarkers with UACR, more than half of the 42 

replicated biomarkers associated with eGFR at baseline and 6 out of the 9 biomarkers 

associated with incident CKD were found to be nominally significant. UACR is often used in 

clinical studies as a risk marker for CKD progression, with slightly raised UACR levels 

D
ow

nloaded from
 https://academ

ic.oup.com
/ndt/advance-article/doi/10.1093/ndt/gfab294/6382139 by G

SF Zentralbibliothek user on 07 D
ecem

ber 2021



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

indicating early-stage kidney disease and very high levels indicating more severe kidney 

disease. The partial overlap of biomarkers (e.g., IL8, EN_RAGE, and TNFRSF9) between 

different outcomes (i.e., baseline eGFR, baseline UACR, incident CKD) in our study hints 

that some of the inflammatory biomarkers may play a role in pathophysiological mechanisms 

involved in the development of CKD (through glomerular filtration rate), but also 

albuminuria. Along the same line, a recent cross-sectional study reported that urinary IL8 and 

EN_RAGE levels were positively associated with urinary albumin in 90 participants of the 

Uppsala Seniors Study [34]. Another study, conducted among 200 individuals with advanced 

CKD, found that plasma EN_RAGE levels were higher in CKD stage 5 patients compared 

with CKD stage 3-4 patients and healthy controls [35]. Additionally, EN_RAGE was 

associated with increased mortality risk in stage 5 CKD patients. Of note, evidence from in 

vivo studies has suggested that the involvement of IL8 in the pathology of urinary albumin 

excretion might be mediated through the metabolic alterations of compounds located in the 

glomerular basement membrane [36]. In case of our population-based setting, with most of 

the participants having low to moderate risk of disease progression, we did not have the ideal 

study design to investigate the role of inflammation in advanced stages. Therefore, there is a 

need for future prospective studies to reassess the association of these biomarkers with CKD, 

and in particular, their association with advanced stages of CKD. 

 

It is noteworthy that the identified biomarkers for incident CKD are unlikely to be specific. 

We and others have shown that proteins such as EN_RAGE, IL8 or TNFRSF9 are related to 

several clinical outcomes such as incident polyneuropathy, diabetes or cardiovascular disease 

in population-based settings [22, 37, 38].  

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ndt/advance-article/doi/10.1093/ndt/gfab294/6382139 by G

SF Zentralbibliothek user on 07 D
ecem

ber 2021



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

Ongoing investigations in the proteomics field provide an opportunity not only to shed light 

on new pathophysiological mechanisms, but also to discover biomarkers that could improve 

risk prediction for CKD. Promising results have been shown using a urine protein-based 

classifier consisting of 273 CKD biomarkers, which improved prediction accuracy more than 

standard measures for detection and prediction of CKD [39, 40]. The application of 

proteomics in easily accessible tissues is of particular interest in population-based settings, 

where early screening interventions could facilitate identifying high-risk individuals.  

 

Strengths of our study include the discovery/replication design, sample size, the prospective 

design and the use of the same proteomics platform in both studies. Moreover, we were able 

to adjust for a wide range of cardiorenal risk factors including use of medication and 

comorbidities. Given that most of the biomarkers are novel, we used non-conservative 

methods of adjustments such as PFDR for kidney function and nominal (P<0.05) significance 

for CKD incidence to avoid missing any potentially important biomarkers. 

 

We are also aware of the limitations of our study. Although we adjusted our models for 

potential confounders, particularly baseline eGFR, some residual confounding might still be 

present. Protein levels appear to be highly dynamic and influenced by environmental stimuli. 

We had only one time-point of biomarker measurements in our studies. In the future, 

longitudinal trajectories of these biomarkers should be analyzed to better understand the 

directionality of associations. We combined our CKD analysis to optimize the power, but 

other larger studies are encouraged to replicate the findings individually, preferably using 

time to event modelling (if data allow). Pathway analysis represents selected results based on 

the biomarkers under study; therefore, we do not exclude other inflammatory pathways 

involved in kidney function impairment. The average age of the population-based KORA 
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study was relatively high resulting in considerable loss to follow-up. However, this is an 

inherent characteristic of population-based studies in particular in the middle-aged and 

elderly. The generalizability of our results is limited to a middle-aged and elderly population 

of European ancestry.  

 

CONCLUSION 

Multiple biomarkers of inflammation were associated with kidney function and CKD 

incidence in two population-based studies, highlighting the role of inflammation with the 

possible involvement of both innate and adaptive immunity in kidney function impairment. 

Future investigations are required to replicate these findings in independent cohorts and 

potentially integrate the results with other omics technologies and kidney tissue-based 

investigations.  
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Table 1. Characteristics of the two independent study cohorts at baseline 

 KORA ESTHER 

Clinical Characteristics   

N 1110 1672 

Age (years) 70.3 (5.4) 61.9 (6.6) 

Sex, N (% male) 541 (48.7) 729 (43.6) 

Body mass index (kg/m
2
) 28.7 (4.5) 27.8 (4.3) 

Systolic blood pressure (mmHg) 128.6 (19.8) 140.6 (19.6) 

Triglycerides (mg/dl) 112.0 (83.0, 158.7) 115.8 (80.7, 170.3) 

High-density lipoprotein cholesterol (mg/dl) 55.6 (14.1) 53.6 (14.5) 

Low-density lipoprotein cholesterol (mg/dl) 139.9 (35.9) 148.9 (39.3) 

Smoking status, N (%)   

       Never smoker 539 (48.7) 869 (52.0) 

       Former smoker 486 (43.9) 526 (31.5) 

       Current smoker 82 (7.4) 277 (16.6) 

Alcohol intake (g/day) 5.7 (0.0, 20.0) 3.39 (0.0, 12.8) 

Physically active, N (%) 556 (50.2)   

Physical activity, N (%)   

       M             : ≥ 2    f              ≥ 2    f        

       physical activity/week 

 545 (32.6) 

       Low: other  764 (45.7) 

       Inactive: < 1 h of physical activity/week  363 (21.7) 

Type 2 diabetes, N (%) 230 (21.2) 230 (13.8) 

Cardiovascular disease, N (%) 177 (16.0) 288 (17.2) 

Use of antidiabetic medication, N (%) 121 (10.9) 113 (6.8) 

Use of antihypertensive medication, N (%) 472 (42.6) 736 (44.0) 

Use of lipid-lowering medication, N (%) 272 (24.6) 189 (11.3) 

Renal characteristics   

eGFRcr (ml/min/1.73 m
2
) 75.8 (14.8) 79.3 (19.6) 

CKD, N (%) 157 (14.1) 288 (17.2) 

eGFRcr >30 - ≤60 (  /   /1.73  
2
), N (%) 151 (13.6) 279 (16.7) 

eGFRcr ≤30 (  /   /1.73  
2
), N (%) 6 (0.5) 9 (0.5) 

Continues measures are summarized as mean (SD) or median (25th, 75th percentiles); categorical variables are given 

as N (percentages). For the KORA study, physical activity represents the number and % of participants who were 

physically active, defined as participating in sports in summer and in winter and reporting at least more than 1 h 

sports per week in at least one of the seasons. Cardiovascular disease was defined based on previous history of 

angina pectoris, myocardial infarction or stroke. For ESTHER, cardiovascular disease included prevalent coronary 

heart disease/angina pectoris, stroke and myocardial infarction.  

Abbreviations: CKD, chronic kidney disease; eGFRcr, estimate glomerular filtration rate from creatinine  
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Table 2. Association estimates between biomarkers of inflammation and eGFR (cross-sectional results in the discovery KORA 

F4 study and in the replication ESTHER study) and CKD incidence (prospective pooled results from both studies). 
Only biomarkers with statistically significant eGFR results in the discovery study (KORA F4) are shown. The biomarkers are sorted by PFDR in 

the discovery study. 

 

 Cross-sectional association with eGFR 

KORA F4 (discovery) 

Cross-sectional association with eGFR 

ESTHER (replication) 

Prospective analysis with CKD incidence  

Meta-analysis (KORA F4 and ESTHER) 

Marker Beta SE P  PFDR Beta SE P  PFDR OR (95% CI) P  I
2
 

CD40 -5.57 0.39 4.70E-42 3.34E-40 -8.87 0.57 2.28E-51 2.05E-50 1.22 (0.99, 1.52) 6.40E-02 0.77 

TNFRSF9 -5.17 0.41 1.79E-33 6.34E-32 -6.26 0.60 1.66E-24 6.97E-24 1.25 (1.01, 1.55) 4.00E-02 0.00 

IL10RB -4.92 0.40 6.72E-33 1.59E-31 -4.02 0.56 7.12E-13 1.60E-12 1.18 (0.97, 1.43) 9.90E-02 0.00 

CST5 -4.43 0.39 1.63E-28 2.42E-27 -3.76 0.46 1.14E-15 2.76E-15 1.13 (0.95, 1.36) 1.66E-01 0.50 

CX3CL1 -4.51 0.40 1.71E-28 2.42E-27 -1.35 0.56 1.57E-02 1.83E-02 1.08 (0.89, 1.31) 4.43E-01 0.80 

CCL23 -4.21 0.39 1.05E-25 1.07E-24 -3.13 0.47 2.57E-11 5.06E-11 1.11 (0.94, 1.32) 2.32E-01 0.00 

FGF23 -4.47 0.42 9.22E-26 1.07E-24 NA    NA    

PD_L1 -4.30 0.41 6.97E-25 6.19E-24 -3.56 0.81 1.02E-05 1.57E-05 1.18 (0.94, 1.48) 1.58E-01 0.79 

CSF1 -4.01 0.41 8.10E-22 6.39E-21 -5.28 0.77 1.06E-11 2.15E-11 1.09 (0.88, 1.34) 4.41E-01 0.70 

CD5 -3.95 0.42 1.66E-20 1.18E-19 -6.25 0.61 1.05E-23 3.68E-23 1.26 (1.03, 1.54) 2.70E-02 0.00 

IL15RA -3.55 0.41 1.71E-17 1.10E-16 NA    NA    

CCL25 -3.39 0.40 8.10E-17 4.79E-16 -1.63 0.55 3.05E-03 3.76E-03 1.02 (0.84, 1.23) 8.51E-01 0.78 

4E_BP1 -3.62 0.44 6.84E-16 3.74E-15 -4.77 0.52 1.18E-19 3.39E-19 1.08 (0.88, 1.33) 4.42E-01 0.33 

FGF5 -3.29 0.40 1.07E-15 5.41E-15 NA    NA    

IL12B -3.31 0.42 1.03E-14 4.88E-14 -3.71 0.70 1.23E-07 1.98E-07 1.03 (0.83, 1.28) 8.01E-01 0.80 

FGF21 -3.42 0.44 2.30E-14 1.02E-13 1.26 0.54 1.84E-02 2.07E-02 1.03 (0.84, 1.27) 7.61E-01 0.00 

CXCL9 -3.24 0.43 1.31E-13 5.48E-13 -3.49 0.49 2.43E-12 5.10E-12 1.04 (0.87, 1.25) 6.66E-01 0.00 

MMP10 -2.73 0.41 4.56E-11 1.80E-10 -3.09 0.57 5.84E-08 9.95E-08 1.22 (1.02, 1.46) 3.20E-02 0.00 

MIP1A -2.59 0.41 5.46E-10 2.04E-09 NA    NA    

VEGFA -2.50 0.40 7.40E-10 2.63E-09 -5.95 0.52 1.01E-29 4.88E-29 1.19 (0.98, 1.43) 7.50E-02 0.74 

Beta_NGF -2.46 0.41 2.28E-09 7.69E-09 -1.01 0.57 7.91E-02 8.31E-02 1.17 (0.96, 1.41) 1.13E-01 0.79 

SCF -2.52 0.42 3.51E-09 1.13E-08 -3.85 0.54 1.28E-12 2.78E-12 1.00 (0.83, 1.21) 9.79E-01 0.00 
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IL17C -2.38 0.41 7.49E-09 2.31E-08 NA    NA    

TGF_alpha -2.27 0.41 2.53E-08 7.48E-08 -4.82 0.59 5.63E-16 1.42E-15 1.07 (0.89, 1.30) 4.64E-01 0.88 

MCP3 -2.08 0.41 4.38E-07 1.24E-06 -10.48 0.40 2.69E-126 8.47E-125 1.34 (1.11, 1.62) 2.00E-03 0.72 

GDNF -2.08 0.41 4.67E-07 1.27E-06 NA    NA    

SLAMF1 -1.87 0.44 2.63E-05 6.92E-05 NA    NA    

IL10 -1.72 0.42 3.59E-05 9.10E-05 -5.06 0.62 4.57E-16 1.20E-15 1.21 (0.98, 1.50) 7.20E-02 0.57 

OPG -1.78 0.43 4.48E-05 1.10E-04 -2.12 0.51 3.25E-05 4.77E-05 1.18 (0.98, 1.42) 7.90E-02 0.00 

FGF19 -1.64 0.41 5.98E-05 1.42E-04 -1.32 0.50 8.37E-03 9.95E-03 1.03 (0.87, 1.23) 7.04E-01 0.47 

UPA -1.61 0.41 8.46E-05 1.94E-04 -5.99 0.49 1.96E-32 1.12E-31 1.03 (0.87, 1.23) 7.15E-01 0.63 

STAMBP -1.56 0.41 1.61E-04 3.57E-04 -6.24 0.65 2.86E-21 8.58E-21 1.09 (0.89, 1.35) 3.97E-01 0.00 

CD244 -1.54 0.41 1.72E-04 3.71E-04 -6.07 0.60 2.63E-23 8.28E-23 1.14 (0.94, 1.37) 1.88E-01 0.48 

ADA -1.50  0.40 2.03E-04 4.24E-04 -7.36 0.73 1.62E-23 5.36E-23 1.04 (0.86, 1.26) 6.93E-01 0.28 

CCL19 -1.54 0.42 2.87E-04 5.83E-04 0.36 0.49 4.65E-01 4.65E-01 1.10 (0.92, 1.31) 3.09E-01 0.00 

HGF -1.53 0.44 5.40E-04 1.04E-03 -5.65 0.52 2.37E-26 1.07E-25 1.13 (0.93, 1.37) 2.14E-01 0.53 

LIFR -1.46 0.42 5.26E-04 1.04E-03 -2.26 0.72 1.65E-03 2.08E-03 1.02 (0.82, 1.25) 8.90E-01 0.71 

EN_RAGE -1.32 0.41 1.27E-03 2.37E-03 -7.46 0.51 5.13E-45 3.59E-44 1.30 (1.08, 1.57) 5.00E-03 0.74 

TRAIL -1.31 0.41 1.57E-03 2.86E-03 -1.19 0.67 7.44E-02 7.94E-02 0.98 (0.80, 1.20) 8.69E-01 0.64 

MCP1 -1.22 0.40 2.66E-03 4.73E-03 -8.06 0.49 4.23E-56 4.44E-55 1.27 (1.07, 1.52) 7.00E-03 0.00 

MMP1 -1.19 0.40 3.33E-03 5.76E-03 -1.52 0.64 1.70E-02 1.94E-02 1.03 (0.86, 1.25) 7.35E-01 0.00 

IL18 -1.23 0.42 3.43E-03 5.81E-03 -3.27 0.54 1.93E-09 3.58E-09 1.12 (0.94, 1.34) 2.02E-01 0.00 

SIRT2 -1.17 0.41 4.88E-03 8.06E-03 -5.66 0.55 5.48E-24 2.16E-23 1.07 (0.88, 1.30) 5.08E-01 0.30 

MCP4 -1.09 0.40 7.02E-03 1.13E-02 -2.41 0.47 3.21E-07 5.06E-07 1.23 (1.03, 1.46) 2.10E-02 0.00 

OSM -1.07 0.41 8.63E-03 1.36E-02 -10.05 0.42 1.01E-109 2.13E-108 1.22 (1.01, 1.47) 4.20E-02 0.88 

CDCP1 -1.13 0.43 9.34E-03 1.44E-02 -1.38 0.61 2.32E-02 2.57E-02 1.11 (0.91, 1.35) 2.99E-01 0.00 

CXCL10 -1.07 0.42 1.09E-02 1.65E-02 -2.26 0.55 4.62E-05 6.47E-05 1.05 (0.89, 1.25) 5.60E-01 0.00 

CCL20 -1.05 0.42 1.16E-02 1.72E-02 -5.03 0.49 6.04E-24 2.24E-23 1.08 (0.89, 1.31) 4.25E-01 0.00 

CXCL6 -1.04 0.42 1.30E-02 1.89E-02 -2.98 0.53 1.94E-08 3.39E-08 1.01 (0.83, 1.22) 9.62E-01 0.87 

FLT3L -0.96 0.41 1.88E-02 2.68E-02 -2.11 0.51 4.47E-05 6.40E-05 1.04 (0.87, 1.24) 6.78E-01 0.61 

IL8 -0.92 0.41 2.55E-02 3.55E-02 -10.56 0.40 1.47E-126 8.47E-125 1.36 (1.13, 1.65) 1.00E-03 0.77 

CCL11 -0.87 0.41 3.30E-02 4.51E-02 -3.03 0.51 2.65E-09 4.76E-09 1.20 (1.00, 1.44) 5.20E-02 0.00 
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The estimates are for model 2 (multivariable model; See methods section). For the meta-analysis results, model 2 was additionally adjusted for baseline eGFRcr. 

Association estimates refer to 1-SD increase in biomarker concentrations. Study-significant results are printed in bold. 

Abbreviations: CI, confidence interval; eGFR, estimated glomerular filtration rate; FDR, false discovery rate; I
2
, the percentage of variance that is attributable to 

heterogeneity between study-specific association estimates; NA, not available; OR, odds ratio; P, p value; 95% CI, 95% confidence interval. Full names of the 

biomarkers can be found in Supplementary Table 1. 

 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/ndt/advance-article/doi/10.1093/ndt/gfab294/6382139 by G

SF Zentralbibliothek user on 07 D
ecem

ber 2021



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

Table 3. Canonical pathways enriched for biomarkers of kidney function (IPA). The table shows all canonical pathways 42 

significant and replicated associations between biomarkers of inflammation and kidney function in the multivariable model. 
 

# Ingenuity Canonical Pathways Biomarkers PFDR 

1 Granulocyte Adhesion and Diapedesis CCL11, CCL13, CCL2, CCL20, CCL23, CCL25, CCL7, CX3CL1, CXCL10,  

CXCL6, CXCL8, CXCL9, IL18, MMP1, MMP10, TNFRSF11B 

2.12E-08 

2 Agranulocyte Adhesion and Diapedesis CCL11, CCL13, CCL2, CCL20, CCL23, CCL25, CCL7, CX3CL1, CXCL10,  

CXCL6, CXCL8, CXCL9, IL18, MMP1, MMP10 

1.17E-07 

3 Hepatic Fibrosis / Hepatic Stellate Cell Activation CCL2, CD40, CSF1, CXCL8, CXCL9, HGF, IL10, MMP1, TGFA,  

TNFRSF11B, VEGFA 

6.99E-05 

4 Role of IL-17A in Arthritis CCL2, CCL20, CCL7, CXCL6, CXCL8, MMP1 

 

4.10E-03 

5 Atherosclerosis Signaling CCL11, CCL2, CD40, CSF1, CXCL8, IL18, MMP1  

 

4.95E-03 

6 T Helper Cell Differentiation CD40, IL10, IL10RB, IL12B, IL18, TNFRSF11B 

 

4.95E-03 

7 Role of Macrophages, Fibroblasts and Endothelial 

Cells in Rheumatoid Arthritis 

CCL2, CSF1, CXCL8, IL10, IL18, MMP1, OSM, TNFRSF11B, VEGFA 4.95E-03 

8 TREM1 Signaling CCL2, CCL7, CD40, CXCL8, IL10, IL18 

 

4.95E-03 

9 Role of Hypercytokinemia/hyperchemokinemia in 

the Pathogenesis of Influenza 

CCL2, CXCL10, CXCL8, IL12B, IL18 6.51E-03 

10 Role of IL-17F in Allergic Inflammatory Airway 

Diseases 

CCL2, CCL7, CXCL10, CXCL6, CXCL8 6.51E-03 

11 Communication between Innate and Adaptive 

Immune Cells 

CD40, CXCL10, CXCL8, IL10, IL12B, IL18 6.51E-03 

12 Bladder Cancer Signaling CXCL8, FGF19, FGF21, MMP1, MMP10, VEGFA 

 

6.51E-03 

13 Hematopoiesis from Pluripotent Stem Cells CSF1, CXCL8, IL10, IL12B, KITLG 

 

6.64E-03 

14 Neuroinflammation Signaling Pathway CCL2, CD40, CX3CL1, CXCL10, CXCL8, IL10, IL12B, IL18 

 

8.84E-03 

15 Th1 Pathway CD274, CD40, IL10, IL10RB, IL12B, IL18 

 

9.49E-03 
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Figure 1. Flowchart of study analysis. (Abbreviations: eGFR, estimated glomerular filtration 

rate based on creatinine (eGFRcr) or cystatin C (eGFRcys); FDR, false discovery rate) 
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Figure 2. Pairwise correlation matrix for the 52 biomarkers of inflammation significantly 

associated with eGFR in the discovery study (KORA F4). Full names of the markers are given 

in Supplementary Table 1. 
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