

[pubs.acs.org/JPCC](pubs.acs.org/JPCC?ref=pdf) **Article**

¹ Light Amplification Materials Based on Biopolymers Doped with $_2$ Dye Molecules—Structural Insights from $15N$ and $13C$ Solid-State ³ Dynamic Nuclear Polarization

⁴ [Mark V. H](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mark+V.+Ho%CC%88fler"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf)öfler, [Nicolai Hoinka,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nicolai+Hoinka"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) [Timmy Sch](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Timmy+Scha%CC%88fer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf)äfer, [Marilia Horn,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Marilia+Horn"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) [Fabien Aussenac,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fabien+Aussenac"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) ⁵ [Thomas Fuhrmann-Lieker,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Thomas+Fuhrmann-Lieker"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf)[*](#page-6-0) [and Torsten Gutmann](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Torsten+Gutmann"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf)[*](#page-6-0)

¹⁵ interaction with water forming hydrogen bonds. Such structural differences may explain the obtained variation of the emission ¹⁶ wavelength of Calcofluor White doped on these substrates in ASE experiments.

17 INTRODUCTION

¹⁸ In the past decades, paper substrates as well as chitosan and ¹⁹ their derivatives have become the basis for a large variety of ²⁰ biocompatible functional materials with potential applications ²¹ in different fields such as in food industry, drug delivery 22 systems, or medical diagnostics.^{[1](#page-7-0)−[8](#page-7-0)} More specific applications 23 range from supporting materials for catalysts^{[9,10](#page-7-0)} and stimuli-24 responsive or sensoric molecules^{[11](#page-7-0),[12](#page-7-0)} over electronic and 24 responsive $\frac{25}{3,14}$ $\frac{25}{3,14}$ $\frac{25}{3,14}$ to materials that have been recently used in ²⁶ amplified light emission experiments.[15](#page-7-0),[16](#page-7-0) To make paper ²⁷ substrates or chitosan available, they have to be prepared from ²⁸ natural, renewable resources. For paper materials, typically 29 cellulose fibers from plants are the basis for manufacturing.¹ ³⁰ Chitosan is prepared mainly by partial deacetylation of chitin ³¹ from crustaceans, but can also be synthesized by certain 32 fungi.^{18} 32 fungi.^{18} 32 fungi.^{18} In the next step, the prepared carrier materials can be ³³ modified by molecules such as dyes that generate functionality. ³⁴ One possibility is the modification of the material by covalent 35 grafting as it has been shown by Song at $al.^{19}$ $al.^{19}$ $al.^{19}$ for the 36 fluorophore 1,8-naphthalimide and by some of us^{20} us^{20} us^{20} for linking ³⁷ of rhodamine B on cellulose-derived materials, which can be ³⁸ both applied in sensorics. On the other hand, the molecules ³⁹ may also be adsorbed as shown for paper materials with 40 application in gas sensing^{21-[23](#page-7-0)} or for chitosan, which was 41 applied to adsorb dyes from waste water.^{[24](#page-7-0)}

 As recently demonstrated by some of us,^{[15](#page-7-0)} conventional paper substrates can be simply treated with a fluorescent brightening agent (FBA) such as Calcofluor White and efficiently applied in amplified spontaneous emission (ASE) experiments. In this content, however, the following questions

are still open: (i) How does the dye molecule interact with the ⁴⁷ supporting material. (ii) Are there differences between various 48 carrier materials, i.e., paper substrate vs chitosan? Does the ⁴⁹ adsorption of the dye molecule on the carrier material induce 50 structural changes? (iv) Does the use of different carrier ⁵¹ materials influence the properties of amplified emission? To ⁵² solve these quests, a detailed structural analysis has to be 53 performed at a molecular level. This requires an appropriate ⁵⁴ analytical technique that allows the determination of local ⁵⁵ structures in these disordered solid materials.

Solid-state nuclear magnetic resonance (NMR) is a powerful 57 technique that provides such information.^{[25](#page-7-0)} However, there 58 are some limitations in terms of low intrinsic sensitivity for ⁵⁹ biopolymers that have only small surface areas, contain small 60 amounts of surface molecules, or when nuclei such as ^{15}N have $_{61}$ to be detected by solid-state NMR.^{[26](#page-7-0)−[28](#page-7-0)} To overcome this 62 disadvantage, it is necessary to boost the sensitivity which can ⁶³ be done by a combination of solid-state NMR with dynamic ⁶⁴ nuclear polarization (solid-state DNP).^{[29](#page-7-0)−[34](#page-8-0)} This technique 65 uses the polarization of unpaired electrons, which is 3 orders of 66 magnitude higher and transfers it into nuclear polarization. ⁶⁷ Thus, the sensitivity of solid-state NMR is significantly ⁶⁸

Received: July 29, 2021 Revised: September 11, 2021

⁶⁹ enhanced as shown recently for a variety of cellulose-based ⁷⁰ materials.[20](#page-7-0)[,35](#page-8-0)[−][40](#page-8-0)

 With the help of this technique, we wanted to identify the structural organization and interaction of dye molecules with the surface of the carrier material as well as the influence of solvents on the structure of the carrier materials. As model compounds, we used (i) a pure cellulose calligraphic paper and (ii) chitosan scaffolds as carrier materials, which were both impregnated with Calcofluor White.

 The rest of this paper is organized as follows. After this brief [Introduction](#page-0-0) section, the experimental details are given. This section is followed by the [Results and Discussion](#page-2-0) section, where first the characterization of the two model systems with 82 1H \rightarrow 13C and 1H \rightarrow 15N CP MAS DNP is described and discussed in the context of structural changes of the carrier materials. Then, the results of the ASE experiments for the two model systems are presented and discussed in the context of structural differences.

87 METHODS

88 General. Calcofluor White (Fluorescent Brightener 28, sample 1) was purchased from Sigma-Aldrich. Paper material (pure cellulose calligraphy paper, sample 2) from Wenzhouh Halili Industry & Trade Co. (China) and chitosan scaffolds (sample 4) were prepared from low-molecular-weight chitosan (sample 6) purchased from Sigma-Aldrich. AMUPol was 94 obtained from Cortecnet (France). Glycerol- d_8 and D₂O were purchased from Sigma-Aldrich and used without further 96 purification. A list of all sample labels is given in Table 1. The detailed sample preparation is described in the following paragraphs.

Table 1. List of Sample Labels and Short Descriptions

sample Label	short description
sample 1	Calcofluor White
sample 1a	Calcofluor White + DNP juice
sample 2	pure calligraphy paper
sample 2a	pure calligraphy paper + DNP juice
sample 3	calligraphy paper doped with Calcofluor White
sample 3a	calligraphy paper doped with Calcofluor White $+$ DNP juice
sample 4	chitosan scaffolds
sample 4a	chitosan scaffolds + DNP juice
sample 4b	chitosan scaffolds + $H2O$
sample 4c	chitosan scaffolds + glycerol- $d_8/D_2O/H_2O$
sample 5	chitosan scaffolds doped with Calcofluor White
sample 5a	chitosan scaffolds doped with Calcofluor White + DNP juice
sample 5b	chitosan scaffolds doped with Calcofluor White $+ H2O$
sample 5c	chitosan scaffolds doped with Calcofluor White + glycerol- $d_8/D_2O/H_2O$
sample 6	low-molecular-weight chitosan
sample 6b	low-molecular-weight chitosan + H_2O
sample 6c	low-molecular-weight chitosan + glycerol- $d_8/D_2O/H_2O$

99 General Sample Preparation. Calligraphic Paper + Calcofluor White (Sample 3). In the first step, a solution of 1 101 mg/mL (ca. 1 mM) of Calcofluor White (sample 1) ($M =$ 960.95 g/mol) in demineralized water was prepared. The paper material (sample 2) was then impregnated by dropping this solution with a pipette until complete wetting. The material was dried at room temperature, and the whole procedure was repeated one time to obtain sample 3.

Chitosan Scaffolds (Sample 4). In the first step, the 107 acetylation degree of the low-molecular-weight chitosan from ¹⁰⁸ Sigma-Aldrich (15%) was determined by proton nuclear ¹⁰⁹ magnetic resonance spectroscopy (¹H NMR) according to 110 the method developed and validated by Lavertu et al.^{[41](#page-8-0)} The $_{111}$ molecular weight (120 kDa) was determined by the capillary ¹¹² viscometer procedure, 42 in which flow time measurements 113 were performed on an Ubbelohde viscometer. A 1% (w/w) ¹¹⁴ chitosan gel was prepared by dissolution of the polysaccharide ¹¹⁵ in a 1% acetic acid (HAc) aqueous solution under stirring at ¹¹⁶ room temperature for 24 h. After that, the solution was frozen ¹¹⁷ in liquid nitrogen and freeze-dried to obtain the porous ¹¹⁸ scaffold. 119

Chitosan Scaffolds + Calcofluor White (Sample 5). The 120 chitosan scaffolds were prepared as described above. A ¹²¹ Calcofluor White solution of 1 mg/mL (ca. 1 mM) was used 122 to impregnate the sample. 123

Sample Preparation for DNP NMR Experiments. 124 Calcofluor White for DNP (Sample $1a$). As a reference, a 125 blank sample of Calcofluor White was prepared for DNP ¹²⁶ (sample 1a), for which 28.1 mg of Calcofluor White (sample ¹²⁷ 1) was impregnated with 14 μ L of a 15 mM AMUPol^{[43](#page-8-0)} 128 solution in glycerol- $d_8/D_2O/H_2O$ (60:30:10 w/w/w). The 129 wetted sample was then packed into a 3.2 mm sapphire rotor, ¹³⁰ which was sealed with a Teflon plug and closed with a $ZrO₂$ 131 driving cap. 132

Calligraphic Paper for DNP (Sample $2a$). In a similar way, 133 a blank sample of the calligraphic paper was prepared for DNP ¹³⁴ (sample $2a$) employing 14 mg of the paper material (sample 2) 135 and 14 μ L of the 15 mM AMUPol solution in glycerol- $d_{\rm g}/$ 136 D_2O/H_2O (60:30:10 w/w/w).

Calligraphic Paper + Calcofluor White for DNP (Sample 138 3a). With the dye-doped calligraphic paper, the DNP sample 139 preparation was performed similarly to sample 2a. Typically, ¹⁴⁰ 14 mg of sample 3 was impregnated with 14 μ L of the 15 mM 141 AMUPol solution in glycerol- $d_8/D_2O/H_2O$ (60:30:10 w/w/w) 142 to obtain sample 3a.

Chitosan Scaffolds for DNP (Sample $4a$). Similar to sample 144 1a, a blank sample of chitosan scaffolds was prepared for DNP ¹⁴⁵ (sample 4a). Thereby, 17 mg of sample 4 was mixed with 17 ¹⁴⁶ μ L of the 15 mM AMUPol solution in glycerol- $d_8/D_2O/H_2O$ 147 $(60:30:10 \text{ w/w/w}).$ 148

Chitosan Scaffolds + Calcofluor White for DNP (Sample 149 5a). With the dye-doped chitosan scaffolds, the DNP sample 150 preparation was performed similarly to sample 4a. In this case, ¹⁵¹ 15 mg of sample 5 was mixed with 15 μ L of the 15 mM 152 AMUPol solution in glycerol- $d_8/D_2O/H_2O$ (60:30:10 w/w/w) 153 to obtain sample 5a. 154

DNP NMR Experiments. Solid-state DNP NMR spectra of ¹⁵⁵ samples 1a, 2a, and 3a were recorded in Darmstadt on a ¹⁵⁶ Bruker Avance III 400 DNP spectrometer corresponding to 157 frequencies of 400.02 MHz for 1 H, 100.59 MHz for 13 C, and 158 40.54 MHz for 15 N. This spectrometer is equipped with a 3.2 159 mm low-temperature $H/X/Y$ triple-resonance probe and uses a 160 9.7 T Bruker gyrotron system that generates microwaves at a 161 frequency of 263 GHz. 162

To obtain the optimum recycle delay for cross-polarization ¹⁶³ (CP MAS) experiments, ¹H saturation recovery experiments 164 with microwave irradiation (mw on) were performed for all 165 samples with a saturation pulse train of 20 using $\pi/2$ pulses of 166 2.3 μ s length. Analysis of the built-up time T_B was performed 167 with an exponential fit function. 168

Figure 1. $^1\text{H}\to {^{13}\text{C}}$ CP MAS NMR spectra of calligraphic paper doped with Calcofluor White (sample 3a) recorded with and without microwave irradiation (left) and their corresponding assignments (right). Note: Spectra were recorded at 10 kHz spinning. Spinning sidebands of glycerol are marked with asterisks.

¹⁶⁹ ¹ ${}^{1}H \rightarrow {}^{13}C$ CP MAS experiments were recorded at 8 or 10 170 kHz spinning. A linear 100-50 ramp on ¹H was employed ¹⁷¹ during contact. The contact time was set at 2 ms, and the 172 recycle delay was set at 1.3 T_B (for T_B values, see [Table S3](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c06737/suppl_file/jp1c06737_si_001.pdf)). ¹⁷³ Each spectrum was recorded with 512 scans, and spinal64 174 decoupling^{[44](#page-8-0)} was applied during data acquisition. The ¹⁷⁵ chemical shift was referenced to TMS (0 ppm).

¹⁷⁶ ¹ ${}^{1}H \rightarrow {}^{15}N$ CP MAS experiments were recorded at 10 kHz 177 spinning. A linear 100-50 ramp on ¹H was employed during ¹⁷⁸ contact. The contact time was set at 3.5 ms, and the recycle 179 delay was set at $1.3 \cdot T_B$ (for T_B values, see [Table S3](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c06737/suppl_file/jp1c06737_si_001.pdf)). The ¹⁸⁰ spectrum of sample 1a was recorded with 1536 scans, and the ¹⁸¹ spectrum of sample 3a was recorded with 20 480 scans. For 182 both samples, tppm decoupling^{[45](#page-8-0)} was applied during data 183 acquisition. The chemical shift was referenced to liquid $NH₃$ ¹⁸⁴ (0 ppm) employing NH4Cl (39.3 ppm) as external standard ¹⁸⁵ according to ref [46](#page-8-0).

 Solid-state DNP NMR spectra of samples 4a and 5a were recorded in Wissembourg (France) on a Bruker Avance NEO spectrometer with an Ascend 400 DNP magnet, corresponding 189 to frequencies of 400.22 MHz for 1H , 100.64 MHz for ^{13}C , and 190 40.55 MHz for ¹⁵N. This spectrometer is equipped with a 3.2 mm low-temperature H/X/Y triple-resonance probe and a 4.8 T Bruker gyrotron system operating at second harmonics that generates microwaves at a frequency of 263 GHz.

¹⁹⁴ To obtain the optimum recycle delay for cross-polarization 195 (CP MAS) experiments, ¹H saturation recovery experiments ¹⁹⁶ with microwave irradiation (mw on) were performed for all 197 samples with a saturation pulse train of 50 using $\pi/2$ pulses of 198 2.6 μ s length. Analysis of the built-up time T_B was performed ¹⁹⁹ with an exponential fit function.

200 ${}^{1}H \rightarrow {}^{13}C$ CP MAS experiments were recorded at 8 or 10 kHz spinning. A linear 100-50 ramp on ¹ H was employed during contact. The contact time was set at 2 ms, and the 203 recycle delay was set at $1.3 \cdot T_B$ (for T_B values, see [Table S3](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c06737/suppl_file/jp1c06737_si_001.pdf)). Each spectrum was recorded with 512 scans, and spinal64 decoupling^{[44](#page-8-0)} was applied during data acquisition. The chemical shift was referenced to TMS using a silicone plug as an external standard (0 ppm).

208 ${}^{1}H\rightarrow {}^{15}N$ CP MAS experiments were recorded at 10 kHz $_{209}$ spinning. A linear 100-50 ramp on $^{1} \rm H$ was employed during ²¹⁰ contact. The contact time was set at 3.5 ms, and the recycle 211 delay was set at $1.3 \cdot T_B$ (for T_B values, see [Table S3](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c06737/suppl_file/jp1c06737_si_001.pdf)). The ²¹² spectra of samples 4a and 5a were each recorded with 16384 213 scans. For both samples, spinal64 decoupling^{[44](#page-8-0)} was applied during data acquisition. The chemical shift was referenced to ²¹⁴ liquid NH_3 (0 ppm) using glycine (30 ppm) as an external 215 standard. standard. 216

To obtain enhancement factors for the DNP spectra, the ²¹⁷ appropriate sample was measured with and without microwave ²¹⁸ irradiation. The factors were calculated by scaling the peak ²¹⁹ maxima to an equivalent value. The error was estimated by ²²⁰ adding the percentage error of the noise level of both ²²¹ measurements. For large errors of about 100%, the enhance- ²²² ment is not defined (N/D) . 223

Sample Preparation for Lasing Experiments. For both ²²⁴ types of substrates, calligraphic paper and chitosan scaffolds, ²²⁵ samples were prepared for optical amplification analysis. ²²⁶ Similar to the general preparational steps, the substrates were ²²⁷ impregnated with Calcofluor White (1 mg/mL) in deminer- ²²⁸ alized water. After drying the samples, the process of wetting ²²⁹ was repeated once. 230

ASE Experiments. For ASE experiments, a nitrogen laser ²³¹ (Laser Technik Berlin GmbH, MSG 800 SD) with a pulse ²³² duration shorter than 500 ps and a wavelength of $\lambda = 337.1$ nm 233 was used as a source. Triggered single pulses with a fluence of ²³⁴ 7815 μ J/cm² were applied. To control the fluence of the 235 incident light toward the sample, a neural density filter wheel ²³⁶ (Thorlabs, NDC-50C 4M) was used. The input fluence was ²³⁷ determined by averaging 100 pulses at a given set of neutral ²³⁸ density (ND) filter setting and area of illumination. Laser ²³⁹ Technik Berlin (LTB) provided a joule meter for the nitrogen ²⁴⁰ laser. The sample of interest was fixed at a distance of 100 mm ²⁴¹ from the source. Sample translation to avoid depletion after a ²⁴² measurement is provided by an alignment stage (Newport ²⁴³ ULTRAlign, Model 561D metric). To collect a sufficient ²⁴⁴ amount of light, an optical fiber was placed in near-proximity ²⁴⁵ to the illuminated area of the sample. Spectral analysis of the ²⁴⁶ output light was performed by a detector array spectrometer ²⁴⁷ (Avantes Starline "Avaspec 3648" with a spectral range from ²⁴⁸ 300 to 820 nm and a resolution of 0.2 nm). Fluorescence ²⁴⁹ experiments were performed on a Hitachi F-4500.

■ RESULTS AND DISCUSSION 251

 1 H \rightarrow 13 C and 1 H \rightarrow 15 N CP MAS DNP-Enhanced Solid- 252 State NMR of Dye-Doped Paper Material. As a first model 253 system, the calligraphic paper, which was doped with ²⁵⁴ Calcofluor White (sample 3), was investigated. This model ²⁵⁵ system has been successfully applied previously in ASE ²⁵⁶ experiments.^{[15](#page-7-0)} To study the interaction of the dye molecule 257

Figure 2. (a) DNP-enhanced $^1\text{H} \to {}^{13}\text{C}$ CP MAS NMR spectra of Calcofluor White (sample 1a), calligraphic paper (sample 2a), and calligraphic paper doped with Calcofluor White (sample 3a). (b) Zoom in the spectral range between 100 and 150 ppm. Note: The scaling factors 16 were used to make signals of the Calcofluor White visible for sample 3a. Spectra were recorded at 10 kHz spinning. Spinning sidebands are marked with asterisks. The dashed lines are used to guide the eye.

 with the paper material in this model system, three different 259 samples were prepared and inspected by DNP-enhanced 13 C $_{260}$ and $^{1}H \rightarrow$ ^{15}N CP MAS solid-state NMR, namely, the pure Calcofluor White dye (sample 1a) as well as the pure calligraphic paper (sample 2a) as references, and the calligraphic paper doped with Calcofluor White (sample 3a). For sample 3a, the achievable DNP signal enhancement in 265 ${}^{1}H \rightarrow {}^{13}C$ CP MAS NMR experiments was analyzed by comparing the spectra measured with and without microwave f1 267 irradiation ([Figure 1](#page-2-0), left). The determination of the enhancement factors for each single signal [\(Table S1\)](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c06737/suppl_file/jp1c06737_si_001.pdf) shows that an enhancement up to 140 is reachable, which corresponds to a time saving factor of $140^2 = 19600$. As can be seen from [Table S1,](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c06737/suppl_file/jp1c06737_si_001.pdf) the enhancement factors of the signals obtained for sample 3a are identical within the error margins with an average value of 123. This observation is a clear indication of a uniform transfer of the polarization through the sample. This result is not very surprising since the model $_{\rm 276}$ system is homogeneously wetted and thus transfer via $^1\rm H - ^1\rm H$ spin-diffusion through the sample is expected to be to the largest possible extent homogeneous.

 To assign each signal in the spectrum of 3a, it is necessary to compare this spectrum with reference spectra recorded for the neat substances, namely, Calcofluor White (sample 1a) and pure calligraphic paper (sample 2a). Thus, similar to sample 3a, DNP-enhanced 13C CP MAS NMR spectra for the reference samples 1a and 2a were recorded. To identify the 285 isotropic signals in the DNP-enhanced $\mathrm{^{1}H}{\rightarrow} \mathrm{^{13}C}$ CP MAS spectra for each sample, they were recorded at two different spinning rates, at 8 and 10 kHz. The spectra obtained at different spinning rates for samples 1a and 3a are shown in [Figure S1](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c06737/suppl_file/jp1c06737_si_001.pdf). For the isotropic signals obtained for Calcofluor White (sample 1a), a clear signal assignment to functional groups is feasible by comparing with liquid NMR data. The full signal assignment is shown in [Figure S2.](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c06737/suppl_file/jp1c06737_si_001.pdf) With this in mind, the 293 signal group at about 165 ppm in the ${}^{1}H \rightarrow {}^{13}C$ CP MAS 294 spectrum of $1a$ [\(Figure S1](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c06737/suppl_file/jp1c06737_si_001.pdf)) is assigned to the carbon atoms of the 1,3,5-triazine ring of the dye molecule. Moreover, the signals at 50 ppm and 60 ppm are related to the $CH₂$ groups and the signals in the region between 115 and 145 ppm refer to the aromatic ring system present in the dye molecule.

 f_2 299 Figure 2 shows the DNP-enhanced $^1H \rightarrow ^{13}C$ CP MAS spectra of samples 1a to 3a. When comparing the spectral pattern obtained for calligraphic paper (sample 2a) and calligraphic paper doped with Calcofluor White (sample 3a) in Figure 2 (left), it is obvious that no significant difference between the two samples is observed. This is not very surprising since the amount of the dye molecule compared to ³⁰⁵ the paper substrate is low. Enlargement of the spectral region ³⁰⁶ between 100 and 150 ppm (Figure 2, right), however, shows ³⁰⁷ that four additional signals with low intensities appeared at ³⁰⁸ 138.5, 127.5, 120.5, and 116.0 ppm for sample 3a compared to ³⁰⁹ sample 2a. These signals are assigned to small amounts of ³¹⁰ Calcofluor White molecules present in sample 3a. Comparison ³¹¹ of the chemical shifts obtained for the dye molecules in sample ³¹² 3a with the chemical shifts obtained for pure Calcofluor White ³¹³ (sample 1a) shows significant deviations (see [Table S4](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c06737/suppl_file/jp1c06737_si_001.pdf)). While ³¹⁴ the signal at 138.5 ppm in the spectrum of sample 3a is \sim 2 315 ppm low-field-shifted compared to sample 1a (136.5 ppm), the ³¹⁶ signal at 127.5 ppm has the same shift in both samples and the ³¹⁷ signals at 120.5 ppm and 116.0 ppm in the spectrum of sample ³¹⁸ 3a are ∼2 ppm high-field-shifted compared to sample 1a ³¹⁹ (122.5 and 118.0 ppm). These differences in chemical shifts ³²⁰ clearly indicate the presence of interactions between the paper ³²¹ material and the dye molecule. It has to be noticed that this ³²² phenomenon may be also obtainable for the other signals of ³²³ the dye molecule, which however are difficult to analyze since ³²⁴ they overlay with signals of the cellulose or with spinning ³²⁵ sidebands of the solvent matrix used for the DNP sample ³²⁶ preparation. The second issue may be overcome by measuring ³²⁷ the samples at higher spinning rates or using different solvent ³²⁸ matrices, which is beyond the scope of the present work. 329

To shed more light on the interactions of the dye molecule ³³⁰ with the paper substrate, DNP-enhanced $^1\text{H} \rightarrow {}^{15}\text{N}$ CP MAS 331 spectra of the pure Calcofluor White (sample 1a) and the ³³² calligraphic paper doped with Calcofluor White (sample 3a) ³³³ were recorded and are compared in [Figure 3.](#page-4-0) A comparison of 334 f3 the chemical shift values is given in [Table S5](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c06737/suppl_file/jp1c06737_si_001.pdf). The spectrum of ³³⁵ pure Calcofluor White (sample 1a) shows three signals, at ³³⁶ 178.0, 112.5, and 91.5 ppm. The signal at 178.0 ppm, which ³³⁷ contains a slightly high-field-shifted shoulder signal at 167.5 ³³⁸ ppm, is clearly attributed to the three nitrogen atoms in the ³³⁹ 1,3,5-triazine ring of Calcofluor White. The signals at 112.5 ³⁴⁰ and 91.5 ppm are assigned to secondary and tertiary amine ³⁴¹ nitrogen atoms in different chemical environments. In contrast, ³⁴² the spectrum of the calligraphic paper doped with Calcofluor ³⁴³ White (sample 3a) shows only two signals, at 179.5 and 114.5 ³⁴⁴ ppm. Furthermore, a weak signal almost at the noise level at ³⁴⁵ about 94.5 ppm becomes visible. Compared with the signals ³⁴⁶ obtained for 1a, these signals differ in their intensity as well as ³⁴⁷ in their chemical shifts depending on the functional group. ³⁴⁸ While for the aromatic nitrogen atoms in the 1,3,5-triazine, the 349 chemical shift difference is only moderate (less than 2 ppm), ³⁵⁰ for the amine groups, it is significant (3−4 ppm). This ³⁵¹

Figure 3. Comparison of DNP-enhanced ${}^1\mathrm{H} \rightarrow {}^{15}\mathrm{N}$ CP MAS NMR spectra of Calcofluor White (sample 1a) and calligraphic paper doped with Calcofluor White (sample 3a). Note: spectra were recorded at 10 kHz spinning.

³⁵² indicates that the amine nitrogen atoms of the Calcofluor ³⁵³ White molecule form H-bridges, which influence the chemical ³⁵⁴ shift.

³⁵⁵ ¹ $H \rightarrow$ ¹³C and ¹H \rightarrow ¹⁵N CP MAS DNP-Enhanced Solid-³⁵⁶ State NMR of Dye-Doped Chitosan Scaffolds. To get ³⁵⁷ deeper structural insights on the interactions of Calcofluor ³⁵⁸ White with chitosan scaffolds, this material was also 359 investigated with DNP-enhanced ${}^1\mathrm{H} \rightarrow {}^{13}\mathrm{C}$ and ${}^1\mathrm{H} \rightarrow {}^{15}\mathrm{N}$ ³⁶⁰ CP MAS NMR. The chitosan scaffolds doped with Calcofluor 361 White (sample 5a) show enhancements of up to $\varepsilon = 71$ in the 362 ${}^{1}H \rightarrow {}^{13}C$ CP MAS NMR, which is slightly lower than the ³⁶³ enhancements obtained for the pure chitosan scaffolds (sample 364 4a), which are up to $\varepsilon = 83$ (see [Table S2 and Figure S4](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c06737/suppl_file/jp1c06737_si_001.pdf)). ³⁶⁵ Thereby, all peaks in the appropriate spectra show similar ³⁶⁶ amplification within the error margins, which implies uniform ³⁶⁷ distribution of polarization in the samples. This result is ³⁶⁸ comparable with the result obtained for the calligraphic paper ³⁶⁹ sample (see above).

370 The comparison of the ${}^{1}H \rightarrow {}^{13}C$ CP MAS DNP spectra of f4 371 samples 4a, 5a, and 1a is shown in Figure 4 (left). Both ³⁷² samples 4a and 5a show strong signals at ca. 60 and 72 ppm, ³⁷³ which refer to glycerol used as a glass-forming agent in the DNP sample preparation. Next to these signals, two shoulder ³⁷⁴ signals at about 55 and 80 ppm are visible, which are assigned ³⁷⁵ to the C_2 and C_4 carbon atoms of glucosamine and N- 376 acetylglucosamine moieties, respectively.^{[47](#page-8-0),[48](#page-8-0)} Furthermore, 377 signals at 21.5, 172.5, and 179.5 ppm are obtained in the ³⁷⁸ spectra. The signal at 21.5 ppm is typical for a methyl group ³⁷⁹ and the signals at 172.5 and 179.5 ppm for carbonyl functions ³⁸⁰ in different chemical environments and refer to N-acetylglucos- ³⁸¹ amine moieties. These structure moieties are present in the ³⁸² scaffold samples next to glucosamine moieties, since they are ³⁸³ manufactured from commercial chitosan (degree of acetylation ³⁸⁴ 15%). According to Kameda et al., 49 the latter signals do not 385 refer to a 13 C $-$ ¹⁴N coupling nor to crystalline and amorphous 386 regions in the material. More probable, they occur due to the 387 presence of different hydrogen-bond networks that effect the ³⁸⁸ chemical shift of the carbonyl functions. The analysis of the ³⁸⁹ area ratio of the signal at 179.5 ppm to the signal at 172.5 ppm ³⁹⁰ (Figure 4 left, insets) only shows small changes from 65% for ³⁹¹ the scaffolds (sample 4a) to 60% for the scaffolds doped with ³⁹² Calcofluor White (sample 5a), which indicates that changes of ³⁹³ the hydrogen-bond environments at the carbonyl function are ³⁹⁴ only moderate when the scaffolds are doped with the dye ³⁹⁵ molecules. Here, it has to be noticed that our semiquantitative ³⁹⁶ analysis is based on the assumption that the cross-polarization ³⁹⁷ efficiency is similar for both samples, which in first ³⁹⁸ approximation should be valid for samples 4a and 5a ³⁹⁹ containing similar sample composition. Furthermore, the ⁴⁰⁰ DNP polarization transfer leading to the obtained signal ⁴⁰¹ intensities seems to be almost homogeneous as illustrated by ⁴⁰² the similar relative areas obtained for the signals in the spectra ⁴⁰³ recorded with and without microwave irradiation [\(Figure S4](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c06737/suppl_file/jp1c06737_si_001.pdf)). ⁴⁰⁴

The signals obtained at 101 and 96 ppm are assigned to C_1 405 of N-acetylglucosamine and glucosamine moieties in different ⁴⁰⁶ hydrogen-bond environments.^{[50](#page-8-0)} Interestingly, by adding 407 Calcofluor White (sample $5a$), the ratio of the signal at $96\,408$ ppm compared to the signal at 101 ppm changes strongly from ⁴⁰⁹ 50% (sample 4a) to 25% (sample 5a) (Figure 4 left, insets). ⁴¹⁰ This change unlikely stems from TEMPO-mediated oxidation, ⁴¹¹ which may take place due to the presence of TEMPO-derived ⁴¹² radicals in the DNP matrix.^{[51](#page-8-0)} It is more probable that water or 413

Figure 4. DNP-enhanced 1H \rightarrow ${}^{13}C$ CP MAS NMR spectra of Calcofluor White (sample 1a), chitosan scaffolds (sample 4a), and chitosan scaffolds doped with Calcofluor White (sample 5a). Note: spectra were recorded at 10 kHz spinning. Spinning sidebands are marked with asterisks. For comparison, a spectrum of sample 5a measured at 8 kHz is shown in [Figure S3](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c06737/suppl_file/jp1c06737_si_001.pdf).

414 glycerol- $d_8/D_2O/H_2O$ used for the sample preparation affects ⁴¹⁵ this change.

 To analyze the influence of the solvent on the structure of the material, solid-state NMR spectra of chitosan scaffolds and chitosan scaffolds doped with Calcofluor White as neat materials were recorded at room temperature, and compared to the spectra of these materials when wetted with water or 421 with a mixture of glycerol- $d_8/D_2O/H_2O$ (samples 4, 4b, 4c, 5, 5b, 5c). The spectra of chitosan scaffolds and these scaffolds doped with Calcofluor White (samples 4 and 5 in [Figure S5](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c06737/suppl_file/jp1c06737_si_001.pdf)) both show a broad signal composed of two subsignals centered 425 at 102 and 99 ppm referring to C_1 of N-acetylglucosamine and glucosamine moieties in different hydrogen-bond environ- ments. Furthermore, three signals in the carbonyl region are obtained for sample 4 (179.5, 176.0, 173.5 ppm), while only two are obtained for sample 5 (179.5, 173.5 ppm). By adding 430 the glycerol- $d_8/D_2O/H_2O$ matrix (samples 4c and 5c), the relative intensity of the signal of the carbonyl group at 173.5 ppm increases compared to the signal at 179.5 ppm. This trend gets even stronger when only water is added to the neat materials (samples 4b and 5b). For these samples in the carbonyl region, only one signal is left at 173.5 ppm.

 One possible explanation refers to the theoretical work by 437 Kameda and co-workers^{[52](#page-8-0)} who proposed that in peptide C= O, the isotropic carbon chemical shifts move to lower field with increasing strength of hydrogen bonds. By adding water to sample 4 or 5, the materials swell (samples 4b and 5b) probably due to the semicrystalline nature of the biopolymer. Thus, the hydrogen bonds in the biopolymer become weaker or even broken. This would induce a decrease of the low-field carbonyl signal in the spectrum. The samples 4c and 5c then represent an intermediate step between the neat sample 4 or 5 and the samples prepared with water (samples 4b, 5b). Due to the presence of glycerol and only a small amount of water in the matrix, the effect on the strength of hydrogen bonds is less pronounced compared to pure water as a solvent. Thus, for samples 4b and 5b, a tiny signal at 179.5 ppm is still visible. 451 An analogous behavior is found for the C_1 signals. In the neat samples 4 and 5 [\(Figure S5\)](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c06737/suppl_file/jp1c06737_si_001.pdf), two signals are visible, one at 102 ppm and the second one occurring as a shoulder at about 454 99 ppm. By adding the glycerol- $d_8/D_2O/H_2O$ matrix (samples 4c and 5c), only minor changes are observable. Adding pure 456 water instead of the glycerol- $d_8/D_2O/H_2O$ matrix, the observed effect gets more pronounced. The relative intensity of the signal at 99 ppm increases compared to the signal at 102 ppm. This observation is in agreement with the signal changes in the carbonyl region explained earlier and is assumed to refer to the change of the strength of the hydrogen-bond network in 462 close vicinity to the C_1 carbon atoms in the materials.

 Interestingly, the observations described above are not found for a chitosan sample (sample 6) as received from Sigma-Aldrich. In [Figure S6,](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c06737/suppl_file/jp1c06737_si_001.pdf) the spectra of this sample 466 impregnated with water (sample 6a) and with a glycerol- d_8 / $467 \text{ D}_2\text{O/H}_2\text{O}$ matrix (sample 6b) are shown. In the carbonyl region, only one signal at 174 ppm is visible and also the signal at 105 ppm does not show two peaks. This is valid for samples 6, 6a and 6b. One possible explanation refers to the presence of strong electrostatic interactions in the chitosan sample, which may prevent this sample to swell upon reaction with water. Such interactions are known for chitosan as a plasticizer effect when, for example, small amounts of glycerol react with 475 chitosan.^{53–[55](#page-8-0)} For the chitosan scaffolds (sample 4) which were prepared under acidic conditions, it seems that this effect

has vanished and thus swelling of the material upon treatment 477 with solvents/doping with Calcofluor White is induced. 478

Similarly, the structure of the paper-based samples 2 and 3 is ⁴⁷⁹ not affected by the solvent matrix. As shown in [Figure S7](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c06737/suppl_file/jp1c06737_si_001.pdf), ⁴⁸⁰ when paper substrates are impregnated with different matrices, ⁴⁸¹ the C_1 signal of the cellulose is always accessible and shows no 482 significant difference when compared for different matrices. 483

Next to the already described signals visible in 4a and 5a, ⁴⁸⁴ additional signals with low intensity have appeared for sample ⁴⁸⁵ 5a. By enlarging the spectra [\(Figure 4](#page-4-0) right), signals at 139.0, ⁴⁸⁶ 127.0, 121.0, and 116.5 ppm are clearly identified. These peaks ⁴⁸⁷ refer to the dye molecule. To guarantee consistency, all spectra ⁴⁸⁸ were referenced on the low-field glycerol signal at 60 ppm. ⁴⁸⁹ This reference points out a shift of the pure dye molecule in ⁴⁹⁰ glycerol- $d_8/D_2O/H_2O$ matrix (sample 1a) compared to the 491 chitosan scaffolds doped with the dye molecule (sample 5a) ⁴⁹² approximately by the same values obtained for the paper ⁴⁹³ sample doped with dye molecules (sample 2a). By changing ⁴⁹⁴ the spinning frequency from 10 to 8 kHz [\(Figure S3](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c06737/suppl_file/jp1c06737_si_001.pdf)), another ⁴⁹⁵ peak at about 162 ppm becomes visible. This peak is again low- ⁴⁹⁶ field-shifted by 2 ppm in comparison to the pure dye molecule ⁴⁹⁷ glycerol- $d_8/D_2O/H_2O$ matrix (sample 1a). 498

Since chitosan has an additional $NH₂$ group compared to 499 cellulose, it is even more likely to record ${}^{1}H \rightarrow {}^{15}N$ CP MAS 500 spectra. In Figure 5, the comparison between the ${}^{1}H \rightarrow {}^{15}N$ s01 f5

Figure 5. DNP-enhanced ${}^{1}H \rightarrow {}^{15}N$ CP MAS NMR spectra of Calcofluor White (sample 1a), chitosan scaffolds (sample 4a), and chitosan scaffolds doped with Calcofluor White (sample 5a). Note: spectra were recorded at 10 kHz spinning. The inset shows the enlarged spectrum of sample 5a together with the spectrum of sample 1a in the range of 50−200 ppm to make the signals of the dye visible in sample 5a. The dashed lines in this inset are used to guide the eye.

CP MAS spectra of Calcofluor White (sample 1a), chitosan ⁵⁰² scaffolds (sample 4a), and chitosan scaffolds doped with 503 Calcofluor White (sample 5a) is displayed. In sample 4a, three ⁵⁰⁴ signals are visible. The signal at 125.5 ppm is attributed to the 505 N-acetylglycosamine moieties. The two peaks at 33 and 25 ⁵⁰⁶ ppm indicate amine groups in glycosamine moieties.^{[56](#page-8-0)} The 507 separation of these signals is most probably related to the 508 protonation state of the amine groups, which strongly acts on ⁵⁰⁹ the ¹⁵N chemical shift. Based on refs [57,](#page-8-0) [58,](#page-8-0) the signals at 33 $\frac{150}{20}$ and 25 ppm may refer to NH_3^+ and NH_2 groups, respectively. 511 Note that in the work by Dos et al., 57 the $15N$ spectra are 512 referenced to NH_4Cl (0 ppm), while in the present work, they 513 are referenced to $NH₄Cl$ (39.3 ppm). The most pronounced 514 effect in the ${}^{1}H \rightarrow {}^{15}N$ CP MAS spectra of samples 4a and 5a in sis Figure 5 is the change of the relative intensities of the peaks at ⁵¹⁶ 33 and 25 ppm, which has strongly decreased for sample 5a 517

Figure 6. Left: ASE experiment performed on calligraphic paper doped with Calcofluor White (sample 3) and fluorescence spectrum of sample 3. Right: ASE experiment performed on chitosan scaffolds doped with Calcofluor White (sample 5). Note: The maximum intensity of the spectra was normalized to 1. The insets show a cut of the structure of the appropriate carrier material (paper and chitosan scaffolds).

 compared to sample 4a. The amount of water used in the sample preparations seems to be responsible for this observation, since it can affect the protonation state of the 521 amine groups and thus the ratio between NH_3^+ and NH_2 groups. Additionally, signals at 180.5, 116.5, and 90.5 ppm occur in the spectra of sample 5a. These are assigned to Calcofluor White. Compared to the spectrum of neat Calcofluor White (sample 1a), where signals are obtained at 178, 112.5, and 91.5 ppm, these signals are shifted by a few ppm, indicating an interaction of the Calcofluor White with the chitosan scaffold via hydrogen bonds, which induce a change of 529 the $15N$ chemical shift. This observation is in agreement with the changes obtained for Calcofluor White doped on calligraphic paper described in the last section.

 Applications of Dye-Doped Paper and Dye-Doped 533 Chitosan Scaffolds. Finally, ASE experiments were per- formed on calligraphic paper doped with Calcofluor White (sample 3) and chitosan scaffolds doped with Calcofluor White (sample 5) to compare their light emission behavior. From these experiments (Figure 6), a single emission line with a narrow FWHM of 3 nm was found for both materials. This observation is expected and demonstrates the functionality of these two samples as ASE substrates. More interestingly, for the calligraphic paper doped with Calcofluor White (sample 3), the emission line is centered at 440 nm, while for the chitosan scaffolds doped with Calcofluor White (sample 5), it is centered at 448 nm, although both samples contain the same dye molecule, namely, Calcofluor White.

 These obtained different emission wavelengths are most probably induced by the interaction of the dye molecule with the carrier material for which hydrogen bonds seem to play a key role as described in the previous sections. The ability of the paper substrate to form hydrogen-bond networks is signifi- cantly different from that of the chitosan scaffolds. Next to these hydrogen bonds, however, also electrostatic interactions have to be taken into account. Since Calcofluor White is an anionic dye, a favored interaction of the sulfonate group with the amino groups of glucosamine moieties is expected. Such an interaction is less feasible for the calligraphic paper, which contains mainly cellobiose moieties. Thus, the significant difference in the wavelength of the emitted light may be explained.

⁵⁶⁰ ■ CONCLUSIONS

561 In conclusion, using DNP-enhanced ¹³C and ¹⁵N solid-state ⁵⁶² NMR spectroscopy, it was possible to show that the dye ⁵⁶³ molecule, namely, Calcofluor White, interacts with carrier

materials based on biopolymers in a different manner. Here, ⁵⁶⁴ possible interactions of water with the carrier material upon ⁵⁶⁵ sample preparation play a key role. In detail, by comparing the 566 NMR spectra of chitosan scaffolds with the one doped with 567 Calcofluor White, significant structural changes were found for ⁵⁶⁸ the chemical environment of C_1 in glucosamine and N- 569 acetylglycosamine moieties. This was not explicitly found for ⁵⁷⁰ the calligraphic paper as the carrier material where structural 571 changes due to sample preparation with water can be 572 neglected. 573

In ASE experiments, both materials reveal a very narrow ⁵⁷⁴ FWHM of 3 nm, but an 8 nm redshift of the peak center is 575 obtained for chitosan scaffolds doped with Calcofluor White 576 compared to calligraphic paper doped with Calcofluor White. 577 This demonstrates that the interactions of the dye molecule 578 with the carrier material in combination with structural ⁵⁷⁹ changes, which depend on the carrier material, play a key ⁵⁸⁰ role to understand their optical properties in ASE experiments. ⁵⁸¹

ASSOCIATED CONTENT 582

\bullet Supporting Information 583

The Supporting Information is available free of charge at ⁵⁸⁴ [https://pubs.acs.org/doi/10.1021/acs.jpcc.1c06737.](https://pubs.acs.org/doi/10.1021/acs.jpcc.1c06737?goto=supporting-info) 585

Signal assignments and enhancements of specific signals, ⁵⁸⁶ ¹H built-up times T_B , ¹³C and ¹⁵N chemical shifts ₅₈₇ obtained for different samples, 13 C solution NMR 588 spectrum of Calcofluor White with signal assignment, ⁵⁸⁹ DNP -enhanced ^{13}C CP MAS spectra of samples 590 recorded at different spinning rates, standard ^{13}C CP 591 MAS solid-state NMR spectra of different materials with ⁵⁹² various sample preparations, and experimental details of ⁵⁹³ standard solid-state NMR experiments [\(PDF\)](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c06737/suppl_file/jp1c06737_si_001.pdf) 594

■ AUTHOR INFORMATION 595

Corresponding Authors 596

- Thomas Fuhrmann-Lieker − Macromolecular Chemistry and 597 Molecular Materials, Center of Interdisciplinary 598 Nanostructure Science and Technology, Universität Kassel, D- ⁵⁹⁹ 34132 Kassel, Germany; [orcid.org/0000-0003-3473-](https://orcid.org/0000-0003-3473-534X) 600 [534X;](https://orcid.org/0000-0003-3473-534X) Email: th.fuhrmann@uni-kassel.de 601 Torsten Gutmann − Institute of Inorganic and Physical 602 Chemistry, Technische Universität Darmstadt, D-64287 ⁶⁰³
	- Darmstadt, Germany; orcid.org/0000-0001-6214-2272; 604 Email: gutmann@chemie.tu-darmstadt.de 605

606 Authors

- ⁶⁰⁷ Mark V. Höfler − Institute of Inorganic and Physical ⁶⁰⁸ Chemistry, Technische Universität Darmstadt, D-64287 ⁶⁰⁹ Darmstadt, Germany
- ⁶¹⁰ Nicolai Hoinka − Macromolecular Chemistry and Molecular
- ⁶¹¹ Materials, Center of Interdisciplinary Nanostructure Science
- ⁶¹² and Technology, Universität Kassel, D-34132 Kassel,
- ⁶¹³ Germany; German Research Center for Environmental
- ⁶¹⁴ Health (HMGU), Helmholtz Zentrum München, D-85764 ⁶¹⁵ Neuherberg, Germany
- ⁶¹⁶ Timmy Schäfer − Institute of Inorganic and Physical
- ⁶¹⁷ Chemistry, Technische Universität Darmstadt, D-64287
- ⁶¹⁸ Darmstadt, Germany
- ⁶¹⁹ Marilia Horn − Macromolecular Chemistry and Molecular
- ⁶²⁰ Materials, Center of Interdisciplinary Nanostructure Science
- ⁶²¹ and Technology, Universität Kassel, D-34132 Kassel,
- ⁶²² Germany
- ⁶²³ Fabien Aussenac − Bruker France SAS, F-67160
- ⁶²⁴ Wissembourg, France

⁶²⁵ Complete contact information is available at:

⁶²⁶ [https://pubs.acs.org/10.1021/acs.jpcc.1c06737](https://pubs.acs.org/page/pdf_proof?ref=pdf)

627 Notes

⁶²⁸ The authors declare no competing financial interest.

⁶²⁹ ■ ACKNOWLEDGMENTS

 This work was supported by the DFG under contract GU- 1650/3-1. The authors thank Prof. Buntkowsky as well as Bruker Biospin for the generous allocation of measurement time at their 400 MHz DNP spectrometers in Darmstadt and Wissembourg.

⁶³⁵ ■ REFERENCES

636 (1) Ahmed, S.; Ikram, S[. Chitosan & Its Derivatives: A Review in](https://doi.org/10.13040/IJPSR.0975-8232.6(1).14-30) 637 [Recent Innovations.](https://doi.org/10.13040/IJPSR.0975-8232.6(1).14-30) Int. J. Pharm. Sci. Res. 2015, 6, 14−30.

638 (2) Wang, W. J.; Xue, C. H.; Mao, X. Z. [Chitosan: Structural](https://doi.org/10.1016/j.ijbiomac.2020.09.042) 639 [Modification, Biological Activity and Application.](https://doi.org/10.1016/j.ijbiomac.2020.09.042) Int. J. Biol. 640 Macromol. 2020, 164, 4532−4546.

641 (3) Kumar, A. A.; Hennek, J. W.; Smith, B. S.; Kumar, S.; Beattie, P.; 642 Jain, S.; Rolland, J. P.; Stossel, T. P.; Chunda-Liyoka, C.; Whitesides,

643 G. M. [From the Bench to the Field in Low-Cost Diagnostics: Two](https://doi.org/10.1002/anie.201411741) 644 [Case Studies.](https://doi.org/10.1002/anie.201411741) Angew. Chem., Int. Ed. 2015, 54, 5836−5853.

645 (4) Ravi Kumar, M. N. V[. A Review of Chitin and Chitosan](https://doi.org/10.1016/S1381-5148(00)00038-9) 646 [Applications.](https://doi.org/10.1016/S1381-5148(00)00038-9) React. Funct. Polym. 2000, 46, 1−27.

647 (5) Martinez, A. W.; Phillips, S. T.; Whitesides, G. M.; Carrilho, E. 648 [Diagnostics for the Developing World: Microfluidic Paper-Based](https://doi.org/10.1021/ac9013989?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) 649 [Analytical Devices.](https://doi.org/10.1021/ac9013989?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Anal. Chem. 2010, 82, 3−10.

650 (6) Qi, J.; Fan, X.-X.; Deng, D.-M.; He, H.-B.; Luo, L.-Q[. Progress in](https://doi.org/10.1016/S1872-2040(20)60064-0) 651 [Rapid Detection Techniques Using Paper-Based Platforms for Food](https://doi.org/10.1016/S1872-2040(20)60064-0) 652 [Safety.](https://doi.org/10.1016/S1872-2040(20)60064-0) Chin. J. Anal. Chem. 2020, 48, 1616−1624.

 (7) Morin-Crini, N.; Lichtfouse, E.; Torri, G.; Crini, G[. Applications](https://doi.org/10.1007/s10311-019-00904-x) [of Chitosan in Food, Pharmaceuticals, Medicine, Cosmetics,](https://doi.org/10.1007/s10311-019-00904-x) [Agriculture, Textiles, Pulp and Paper, Biotechnology, and Environ-](https://doi.org/10.1007/s10311-019-00904-x)[mental Chemistry.](https://doi.org/10.1007/s10311-019-00904-x) Environ. Chem. Lett. 2019, 17, 1667−1692.

657 (8) Xia, Y. Y.; Si, J.; Li, Z. Y[. Fabrication Techniques for Microfluidic](https://doi.org/10.1016/j.bios.2015.10.032) 658 [Paper-Based Analytical Devices and Their Applications for Biological](https://doi.org/10.1016/j.bios.2015.10.032) 659 [Testing: A Review.](https://doi.org/10.1016/j.bios.2015.10.032) Biosens. Bioelectron. 2016, 77, 774−789.

660 (9) Krajewska, B[. Application of Chitin- and Chitosan-Based](https://doi.org/10.1016/j.enzmictec.2003.12.013) 661 [Materials for Enzyme Immobilizations: A Review.](https://doi.org/10.1016/j.enzmictec.2003.12.013) Enzyme Microb. 662 Technol. 2004, 35, 126−139.

663 (10) Macquarrie, D. J.; Hardy, J. J. E[. Applications of Functionalized](https://doi.org/10.1021/ie050007v?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) 664 [Chitosan in Catalysis.](https://doi.org/10.1021/ie050007v?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Ind. Eng. Chem. Res. 2005, 44, 8499−8520.

665 (11) Li, Z. J.; Yang, X. H.; Li, W.; Liu, H. B[. Stimuli-Responsive](https://doi.org/10.1016/j.carbpol.2019.01.082) 666 [Cellulose Paper Materials.](https://doi.org/10.1016/j.carbpol.2019.01.082) Carbohydr. Polym. 2019, 210, 350−363.

(12) Mahadeva, S. K.; Walus, K.; Stoeber, B. [Paper as a Platform for](https://doi.org/10.1021/acsami.5b00373?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) 667 [Sensing Applications and Other Devices: A Review.](https://doi.org/10.1021/acsami.5b00373?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) ACS Appl. Mater. 668 Interfaces 2015, 7, 8345−8362. 669

(13) Lee, C.; Kim, S.; Cho, Y. H[. Silk and Paper: Progress and](https://doi.org/10.1002/adsu.202000216) 670 [Prospects in Green Photonics and Electronics.](https://doi.org/10.1002/adsu.202000216) Adv. Sustainable Syst. 671 2020, 9, No. 2000216. 672

(14) Lin, Y.; Gritsenko, D.; Liu, Q.; Lu, X. N.; Xu, J. [Recent](https://doi.org/10.1021/acsami.6b04854?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) 673 [Advancements in Functionalized Paper-Based Electronics.](https://doi.org/10.1021/acsami.6b04854?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) ACS Appl. 674 Mater. Interfaces 2016, 8, 20501−20515. 675

(15) Hoinka, N. M.; Fuhrmann-Lieker, T[. Amplified Spontaneous](https://doi.org/10.1038/s41598-018-38438-x) 676 [Emission in Paper.](https://doi.org/10.1038/s41598-018-38438-x) Sci. Rep. 2019, 9, No. 1862. 677

(16) Viola, I.; Ghofraniha, N.; Zacheo, A.; Arima, V.; Conti, C.; 678 Gigli, G. [Random Laser Emission from a Paper-Based Device.](https://doi.org/10.1039/c3tc31860e) J. 679 Mater. Chem. C 2013, 1, 8128−8133. 680

(17) Blechschmidt, J. Taschenbuch Der Papiertechnik; Carl Hanser 681 Verlag: München, 2013; Vol. 2. 682

(18) Gadgey, K. K.; Bahekar, A. Studies on Extraction Methods of 683 Chitin from Crab Shell and Investigation of Its Mechanical Properties. 684 Int. J. Mech. Eng. Technol. 2017, 8, 220−231. 685

(19) Song, R. Y.; Zhang, Q.; Chu, Y. L.; Zhang, L.; Dai, H. Q.; Wu, 686 W. B[. Fluorescent Cellulose Nanocrystals for the Detection of Lead](https://doi.org/10.1007/s10570-019-02760-y) 687 [Ions in Complete Aqueous Solution.](https://doi.org/10.1007/s10570-019-02760-y) Cellulose 2019, 26, 9553−9565. 688 (20) Zhao, L.; Li, W.; Plog, A.; Xu, Y.; Buntkowsky, G.; Gutmann, 689

T.; Zhang, K[. Multi-Responsive Cellulose Nanocrystal-Rhodamine](https://doi.org/10.1039/C4CP04096A) 690 [Conjugates: An Advanced Structure Study by Solid-State Dynamic](https://doi.org/10.1039/C4CP04096A) 691 [Nuclear Polarization \(DNP\) NMR.](https://doi.org/10.1039/C4CP04096A) Phys. Chem. Chem. Phys. 2014, 16, 692 26322−26329. 693

(21) Kos, P.; Plenio, H. [A Fluorescent Molecular Probe for the](https://doi.org/10.1002/anie.201506918) 694 [Detection of Hydrogen Based on Oxidative Addition Reactions with](https://doi.org/10.1002/anie.201506918) 695 [Crabtree-Type Hydrogenation Catalysts.](https://doi.org/10.1002/anie.201506918) Angew. Chem., Int. Ed. 2015, 696 54, 13293−13296. 697

(22) Bergmann, M.; Plenio, H. [Giving an Odor to Carbon](https://doi.org/10.1002/ejic.201800325) 698 [Monoxide: Malodorogenic Sensing of Carbon Monoxide Via](https://doi.org/10.1002/ejic.201800325) 699 [Ircl\(Cod\)\(Nhc\) Complexes.](https://doi.org/10.1002/ejic.201800325) Eur. J. Inorg. Chem. 2018, 2018, 2054− 700 2059. 701

(23) Halter, O.; Plenio, H[. Fluorescent Dyes in Organometallic](https://doi.org/10.1002/ejic.201800395) 702 [Chemistry: Coumarin-Tagged Nhc-Metal Complexes.](https://doi.org/10.1002/ejic.201800395) Eur. J. Inorg. 703 Chem. 2018, 2018, 2935−2943. 704

(24) Kyzas, G. Z.; Bikiaris, D. N[. Recent Modifications of Chitosan](https://doi.org/10.3390/md13010312) 705 [for Adsorption Applications: A Critical and Systematic Review.](https://doi.org/10.3390/md13010312) Mar. 706 Drugs 2015, 13, 312−337. 707

(25) Moran, R. F.; Dawson, D. M.; Ashbrook, S. E[. Exploiting NMR](https://doi.org/10.1080/0144235X.2017.1256604) 708 [Spectroscopy for the Study of Disorder in Solids.](https://doi.org/10.1080/0144235X.2017.1256604) Int. Rev. Phys. Chem. 709 2017, 36, 39–115. 710

(26) Gutmann, T.; Kumari, B.; Zhao, L.; Breitzke, H.; Schöttner, S.; 711 Rüttiger, C.; Gallei, M. [Dynamic Nuclear Polarization Signal](https://doi.org/10.1021/acs.jpcc.6b11751?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) 712 [Amplification as a Sensitive Probe for Specific Functionalization of](https://doi.org/10.1021/acs.jpcc.6b11751?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) 713 [Complex Paper Substrates.](https://doi.org/10.1021/acs.jpcc.6b11751?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) J. Phys. Chem. C 2017, 121, 3896−3903. 714 (27) Liu, P.; Liu, H.; Schäfer, T.; Gutmann, T.; Gibhardt, H.; Qi, H.; 715 Tian, L.; Zhang, X.; Buntkowsky, G.; Zhang, K. [Unexpected Selective](https://doi.org/10.1039/D0GC04054A) 716 [Alkaline Periodate Oxidation of Chitin for the Isolation of Chitin](https://doi.org/10.1039/D0GC04054A) 717 [Nanocrystals.](https://doi.org/10.1039/D0GC04054A) Green Chem. 2021, 23, 745–751. 718

(28) Zhao, W. C.; Fernando, L. D.; Kirui, A.; Deligey, F.; Wang, T. 719 [Solid-State NMR of Plant and Fungal Cell Walls: A Critical Review.](https://doi.org/10.1016/j.ssnmr.2020.101660) 720 Solid State Nucl. Magn. Reson. 2020, 107, No. 101660. 721

(29) Akbey, Ü.; Franks, W. T.; Linden, A.; Orwick-Rydmark, M.; 722 Lange, S.; Oschkinat, H. Dynamic Nuclear Polarization Enhanced 723 NMR in the Solid-State. In Hyperpolarization Methods in NMR 724 Spectroscopy; Springer: Berlin, 2013; Vol. 338, pp 181−228. 725

(30) Barnes, A. B.; De Paepe, G.; van der Wel, P. C. A.; Hu, K. N.; 726 Joo, C. G.; Bajaj, V. S.; Mak-Jurkauskas, M. L.; Sirigiri, J. R.; Herzfeld, 727 J.; Temkin, R. J.; et al. [High-Field Dynamic Nuclear Polarization for](https://doi.org/10.1007/s00723-008-0129-1) 728 [Solid and Solution Biological NMR.](https://doi.org/10.1007/s00723-008-0129-1) Appl. Magn. Reson. 2008, 34, 729 237−263. 730

(31) Gutmann, T.; Buntkowsky, G. Solid-State NMR Studies of 731 Supported Transition Metal Catalysts and Nanoparticles. In Modern 732 Magnetic Resonance; Springer International Publishing: Cham, 2017; 733 pp 1−21. 734 (32) Gutmann, T.; Groszewicz, P. B.; Buntkowsky, G. [Solid-State](https://doi.org/10.1016/bs.arnmr.2018.12.001) [NMR of Nanocrystals.](https://doi.org/10.1016/bs.arnmr.2018.12.001) Annu. Rep. NMR Spectrosc. 2019, 97, 1−82.

(33) Rankin, A. G. M.; Trebosc, J.; Pourpoint, F.; Amoureux, J. P.;

 Lafon, O. [Recent Developments in MAS DNP-NMR of Materials.](https://doi.org/10.1016/j.ssnmr.2019.05.009) Solid State Nucl. Magn. Reson. 2019, 101, 116−143.

 (34) Thankamony, A. S. L.; Wittmann, J. J.; Kaushik, M.; Corzilius, B. [Dynamic Nuclear Polarization for Sensitivity Enhancement in](https://doi.org/10.1016/j.pnmrs.2017.06.002) [Modern Solid-State NMR.](https://doi.org/10.1016/j.pnmrs.2017.06.002) Prog. Nucl. Magn. Reson. Spectrosc. 2017, 102−103, 120−195.

 (35) Perras, F. A.; Luo, H.; Zhang, X. M.; Mosier, N. S.; Pruski, M.; Abu-Omar, M. M. [Atomic-Level Structure Characterization of](https://doi.org/10.1021/acs.jpca.6b11121?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as)

 [Biomass Pre- and Post-Lignin Treatment by Dynamic Nuclear](https://doi.org/10.1021/acs.jpca.6b11121?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) [Polarization-Enhanced Solid-State NMR.](https://doi.org/10.1021/acs.jpca.6b11121?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) J. Phys. Chem. A 2017, 121, 623−630.

 (36) Takahashi, H.; Lee, D.; Dubois, L.; Bardet, M.; Hediger, S.; De Paepe, G. [Rapid Natural-Abundance 2D C-13-C-13 Correlation](https://doi.org/10.1002/anie.201206102) [Spectroscopy Using Dynamic Nuclear Polarization Enhanced Solid-](https://doi.org/10.1002/anie.201206102) [State NMR and Matrix-Free Sample Preparation.](https://doi.org/10.1002/anie.201206102) Angew. Chem., Int. Ed. 2012, 51, 11766−11769.

 (37) Kumar, A.; Durand, H.; Zeno, E.; Balsollier, C.; Watbled, B.; Sillard, C.; Fort, S.; Baussanne, I.; Belgacem, N.; Lee, D.; et al[. The](https://doi.org/10.1039/C9SC06312A) [Surface Chemistry of a Nanocellulose Drug Carrier Unravelled by](https://doi.org/10.1039/C9SC06312A) [MAS-DNP.](https://doi.org/10.1039/C9SC06312A) Chem. Sci. 2020, 11, 3868−3877.

 (38) Zhao, L.; Smolarkiewicz, I.; Limbach, H. H.; Breitzke, H.; Pogorzelec-Glaser, K.; Pankiewicz, R.; Tritt-Goc, J.; Gutmann, T.; Buntkowsky, G[. Imidazole-Doped Cellulose as Membrane for Fuel](https://doi.org/10.1021/acs.jpcc.6b07049?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) [Cells: Structural and Dynamic Insights from Solid-State NMR.](https://doi.org/10.1021/acs.jpcc.6b07049?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) J. Phys. Chem. C 2016, 120, 19574−19585.

 (39) Groszewicz, P. B.; Mendes, P.; Kumari, B.; Lins, J.; Biesalski, M.; Gutmann, T.; Buntkowsky, G[. N-Hydroxysuccinimide-Activated](https://doi.org/10.1007/s10570-019-02864-5) [Esters as a Functionalization Agent for Amino Cellulose: Synthesis](https://doi.org/10.1007/s10570-019-02864-5) [and Solid-State NMR Characterization.](https://doi.org/10.1007/s10570-019-02864-5) Cellulose 2020, 27, 1239− 1254.

 (40) Wang, T.; Park, Y. B.; Caporini, M. A.; Rosay, M.; Zhong, L. H.; Cosgrove, D. J.; Hong, M[. Sensitivity-Enhanced Solid-State NMR](https://doi.org/10.1073/pnas.1316290110) Detection of Expansin'[s Target in Plant Cell Walls.](https://doi.org/10.1073/pnas.1316290110) Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 16444−16449.

 (41) Lavertu, M.; Xia, Z.; Serreqi, A. N.; Berrada, M.; Rodrigues, A.; Wang, D.; Buschmann, M. D.; Gupta, A[. A Validated 1H NMR](https://doi.org/10.1016/S0731-7085(03)00155-9) [Method for the Determination of the Degree of Deacetylation of](https://doi.org/10.1016/S0731-7085(03)00155-9)

[Chitosan.](https://doi.org/10.1016/S0731-7085(03)00155-9) J. Pharm. Biomed. Anal. 2003, 32, 1149−1158.

 (42) Rinaudo, M. [Chitin and Chitosan: Properties and Applications.](https://doi.org/10.1016/j.progpolymsci.2006.06.001) Prog. Polym. Sci. 2006, 31, 603−632.

 (43) Sauvée, C.; Rosay, M.; Casano, G.; Aussenac, F.; Weber, R. T.; Ouari, O.; Tordo, P. [Highly Efficient, Water-Soluble Polarizing](https://doi.org/10.1002/anie.201304657) [Agents for Dynamic Nuclear Polarization at High Frequency.](https://doi.org/10.1002/anie.201304657) Angew. Chem., Int. Ed. 2013, 52, 10858−10861.

 (44) Fung, B. M.; Khitrin, A. K.; Ermolaev, K. [An Improved](https://doi.org/10.1006/jmre.1999.1896) [Broadband Decoupling Sequence for Liquid Crystals and Solids.](https://doi.org/10.1006/jmre.1999.1896) J. Magn. Reson. 2000, 142, 97−101.

(45) Bennett, A. E.; Rienstra, C. M.; Auger, M.; Lakshmi, K. V.;

 Griffin, R. G. [Heteronuclear Decoupling in Rotating Solids.](https://doi.org/10.1063/1.470372) J. Chem. Phys. 1995, 103, 6951−6958.

 (46) Bertani, P.; Raya, J.; Bechinger, B. [15n Chemical Shift](https://doi.org/10.1016/j.ssnmr.2014.03.003) [Referencing in Solid State NMR.](https://doi.org/10.1016/j.ssnmr.2014.03.003) Solid State Nucl. Magn. Reson. 2014, 61−62, 15−18.

 (47) Kasaai, M. R. [Determination of the Degree of N-Acetylation for](https://doi.org/10.1016/j.carbpol.2009.10.051) [Chitin and Chitosan by Various NMR Spectroscopy Techniques: A](https://doi.org/10.1016/j.carbpol.2009.10.051) [Review.](https://doi.org/10.1016/j.carbpol.2009.10.051) Carbohydr. Polym. 2010, 79, 801−810.

 (48) Tanner, S. F.; Chanzy, H.; Vincendon, M.; Roux, J. C.; Gaill, F. [High-Resolution Solid-State Carbon-13 Nuclear Magnetic Resonance](https://doi.org/10.1021/ma00217a008?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) [Study of Chitin.](https://doi.org/10.1021/ma00217a008?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Macromolecules 1990, 23, 3576−3583.

 (49) Kameda, T.; Miyazawa, M.; Ono, H.; Yoshida, M[. Hydrogen](https://doi.org/10.1002/mabi.200400142) [Bonding Structure and Stability of A-Chitin Studied by 13C Solid-](https://doi.org/10.1002/mabi.200400142)[State NMR.](https://doi.org/10.1002/mabi.200400142) Macromol. Biosci. 2005, 5, 103−106.

 (50) Saito, H.; Tabeta, R.; Ogawa, K. [High-Resolution Solid-State](https://doi.org/10.1021/ma00176a017?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) [Carbon-13 NMR Study of Chitosan and Its Salts with Acids:](https://doi.org/10.1021/ma00176a017?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) [Conformational Characterization of Polymorphs and Helical](https://doi.org/10.1021/ma00176a017?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as)

[Structures as Viewed from the Conformation-Dependent Carbon-13](https://doi.org/10.1021/ma00176a017?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) 803 [Chemical Shifts.](https://doi.org/10.1021/ma00176a017?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Macromolecules 1987, 20, 2424−2430. 804 (51) Fan, Y.; Saito, T.; Isogai, A. [Tempo-Mediated Oxidation of B-](https://doi.org/10.1016/j.carbpol.2009.03.008) 805

[Chitin to Prepare Individual Nanofibrils.](https://doi.org/10.1016/j.carbpol.2009.03.008) Carbohydr. Polym. 2009, 77, 806 −838. 807

(52) Kameda, T.; Takeda, N.; Kuroki, S.; Kurosu, H.; Ando, S.; 808 Ando, I.; Shoji, A.; Ozaki, T. [Hydrogen-Bonded Structure and C-13](https://doi.org/10.1016/S0022-2860(96)09322-2) 809 [NMR Chemical Shift Tensor of Amino Acid Residue Carbonyl](https://doi.org/10.1016/S0022-2860(96)09322-2) 810 [Carbons of Peptides and Polypeptides in the Crystalline State.](https://doi.org/10.1016/S0022-2860(96)09322-2) J. Mol. 811 Struct. 1996, 384, 17−23. 812

(53) Rodríguez-Nuń ̃ez, J. R.; Madera-Santana, T. J.; Sánchez- 813 Machado, D. I.; López-Cervantes, J.; Soto Valdez, H. [Chitosan/](https://doi.org/10.1007/s10924-013-0621-z) 814 [Hydrophilic Plasticizer-Based Films: Preparation, Physicochemical](https://doi.org/10.1007/s10924-013-0621-z) 815 [and Antimicrobial Properties.](https://doi.org/10.1007/s10924-013-0621-z) J. Polym. Environ. 2014, 22, 41−51. 816

(54) Chen, M. J.; Runge, T.; Wang, L. L.; Li, R. M.; Feng, J.; Shu, X. 817 L.; Shi, Q. S. [Hydrogen Bonding Impact on Chitosan Plasticization.](https://doi.org/10.1016/j.carbpol.2018.07.062) 818 Carbohydr. Polym. 2018, 200, 115−121. 819

(55) Domján, A.; Bajdik, J.; Pintye-Hodi, K. [Understanding of the](https://doi.org/10.1021/ma8021234?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) 820 [Plasticizing Effects of Glycerol and Peg 400 on Chitosan Films Using](https://doi.org/10.1021/ma8021234?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) 821 [Solid-State NMR Spectroscopy.](https://doi.org/10.1021/ma8021234?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Macromolecules 2009, 42, 4667− 822 4673. 823

(56) Heux, L.; Brugnerotto, J.; Desbrieres, J.; Versali, M. F.; ̀ 824 Rinaudo, M[. Solid State NMR for Determination of Degree of](https://doi.org/10.1021/bm000070y?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) 825 [Acetylation of Chitin and Chitosan.](https://doi.org/10.1021/bm000070y?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Biomacromolecules 2000, 1, 746− 826 751. 827

(57) Dos, A.; Schimming, V.; Chan-Huot, M.; Limbach, H. H. 828 [Effects of Hydration on the Acid-Base Interactions and Secondary](https://doi.org/10.1039/c002730h) 829 [Structures of Poly-L-Lysine Probed by N-15 and C-13 Solid State](https://doi.org/10.1039/c002730h) 830 [NMR.](https://doi.org/10.1039/c002730h) Phys. Chem. Chem. Phys. 2010, 12, 10235-10245. 831

(58) Gartner, C.; López, B. L.; Sierra, L.; Graf, R.; Spiess, H. W.; 832 Gaborieau, M. [Interplay between Structure and Dynamics in Chitosan](https://doi.org/10.1021/bm200193u?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) 833 [Films Investigated with Solid-State NMR, Dynamic Mechanical](https://doi.org/10.1021/bm200193u?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) 834 [Analysis, and X-Ray Diffraction.](https://doi.org/10.1021/bm200193u?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Biomacromolecules 2011, 12, 1380− 835 1386. 836